//===-- X86InstComments.cpp - Generate verbose-asm comments for instrs ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This defines functionality used to emit comments about X86 instructions to // an output stream for -fverbose-asm. // //===----------------------------------------------------------------------===// #include "X86InstComments.h" #include "MCTargetDesc/X86MCTargetDesc.h" #include "Utils/X86ShuffleDecode.h" #include "llvm/MC/MCInst.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static unsigned getVectorRegSize(unsigned RegNo) { if (X86::ZMM0 <= RegNo && RegNo <= X86::ZMM31) return 512; if (X86::YMM0 <= RegNo && RegNo <= X86::YMM31) return 256; if (X86::XMM0 <= RegNo && RegNo <= X86::XMM31) return 128; if (X86::MM0 <= RegNo && RegNo <= X86::MM7) return 64; llvm_unreachable("Unknown vector reg!"); return 0; } static MVT getRegOperandVectorVT(const MCInst *MI, const MVT &ScalarVT, unsigned OperandIndex) { unsigned OpReg = MI->getOperand(OperandIndex).getReg(); return MVT::getVectorVT(ScalarVT, getVectorRegSize(OpReg)/ScalarVT.getSizeInBits()); } /// \brief Extracts the src/dst types for a given zero extension instruction. /// \note While the number of elements in DstVT type correct, the /// number in the SrcVT type is expanded to fill the src xmm register and the /// upper elements may not be included in the dst xmm/ymm register. static void getZeroExtensionTypes(const MCInst *MI, MVT &SrcVT, MVT &DstVT) { switch (MI->getOpcode()) { default: llvm_unreachable("Unknown zero extension instruction"); // i8 zero extension case X86::PMOVZXBWrm: case X86::PMOVZXBWrr: case X86::VPMOVZXBWrm: case X86::VPMOVZXBWrr: SrcVT = MVT::v16i8; DstVT = MVT::v8i16; break; case X86::VPMOVZXBWYrm: case X86::VPMOVZXBWYrr: SrcVT = MVT::v16i8; DstVT = MVT::v16i16; break; case X86::PMOVZXBDrm: case X86::PMOVZXBDrr: case X86::VPMOVZXBDrm: case X86::VPMOVZXBDrr: SrcVT = MVT::v16i8; DstVT = MVT::v4i32; break; case X86::VPMOVZXBDYrm: case X86::VPMOVZXBDYrr: SrcVT = MVT::v16i8; DstVT = MVT::v8i32; break; case X86::PMOVZXBQrm: case X86::PMOVZXBQrr: case X86::VPMOVZXBQrm: case X86::VPMOVZXBQrr: SrcVT = MVT::v16i8; DstVT = MVT::v2i64; break; case X86::VPMOVZXBQYrm: case X86::VPMOVZXBQYrr: SrcVT = MVT::v16i8; DstVT = MVT::v4i64; break; // i16 zero extension case X86::PMOVZXWDrm: case X86::PMOVZXWDrr: case X86::VPMOVZXWDrm: case X86::VPMOVZXWDrr: SrcVT = MVT::v8i16; DstVT = MVT::v4i32; break; case X86::VPMOVZXWDYrm: case X86::VPMOVZXWDYrr: SrcVT = MVT::v8i16; DstVT = MVT::v8i32; break; case X86::PMOVZXWQrm: case X86::PMOVZXWQrr: case X86::VPMOVZXWQrm: case X86::VPMOVZXWQrr: SrcVT = MVT::v8i16; DstVT = MVT::v2i64; break; case X86::VPMOVZXWQYrm: case X86::VPMOVZXWQYrr: SrcVT = MVT::v8i16; DstVT = MVT::v4i64; break; // i32 zero extension case X86::PMOVZXDQrm: case X86::PMOVZXDQrr: case X86::VPMOVZXDQrm: case X86::VPMOVZXDQrr: SrcVT = MVT::v4i32; DstVT = MVT::v2i64; break; case X86::VPMOVZXDQYrm: case X86::VPMOVZXDQYrr: SrcVT = MVT::v4i32; DstVT = MVT::v4i64; break; } } #define CASE_MASK_INS_COMMON(Inst, Suffix, src) \ case X86::V##Inst##Suffix##src: \ case X86::V##Inst##Suffix##src##k: \ case X86::V##Inst##Suffix##src##kz: #define CASE_SSE_INS_COMMON(Inst, src) \ case X86::Inst##src: #define CASE_AVX_INS_COMMON(Inst, Suffix, src) \ case X86::V##Inst##Suffix##src: #define CASE_MOVDUP(Inst, src) \ CASE_MASK_INS_COMMON(Inst, Z, r##src) \ CASE_MASK_INS_COMMON(Inst, Z256, r##src) \ CASE_MASK_INS_COMMON(Inst, Z128, r##src) \ CASE_AVX_INS_COMMON(Inst, , r##src) \ CASE_AVX_INS_COMMON(Inst, Y, r##src) \ CASE_SSE_INS_COMMON(Inst, r##src) \ #define CASE_UNPCK(Inst, src) \ CASE_MASK_INS_COMMON(Inst, Z, r##src) \ CASE_MASK_INS_COMMON(Inst, Z256, r##src) \ CASE_MASK_INS_COMMON(Inst, Z128, r##src) \ CASE_AVX_INS_COMMON(Inst, , r##src) \ CASE_AVX_INS_COMMON(Inst, Y, r##src) \ CASE_SSE_INS_COMMON(Inst, r##src) \ #define CASE_SHUF(Inst, src) \ CASE_MASK_INS_COMMON(Inst, Z, r##src##i) \ CASE_MASK_INS_COMMON(Inst, Z256, r##src##i) \ CASE_MASK_INS_COMMON(Inst, Z128, r##src##i) \ CASE_AVX_INS_COMMON(Inst, , r##src##i) \ CASE_AVX_INS_COMMON(Inst, Y, r##src##i) \ CASE_SSE_INS_COMMON(Inst, r##src##i) \ #define CASE_VPERM(Inst, src) \ CASE_MASK_INS_COMMON(Inst, Z, src##i) \ CASE_MASK_INS_COMMON(Inst, Z256, src##i) \ CASE_MASK_INS_COMMON(Inst, Z128, src##i) \ CASE_AVX_INS_COMMON(Inst, , src##i) \ CASE_AVX_INS_COMMON(Inst, Y, src##i) \ #define CASE_VSHUF(Inst, src) \ CASE_MASK_INS_COMMON(SHUFF##Inst, Z, r##src##i) \ CASE_MASK_INS_COMMON(SHUFI##Inst, Z, r##src##i) \ CASE_MASK_INS_COMMON(SHUFF##Inst, Z256, r##src##i) \ CASE_MASK_INS_COMMON(SHUFI##Inst, Z256, r##src##i) \ /// \brief Extracts the types and if it has memory operand for a given /// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2) instruction. static void getVSHUF64x2FamilyInfo(const MCInst *MI, MVT &VT, bool &HasMemOp) { HasMemOp = false; switch (MI->getOpcode()) { default: llvm_unreachable("Unknown VSHUF64x2 family instructions."); break; CASE_VSHUF(64X2, m) HasMemOp = true; // FALL THROUGH. CASE_VSHUF(64X2, r) VT = getRegOperandVectorVT(MI, MVT::i64, 0); break; CASE_VSHUF(32X4, m) HasMemOp = true; // FALL THROUGH. CASE_VSHUF(32X4, r) VT = getRegOperandVectorVT(MI, MVT::i32, 0); break; } } //===----------------------------------------------------------------------===// // Top Level Entrypoint //===----------------------------------------------------------------------===// /// EmitAnyX86InstComments - This function decodes x86 instructions and prints /// newline terminated strings to the specified string if desired. This /// information is shown in disassembly dumps when verbose assembly is enabled. bool llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, const char *(*getRegName)(unsigned)) { // If this is a shuffle operation, the switch should fill in this state. SmallVector ShuffleMask; const char *DestName = nullptr, *Src1Name = nullptr, *Src2Name = nullptr; switch (MI->getOpcode()) { default: // Not an instruction for which we can decode comments. return false; case X86::BLENDPDrri: case X86::VBLENDPDrri: case X86::VBLENDPDYrri: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::BLENDPDrmi: case X86::VBLENDPDrmi: case X86::VBLENDPDYrmi: if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodeBLENDMask(getRegOperandVectorVT(MI, MVT::f64, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::BLENDPSrri: case X86::VBLENDPSrri: case X86::VBLENDPSYrri: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::BLENDPSrmi: case X86::VBLENDPSrmi: case X86::VBLENDPSYrmi: if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodeBLENDMask(getRegOperandVectorVT(MI, MVT::f32, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::PBLENDWrri: case X86::VPBLENDWrri: case X86::VPBLENDWYrri: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::PBLENDWrmi: case X86::VPBLENDWrmi: case X86::VPBLENDWYrmi: if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodeBLENDMask(getRegOperandVectorVT(MI, MVT::i16, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::VPBLENDDrri: case X86::VPBLENDDYrri: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::VPBLENDDrmi: case X86::VPBLENDDYrmi: if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodeBLENDMask(getRegOperandVectorVT(MI, MVT::i32, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::INSERTPSrr: case X86::VINSERTPSrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::INSERTPSrm: case X86::VINSERTPSrm: DestName = getRegName(MI->getOperand(0).getReg()); Src1Name = getRegName(MI->getOperand(1).getReg()); if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodeINSERTPSMask(MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); break; case X86::MOVLHPSrr: case X86::VMOVLHPSrr: case X86::VMOVLHPSZrr: Src2Name = getRegName(MI->getOperand(2).getReg()); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); DecodeMOVLHPSMask(2, ShuffleMask); break; case X86::MOVHLPSrr: case X86::VMOVHLPSrr: case X86::VMOVHLPSZrr: Src2Name = getRegName(MI->getOperand(2).getReg()); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); DecodeMOVHLPSMask(2, ShuffleMask); break; CASE_MOVDUP(MOVSLDUP, r) Src1Name = getRegName(MI->getOperand(MI->getNumOperands() - 1).getReg()); // FALL THROUGH. CASE_MOVDUP(MOVSLDUP, m) DestName = getRegName(MI->getOperand(0).getReg()); DecodeMOVSLDUPMask(getRegOperandVectorVT(MI, MVT::f32, 0), ShuffleMask); break; CASE_MOVDUP(MOVSHDUP, r) Src1Name = getRegName(MI->getOperand(MI->getNumOperands() - 1).getReg()); // FALL THROUGH. CASE_MOVDUP(MOVSHDUP, m) DestName = getRegName(MI->getOperand(0).getReg()); DecodeMOVSHDUPMask(getRegOperandVectorVT(MI, MVT::f32, 0), ShuffleMask); break; CASE_MOVDUP(MOVDDUP, r) Src1Name = getRegName(MI->getOperand(MI->getNumOperands() - 1).getReg()); // FALL THROUGH. CASE_MOVDUP(MOVDDUP, m) DestName = getRegName(MI->getOperand(0).getReg()); DecodeMOVDDUPMask(getRegOperandVectorVT(MI, MVT::f64, 0), ShuffleMask); break; case X86::PSLLDQri: case X86::VPSLLDQri: case X86::VPSLLDQYri: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodePSLLDQMask(getRegOperandVectorVT(MI, MVT::i8, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); break; case X86::PSRLDQri: case X86::VPSRLDQri: case X86::VPSRLDQYri: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodePSRLDQMask(getRegOperandVectorVT(MI, MVT::i8, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); break; case X86::PALIGNR128rr: case X86::VPALIGNR128rr: case X86::VPALIGNR256rr: Src1Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::PALIGNR128rm: case X86::VPALIGNR128rm: case X86::VPALIGNR256rm: Src2Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodePALIGNRMask(getRegOperandVectorVT(MI, MVT::i8, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); break; case X86::PSHUFDri: case X86::VPSHUFDri: case X86::VPSHUFDYri: Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. case X86::PSHUFDmi: case X86::VPSHUFDmi: case X86::VPSHUFDYmi: DestName = getRegName(MI->getOperand(0).getReg()); if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodePSHUFMask(getRegOperandVectorVT(MI, MVT::i32, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); break; case X86::PSHUFHWri: case X86::VPSHUFHWri: case X86::VPSHUFHWYri: Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. case X86::PSHUFHWmi: case X86::VPSHUFHWmi: case X86::VPSHUFHWYmi: DestName = getRegName(MI->getOperand(0).getReg()); if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodePSHUFHWMask(getRegOperandVectorVT(MI, MVT::i16, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); break; case X86::PSHUFLWri: case X86::VPSHUFLWri: case X86::VPSHUFLWYri: Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. case X86::PSHUFLWmi: case X86::VPSHUFLWmi: case X86::VPSHUFLWYmi: DestName = getRegName(MI->getOperand(0).getReg()); if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodePSHUFLWMask(getRegOperandVectorVT(MI, MVT::i16, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); break; case X86::MMX_PSHUFWri: Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. case X86::MMX_PSHUFWmi: DestName = getRegName(MI->getOperand(0).getReg()); if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodePSHUFMask(MVT::v4i16, MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); break; case X86::PSWAPDrr: Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. case X86::PSWAPDrm: DestName = getRegName(MI->getOperand(0).getReg()); DecodePSWAPMask(MVT::v2i32, ShuffleMask); break; CASE_UNPCK(PUNPCKHBW, r) case X86::MMX_PUNPCKHBWirr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(PUNPCKHBW, m) case X86::MMX_PUNPCKHBWirm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::i8, 0), ShuffleMask); break; CASE_UNPCK(PUNPCKHWD, r) case X86::MMX_PUNPCKHWDirr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(PUNPCKHWD, m) case X86::MMX_PUNPCKHWDirm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::i16, 0), ShuffleMask); break; CASE_UNPCK(PUNPCKHDQ, r) case X86::MMX_PUNPCKHDQirr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(PUNPCKHDQ, m) case X86::MMX_PUNPCKHDQirm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::i32, 0), ShuffleMask); break; CASE_UNPCK(PUNPCKHQDQ, r) Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(PUNPCKHQDQ, m) Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::i64, 0), ShuffleMask); break; CASE_UNPCK(PUNPCKLBW, r) case X86::MMX_PUNPCKLBWirr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(PUNPCKLBW, m) case X86::MMX_PUNPCKLBWirm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::i8, 0), ShuffleMask); break; CASE_UNPCK(PUNPCKLWD, r) case X86::MMX_PUNPCKLWDirr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(PUNPCKLWD, m) case X86::MMX_PUNPCKLWDirm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::i16, 0), ShuffleMask); break; CASE_UNPCK(PUNPCKLDQ, r) case X86::MMX_PUNPCKLDQirr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(PUNPCKLDQ, m) case X86::MMX_PUNPCKLDQirm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::i32, 0), ShuffleMask); break; CASE_UNPCK(PUNPCKLQDQ, r) Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(PUNPCKLQDQ, m) Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::i64, 0), ShuffleMask); break; CASE_SHUF(SHUFPD, r) Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_SHUF(SHUFPD, m) if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodeSHUFPMask(getRegOperandVectorVT(MI, MVT::f64, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); break; CASE_SHUF(SHUFPS, r) Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_SHUF(SHUFPS, m) if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodeSHUFPMask(getRegOperandVectorVT(MI, MVT::f32, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); break; CASE_VSHUF(64X2, r) CASE_VSHUF(64X2, m) CASE_VSHUF(32X4, r) CASE_VSHUF(32X4, m) { MVT VT; bool HasMemOp; unsigned NumOp = MI->getNumOperands(); getVSHUF64x2FamilyInfo(MI, VT, HasMemOp); decodeVSHUF64x2FamilyMask(VT, MI->getOperand(NumOp - 1).getImm(), ShuffleMask); DestName = getRegName(MI->getOperand(0).getReg()); if (HasMemOp) { assert((NumOp >= 8) && "Expected at least 8 operands!"); Src1Name = getRegName(MI->getOperand(NumOp - 7).getReg()); } else { assert((NumOp >= 4) && "Expected at least 4 operands!"); Src2Name = getRegName(MI->getOperand(NumOp - 2).getReg()); Src1Name = getRegName(MI->getOperand(NumOp - 3).getReg()); } break; } CASE_UNPCK(UNPCKLPD, r) Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(UNPCKLPD, m) DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::f64, 0), ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); break; CASE_UNPCK(UNPCKLPS, r) Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(UNPCKLPS, m) DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::f32, 0), ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); break; CASE_UNPCK(UNPCKHPD, r) Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(UNPCKHPD, m) DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::f64, 0), ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); break; CASE_UNPCK(UNPCKHPS, r) Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. CASE_UNPCK(UNPCKHPS, m) DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::f32, 0), ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); break; CASE_VPERM(PERMILPS, r) Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. CASE_VPERM(PERMILPS, m) if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodePSHUFMask(getRegOperandVectorVT(MI, MVT::f32, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); DestName = getRegName(MI->getOperand(0).getReg()); break; CASE_VPERM(PERMILPD, r) Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. CASE_VPERM(PERMILPD, m) if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodePSHUFMask(getRegOperandVectorVT(MI, MVT::f64, 0), MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::VPERM2F128rr: case X86::VPERM2I128rr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. case X86::VPERM2F128rm: case X86::VPERM2I128rm: // For instruction comments purpose, assume the 256-bit vector is v4i64. if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodeVPERM2X128Mask(MVT::v4i64, MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::VPERMQYri: case X86::VPERMPDYri: Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. case X86::VPERMQYmi: case X86::VPERMPDYmi: if (MI->getOperand(MI->getNumOperands() - 1).isImm()) DecodeVPERMMask(MI->getOperand(MI->getNumOperands() - 1).getImm(), ShuffleMask); DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::MOVSDrr: case X86::VMOVSDrr: Src2Name = getRegName(MI->getOperand(2).getReg()); Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. case X86::MOVSDrm: case X86::VMOVSDrm: DecodeScalarMoveMask(MVT::v2f64, nullptr == Src2Name, ShuffleMask); DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::MOVSSrr: case X86::VMOVSSrr: Src2Name = getRegName(MI->getOperand(2).getReg()); Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. case X86::MOVSSrm: case X86::VMOVSSrm: DecodeScalarMoveMask(MVT::v4f32, nullptr == Src2Name, ShuffleMask); DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::MOVPQI2QIrr: case X86::MOVZPQILo2PQIrr: case X86::VMOVPQI2QIrr: case X86::VMOVZPQILo2PQIrr: case X86::VMOVZPQILo2PQIZrr: Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. case X86::MOVQI2PQIrm: case X86::MOVZQI2PQIrm: case X86::MOVZPQILo2PQIrm: case X86::VMOVQI2PQIrm: case X86::VMOVZQI2PQIrm: case X86::VMOVZPQILo2PQIrm: case X86::VMOVZPQILo2PQIZrm: DecodeZeroMoveLowMask(MVT::v2i64, ShuffleMask); DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::MOVDI2PDIrm: case X86::VMOVDI2PDIrm: DecodeZeroMoveLowMask(MVT::v4i32, ShuffleMask); DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::EXTRQI: if (MI->getOperand(2).isImm() && MI->getOperand(3).isImm()) DecodeEXTRQIMask(MI->getOperand(2).getImm(), MI->getOperand(3).getImm(), ShuffleMask); DestName = getRegName(MI->getOperand(0).getReg()); Src1Name = getRegName(MI->getOperand(1).getReg()); break; case X86::INSERTQI: if (MI->getOperand(3).isImm() && MI->getOperand(4).isImm()) DecodeINSERTQIMask(MI->getOperand(3).getImm(), MI->getOperand(4).getImm(), ShuffleMask); DestName = getRegName(MI->getOperand(0).getReg()); Src1Name = getRegName(MI->getOperand(1).getReg()); Src2Name = getRegName(MI->getOperand(2).getReg()); break; case X86::PMOVZXBWrr: case X86::PMOVZXBDrr: case X86::PMOVZXBQrr: case X86::PMOVZXWDrr: case X86::PMOVZXWQrr: case X86::PMOVZXDQrr: case X86::VPMOVZXBWrr: case X86::VPMOVZXBDrr: case X86::VPMOVZXBQrr: case X86::VPMOVZXWDrr: case X86::VPMOVZXWQrr: case X86::VPMOVZXDQrr: case X86::VPMOVZXBWYrr: case X86::VPMOVZXBDYrr: case X86::VPMOVZXBQYrr: case X86::VPMOVZXWDYrr: case X86::VPMOVZXWQYrr: case X86::VPMOVZXDQYrr: Src1Name = getRegName(MI->getOperand(1).getReg()); // FALL THROUGH. case X86::PMOVZXBWrm: case X86::PMOVZXBDrm: case X86::PMOVZXBQrm: case X86::PMOVZXWDrm: case X86::PMOVZXWQrm: case X86::PMOVZXDQrm: case X86::VPMOVZXBWrm: case X86::VPMOVZXBDrm: case X86::VPMOVZXBQrm: case X86::VPMOVZXWDrm: case X86::VPMOVZXWQrm: case X86::VPMOVZXDQrm: case X86::VPMOVZXBWYrm: case X86::VPMOVZXBDYrm: case X86::VPMOVZXBQYrm: case X86::VPMOVZXWDYrm: case X86::VPMOVZXWQYrm: case X86::VPMOVZXDQYrm: { MVT SrcVT, DstVT; getZeroExtensionTypes(MI, SrcVT, DstVT); DecodeZeroExtendMask(SrcVT, DstVT, ShuffleMask); DestName = getRegName(MI->getOperand(0).getReg()); } break; } // The only comments we decode are shuffles, so give up if we were unable to // decode a shuffle mask. if (ShuffleMask.empty()) return false; if (!DestName) DestName = Src1Name; OS << (DestName ? DestName : "mem") << " = "; // If the two sources are the same, canonicalize the input elements to be // from the first src so that we get larger element spans. if (Src1Name == Src2Name) { for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) { if ((int)ShuffleMask[i] >= 0 && // Not sentinel. ShuffleMask[i] >= (int)e) // From second mask. ShuffleMask[i] -= e; } } // The shuffle mask specifies which elements of the src1/src2 fill in the // destination, with a few sentinel values. Loop through and print them // out. for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) { if (i != 0) OS << ','; if (ShuffleMask[i] == SM_SentinelZero) { OS << "zero"; continue; } // Otherwise, it must come from src1 or src2. Print the span of elements // that comes from this src. bool isSrc1 = ShuffleMask[i] < (int)ShuffleMask.size(); const char *SrcName = isSrc1 ? Src1Name : Src2Name; OS << (SrcName ? SrcName : "mem") << '['; bool IsFirst = true; while (i != e && (int)ShuffleMask[i] != SM_SentinelZero && (ShuffleMask[i] < (int)ShuffleMask.size()) == isSrc1) { if (!IsFirst) OS << ','; else IsFirst = false; if (ShuffleMask[i] == SM_SentinelUndef) OS << "u"; else OS << ShuffleMask[i] % ShuffleMask.size(); ++i; } OS << ']'; --i; // For loop increments element #. } //MI->print(OS, 0); OS << "\n"; // We successfully added a comment to this instruction. return true; }