//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes Mips64 instructions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Mips Operand, Complex Patterns and Transformations Definitions. //===----------------------------------------------------------------------===// // Instruction operand types def shamt_64 : Operand; // Unsigned Operand def uimm16_64 : Operand { let PrintMethod = "printUnsignedImm"; } // Transformation Function - get Imm - 32. def Subtract32 : SDNodeXFormgetZExtValue() - 32); }]>; // imm32_63 predicate - True if imm is in range [32, 63]. def imm32_63 : ImmLeaf= 32 && (int32_t)Imm < 64;}], Subtract32>; //===----------------------------------------------------------------------===// // Instructions specific format //===----------------------------------------------------------------------===// // Shifts class LogicR_shift_rotate_imm64 func, bits<5> _rs, string instr_asm, SDNode OpNode, PatFrag PF>: FR<0x00, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, shamt_64:$c), !strconcat(instr_asm, "\t$dst, $b, $c"), [(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, (i64 PF:$c)))], IIAlu> { let rs = _rs; } class LogicR_shift_rotate_reg64 func, bits<5> _shamt, string instr_asm, SDNode OpNode>: FR<0x00, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$c, CPU64Regs:$b), !strconcat(instr_asm, "\t$dst, $b, $c"), [(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, CPU64Regs:$c))], IIAlu> { let shamt = _shamt; } // Mul, Div let Defs = [HI64, LO64] in { let isCommutable = 1 in class Mul64 func, string instr_asm, InstrItinClass itin>: FR<0x00, func, (outs), (ins CPU64Regs:$a, CPU64Regs:$b), !strconcat(instr_asm, "\t$a, $b"), [], itin>; class Div64 func, string instr_asm, InstrItinClass itin>: FR<0x00, func, (outs), (ins CPU64Regs:$a, CPU64Regs:$b), !strconcat(instr_asm, "\t$$zero, $a, $b"), [(op CPU64Regs:$a, CPU64Regs:$b)], itin>; } // Move from Hi/Lo let shamt = 0 in { let rs = 0, rt = 0 in class MoveFromLOHI64 func, string instr_asm>: FR<0x00, func, (outs CPU64Regs:$dst), (ins), !strconcat(instr_asm, "\t$dst"), [], IIHiLo>; let rt = 0, rd = 0 in class MoveToLOHI64 func, string instr_asm>: FR<0x00, func, (outs), (ins CPU64Regs:$src), !strconcat(instr_asm, "\t$src"), [], IIHiLo>; } // Count Leading Ones/Zeros in Word class CountLeading64 func, string instr_asm, list pattern>: FR<0x1c, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$src), !strconcat(instr_asm, "\t$dst, $src"), pattern, IIAlu>, Requires<[HasBitCount]> { let shamt = 0; let rt = rd; } //===----------------------------------------------------------------------===// // Instruction definition //===----------------------------------------------------------------------===// /// Arithmetic Instructions (ALU Immediate) def DADDiu : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16, CPU64Regs>; def DANDi : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>; def SLTi64 : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>; def SLTiu64 : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>; def ORi64 : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>; def XORi64 : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>; /// Arithmetic Instructions (3-Operand, R-Type) def DADDu : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>; def DSUBu : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>; def SLT64 : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>; def SLTu64 : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>; def AND64 : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>; def OR64 : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>; def XOR64 : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>; def NOR64 : LogicNOR<0x00, 0x27, "nor", CPU64Regs>; /// Shift Instructions def DSLL : LogicR_shift_rotate_imm64<0x38, 0x00, "dsll", shl, immZExt5>; def DSRL : LogicR_shift_rotate_imm64<0x3a, 0x00, "dsrl", srl, immZExt5>; def DSRA : LogicR_shift_rotate_imm64<0x3b, 0x00, "dsra", sra, immZExt5>; def DSLL32 : LogicR_shift_rotate_imm64<0x3c, 0x00, "dsll32", shl, imm32_63>; def DSRL32 : LogicR_shift_rotate_imm64<0x3e, 0x00, "dsrl32", srl, imm32_63>; def DSRA32 : LogicR_shift_rotate_imm64<0x3f, 0x00, "dsra32", sra, imm32_63>; def DSLLV : LogicR_shift_rotate_reg64<0x24, 0x00, "dsllv", shl>; def DSRLV : LogicR_shift_rotate_reg64<0x26, 0x00, "dsrlv", srl>; def DSRAV : LogicR_shift_rotate_reg64<0x27, 0x00, "dsrav", sra>; // Rotate Instructions let Predicates = [HasMips64r2] in { def DROTR : LogicR_shift_rotate_imm64<0x3a, 0x01, "drotr", rotr, immZExt5>; def DROTR32 : LogicR_shift_rotate_imm64<0x3e, 0x01, "drotr32", rotr, imm32_63>; def DROTRV : LogicR_shift_rotate_reg64<0x16, 0x01, "drotrv", rotr>; } /// Load and Store Instructions /// aligned defm LB64 : LoadM64<0x20, "lb", sextloadi8>; defm LBu64 : LoadM64<0x24, "lbu", zextloadi8>; defm LH64 : LoadM64<0x21, "lh", sextloadi16_a>; defm LHu64 : LoadM64<0x25, "lhu", zextloadi16_a>; defm LW64 : LoadM64<0x23, "lw", sextloadi32_a>; defm LWu64 : LoadM64<0x27, "lwu", zextloadi32_a>; defm SB64 : StoreM64<0x28, "sb", truncstorei8>; defm SH64 : StoreM64<0x29, "sh", truncstorei16_a>; defm SW64 : StoreM64<0x2b, "sw", truncstorei32_a>; defm LD : LoadM64<0x37, "ld", load_a>; defm SD : StoreM64<0x3f, "sd", store_a>; /// unaligned defm ULH64 : LoadM64<0x21, "ulh", sextloadi16_u, 1>; defm ULHu64 : LoadM64<0x25, "ulhu", zextloadi16_u, 1>; defm ULW64 : LoadM64<0x23, "ulw", sextloadi32_u, 1>; defm USH64 : StoreM64<0x29, "ush", truncstorei16_u, 1>; defm USW64 : StoreM64<0x2b, "usw", truncstorei32_u, 1>; defm ULD : LoadM64<0x37, "uld", load_u, 1>; defm USD : StoreM64<0x3f, "usd", store_u, 1>; /// Jump and Branch Instructions def BEQ64 : CBranch<0x04, "beq", seteq, CPU64Regs>; def BNE64 : CBranch<0x05, "bne", setne, CPU64Regs>; def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>; def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>; def BLEZ64 : CBranchZero<0x07, 0, "blez", setle, CPU64Regs>; def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>; /// Multiply and Divide Instructions. def DMULT : Mul64<0x1c, "dmult", IIImul>; def DMULTu : Mul64<0x1d, "dmultu", IIImul>; def DSDIV : Div64; def DUDIV : Div64; let Defs = [HI64] in def MTHI64 : MoveToLOHI64<0x11, "mthi">; let Defs = [LO64] in def MTLO64 : MoveToLOHI64<0x13, "mtlo">; let Uses = [HI64] in def MFHI64 : MoveFromLOHI64<0x10, "mfhi">; let Uses = [LO64] in def MFLO64 : MoveFromLOHI64<0x12, "mflo">; /// Count Leading def DCLZ : CountLeading64<0x24, "dclz", [(set CPU64Regs:$dst, (ctlz CPU64Regs:$src))]>; def DCLO : CountLeading64<0x25, "dclo", [(set CPU64Regs:$dst, (ctlz (not CPU64Regs:$src)))]>; //===----------------------------------------------------------------------===// // Arbitrary patterns that map to one or more instructions //===----------------------------------------------------------------------===// // Small immediates def : Pat<(i64 immSExt16:$in), (DADDiu ZERO_64, imm:$in)>; def : Pat<(i64 immZExt16:$in), (ORi64 ZERO_64, imm:$in)>; // zextloadi32_u def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64_P8 addr:$a), 32), 32)>, Requires<[IsN64]>; def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64 addr:$a), 32), 32)>, Requires<[NotN64]>; // hi/lo relocs def : Pat<(i64 (MipsLo tglobaladdr:$in)), (DADDiu ZERO_64, tglobaladdr:$in)>; defm : BrcondPats; // setcc patterns defm : SeteqPats; defm : SetlePats; defm : SetgtPats; defm : SetgePats; defm : SetgeImmPats;