//===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===---------------------------------------------------------------------===// // // This pass performs peephole optimizations to clean up ugly code // sequences at the MachineInstruction layer. It runs at the end of // the SSA phases, following VSX swap removal. A pass of dead code // elimination follows this one for quick clean-up of any dead // instructions introduced here. Although we could do this as callbacks // from the generic peephole pass, this would have a couple of bad // effects: it might remove optimization opportunities for VSX swap // removal, and it would miss cleanups made possible following VSX // swap removal. // //===---------------------------------------------------------------------===// #include "PPCInstrInfo.h" #include "PPC.h" #include "PPCInstrBuilder.h" #include "PPCTargetMachine.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "ppc-mi-peepholes" namespace llvm { void initializePPCMIPeepholePass(PassRegistry&); } namespace { struct PPCMIPeephole : public MachineFunctionPass { static char ID; const PPCInstrInfo *TII; MachineFunction *MF; MachineRegisterInfo *MRI; PPCMIPeephole() : MachineFunctionPass(ID) { initializePPCMIPeepholePass(*PassRegistry::getPassRegistry()); } private: // Initialize class variables. void initialize(MachineFunction &MFParm); // Perform peepholes. bool simplifyCode(void); // Find the "true" register represented by SrcReg (following chains // of copies and subreg_to_reg operations). unsigned lookThruCopyLike(unsigned SrcReg); public: // Main entry point for this pass. bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(*MF.getFunction())) return false; initialize(MF); return simplifyCode(); } }; // Initialize class variables. void PPCMIPeephole::initialize(MachineFunction &MFParm) { MF = &MFParm; MRI = &MF->getRegInfo(); TII = MF->getSubtarget().getInstrInfo(); DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n"); DEBUG(MF->dump()); } // Perform peephole optimizations. bool PPCMIPeephole::simplifyCode(void) { bool Simplified = false; MachineInstr* ToErase = nullptr; for (MachineBasicBlock &MBB : *MF) { for (MachineInstr &MI : MBB) { // If the previous instruction was marked for elimination, // remove it now. if (ToErase) { ToErase->eraseFromParent(); ToErase = nullptr; } // Ignore debug instructions. if (MI.isDebugValue()) continue; // Per-opcode peepholes. switch (MI.getOpcode()) { default: break; case PPC::XXPERMDI: { // Perform simplifications of 2x64 vector swaps and splats. // A swap is identified by an immediate value of 2, and a splat // is identified by an immediate value of 0 or 3. int Immed = MI.getOperand(3).getImm(); if (Immed != 1) { // For each of these simplifications, we need the two source // regs to match. Unfortunately, MachineCSE ignores COPY and // SUBREG_TO_REG, so for example we can see // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed. // We have to look through chains of COPY and SUBREG_TO_REG // to find the real source values for comparison. unsigned TrueReg1 = lookThruCopyLike(MI.getOperand(1).getReg()); unsigned TrueReg2 = lookThruCopyLike(MI.getOperand(2).getReg()); if (TrueReg1 == TrueReg2 && TargetRegisterInfo::isVirtualRegister(TrueReg1)) { MachineInstr *DefMI = MRI->getVRegDef(TrueReg1); unsigned DefOpc = DefMI ? DefMI->getOpcode() : 0; // If this is a splat fed by a splatting load, the splat is // redundant. Replace with a copy. This doesn't happen directly due // to code in PPCDAGToDAGISel.cpp, but it can happen when converting // a load of a double to a vector of 64-bit integers. auto isConversionOfLoadAndSplat = [=]() -> bool { if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS) return false; unsigned DefReg = lookThruCopyLike(DefMI->getOperand(1).getReg()); if (TargetRegisterInfo::isVirtualRegister(DefReg)) { MachineInstr *LoadMI = MRI->getVRegDef(DefReg); if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX) return true; } return false; }; if (DefMI && (Immed == 0 || Immed == 3)) { if (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat()) { DEBUG(dbgs() << "Optimizing load-and-splat/splat " "to load-and-splat/copy: "); DEBUG(MI.dump()); BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), MI.getOperand(0).getReg()) .addOperand(MI.getOperand(1)); ToErase = &MI; Simplified = true; } } // If this is a splat or a swap fed by another splat, we // can replace it with a copy. if (DefOpc == PPC::XXPERMDI) { unsigned FeedImmed = DefMI->getOperand(3).getImm(); unsigned FeedReg1 = lookThruCopyLike(DefMI->getOperand(1).getReg()); unsigned FeedReg2 = lookThruCopyLike(DefMI->getOperand(2).getReg()); if ((FeedImmed == 0 || FeedImmed == 3) && FeedReg1 == FeedReg2) { DEBUG(dbgs() << "Optimizing splat/swap or splat/splat " "to splat/copy: "); DEBUG(MI.dump()); BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), MI.getOperand(0).getReg()) .addOperand(MI.getOperand(1)); ToErase = &MI; Simplified = true; } // If this is a splat fed by a swap, we can simplify modify // the splat to splat the other value from the swap's input // parameter. else if ((Immed == 0 || Immed == 3) && FeedImmed == 2 && FeedReg1 == FeedReg2) { DEBUG(dbgs() << "Optimizing swap/splat => splat: "); DEBUG(MI.dump()); MI.getOperand(1).setReg(DefMI->getOperand(1).getReg()); MI.getOperand(2).setReg(DefMI->getOperand(2).getReg()); MI.getOperand(3).setImm(3 - Immed); Simplified = true; } // If this is a swap fed by a swap, we can replace it // with a copy from the first swap's input. else if (Immed == 2 && FeedImmed == 2 && FeedReg1 == FeedReg2) { DEBUG(dbgs() << "Optimizing swap/swap => copy: "); DEBUG(MI.dump()); BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), MI.getOperand(0).getReg()) .addOperand(DefMI->getOperand(1)); ToErase = &MI; Simplified = true; } } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs && (DefMI->getOperand(2).getImm() == 0 || DefMI->getOperand(2).getImm() == 3)) { // Splat fed by another splat - switch the output of the first // and remove the second. DefMI->getOperand(0).setReg(MI.getOperand(0).getReg()); ToErase = &MI; Simplified = true; DEBUG(dbgs() << "Removing redundant splat: "); DEBUG(MI.dump()); } } } break; } case PPC::VSPLTB: case PPC::VSPLTH: case PPC::XXSPLTW: { unsigned MyOpcode = MI.getOpcode(); unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2; unsigned TrueReg = lookThruCopyLike(MI.getOperand(OpNo).getReg()); if (!TargetRegisterInfo::isVirtualRegister(TrueReg)) break; MachineInstr *DefMI = MRI->getVRegDef(TrueReg); if (!DefMI) break; unsigned DefOpcode = DefMI->getOpcode(); auto isConvertOfSplat = [=]() -> bool { if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS) return false; unsigned ConvReg = DefMI->getOperand(1).getReg(); if (!TargetRegisterInfo::isVirtualRegister(ConvReg)) return false; MachineInstr *Splt = MRI->getVRegDef(ConvReg); return Splt && (Splt->getOpcode() == PPC::LXVWSX || Splt->getOpcode() == PPC::XXSPLTW); }; bool AlreadySplat = (MyOpcode == DefOpcode) || (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) || (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) || (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) || (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) || (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)|| (MyOpcode == PPC::XXSPLTW && isConvertOfSplat()); // If the instruction[s] that feed this splat have already splat // the value, this splat is redundant. if (AlreadySplat) { DEBUG(dbgs() << "Changing redundant splat to a copy: "); DEBUG(MI.dump()); BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), MI.getOperand(0).getReg()) .addOperand(MI.getOperand(OpNo)); ToErase = &MI; Simplified = true; } // Splat fed by a shift. Usually when we align value to splat into // vector element zero. if (DefOpcode == PPC::XXSLDWI) { unsigned ShiftRes = DefMI->getOperand(0).getReg(); unsigned ShiftOp1 = DefMI->getOperand(1).getReg(); unsigned ShiftOp2 = DefMI->getOperand(2).getReg(); unsigned ShiftImm = DefMI->getOperand(3).getImm(); unsigned SplatImm = MI.getOperand(2).getImm(); if (ShiftOp1 == ShiftOp2) { unsigned NewElem = (SplatImm + ShiftImm) & 0x3; if (MRI->hasOneNonDBGUse(ShiftRes)) { DEBUG(dbgs() << "Removing redundant shift: "); DEBUG(DefMI->dump()); ToErase = DefMI; } Simplified = true; DEBUG(dbgs() << "Changing splat immediate from " << SplatImm << " to " << NewElem << " in instruction: "); DEBUG(MI.dump()); MI.getOperand(1).setReg(ShiftOp1); MI.getOperand(2).setImm(NewElem); } } break; } case PPC::XVCVDPSP: { // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant. unsigned TrueReg = lookThruCopyLike(MI.getOperand(1).getReg()); if (!TargetRegisterInfo::isVirtualRegister(TrueReg)) break; MachineInstr *DefMI = MRI->getVRegDef(TrueReg); // This can occur when building a vector of single precision or integer // values. if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) { unsigned DefsReg1 = lookThruCopyLike(DefMI->getOperand(1).getReg()); unsigned DefsReg2 = lookThruCopyLike(DefMI->getOperand(2).getReg()); if (!TargetRegisterInfo::isVirtualRegister(DefsReg1) || !TargetRegisterInfo::isVirtualRegister(DefsReg2)) break; MachineInstr *P1 = MRI->getVRegDef(DefsReg1); MachineInstr *P2 = MRI->getVRegDef(DefsReg2); if (!P1 || !P2) break; // Remove the passed FRSP instruction if it only feeds this MI and // set any uses of that FRSP (in this MI) to the source of the FRSP. auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) { if (RoundInstr->getOpcode() == PPC::FRSP && MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) { Simplified = true; unsigned ConvReg1 = RoundInstr->getOperand(1).getReg(); unsigned FRSPDefines = RoundInstr->getOperand(0).getReg(); MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines)); for (int i = 0, e = Use.getNumOperands(); i < e; ++i) if (Use.getOperand(i).isReg() && Use.getOperand(i).getReg() == FRSPDefines) Use.getOperand(i).setReg(ConvReg1); DEBUG(dbgs() << "Removing redundant FRSP:\n"); DEBUG(RoundInstr->dump()); DEBUG(dbgs() << "As it feeds instruction:\n"); DEBUG(MI.dump()); DEBUG(dbgs() << "Through instruction:\n"); DEBUG(DefMI->dump()); RoundInstr->eraseFromParent(); } }; // If the input to XVCVDPSP is a vector that was built (even // partially) out of FRSP's, the FRSP(s) can safely be removed // since this instruction performs the same operation. if (P1 != P2) { removeFRSPIfPossible(P1); removeFRSPIfPossible(P2); break; } removeFRSPIfPossible(P1); } break; } } } // If the last instruction was marked for elimination, // remove it now. if (ToErase) { ToErase->eraseFromParent(); ToErase = nullptr; } } return Simplified; } // This is used to find the "true" source register for an // XXPERMDI instruction, since MachineCSE does not handle the // "copy-like" operations (Copy and SubregToReg). Returns // the original SrcReg unless it is the target of a copy-like // operation, in which case we chain backwards through all // such operations to the ultimate source register. If a // physical register is encountered, we stop the search. unsigned PPCMIPeephole::lookThruCopyLike(unsigned SrcReg) { while (true) { MachineInstr *MI = MRI->getVRegDef(SrcReg); if (!MI->isCopyLike()) return SrcReg; unsigned CopySrcReg; if (MI->isCopy()) CopySrcReg = MI->getOperand(1).getReg(); else { assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike"); CopySrcReg = MI->getOperand(2).getReg(); } if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) return CopySrcReg; SrcReg = CopySrcReg; } } } // end default namespace INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE, "PowerPC MI Peephole Optimization", false, false) INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE, "PowerPC MI Peephole Optimization", false, false) char PPCMIPeephole::ID = 0; FunctionPass* llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }