//===----------------------- X86EvexToVex.cpp ----------------------------===// // Compress EVEX instructions to VEX encoding when possible to reduce code size // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===---------------------------------------------------------------------===// /// \file /// This file defines the pass that goes over all AVX-512 instructions which /// are encoded using the EVEX prefix and if possible replaces them by their /// corresponding VEX encoding which is usually shorter by 2 bytes. /// EVEX instructions may be encoded via the VEX prefix when the AVX-512 /// instruction has a corresponding AVX/AVX2 opcode and when it does not /// use the xmm or the mask registers or xmm/ymm registers wuith indexes /// higher than 15. /// The pass applies code reduction on the generated code for AVX-512 instrs. /// //===---------------------------------------------------------------------===// #include "InstPrinter/X86InstComments.h" #include "X86.h" #include "X86InstrBuilder.h" #include "X86InstrInfo.h" #include "X86InstrTablesInfo.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" using namespace llvm; #define EVEX2VEX_DESC "Compressing EVEX instrs to VEX encoding when possible" #define EVEX2VEX_NAME "x86-evex-to-vex-compress" #define DEBUG_TYPE EVEX2VEX_NAME namespace { class EvexToVexInstPass : public MachineFunctionPass { /// X86EvexToVexCompressTable - Evex to Vex encoding opcode map. typedef DenseMap EvexToVexTableType; EvexToVexTableType EvexToVex128Table; EvexToVexTableType EvexToVex256Table; /// For EVEX instructions that can be encoded using VEX encoding, replace /// them by the VEX encoding in order to reduce size. bool CompressEvexToVexImpl(MachineInstr &MI) const; /// For initializing the hash map tables of all AVX-512 EVEX /// corresponding to AVX/AVX2 opcodes. void AddTableEntry(EvexToVexTableType &EvexToVexTable, uint16_t EvexOp, uint16_t VexOp); public: static char ID; StringRef getPassName() const override { return EVEX2VEX_DESC; } EvexToVexInstPass() : MachineFunctionPass(ID) { initializeEvexToVexInstPassPass(*PassRegistry::getPassRegistry()); // Initialize the EVEX to VEX 128 table map. for (X86EvexToVexCompressTableEntry Entry : X86EvexToVex128CompressTable) { AddTableEntry(EvexToVex128Table, Entry.EvexOpcode, Entry.VexOpcode); } // Initialize the EVEX to VEX 256 table map. for (X86EvexToVexCompressTableEntry Entry : X86EvexToVex256CompressTable) { AddTableEntry(EvexToVex256Table, Entry.EvexOpcode, Entry.VexOpcode); } } /// Loop over all of the basic blocks, replacing EVEX instructions /// by equivalent VEX instructions when possible for reducing code size. bool runOnMachineFunction(MachineFunction &MF) override; // This pass runs after regalloc and doesn't support VReg operands. MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } private: /// Machine instruction info used throughout the class. const X86InstrInfo *TII; }; char EvexToVexInstPass::ID = 0; } INITIALIZE_PASS(EvexToVexInstPass, EVEX2VEX_NAME, EVEX2VEX_DESC, false, false) FunctionPass *llvm::createX86EvexToVexInsts() { return new EvexToVexInstPass(); } bool EvexToVexInstPass::runOnMachineFunction(MachineFunction &MF) { TII = MF.getSubtarget().getInstrInfo(); const X86Subtarget &ST = MF.getSubtarget(); if (!ST.hasAVX512()) return false; bool Changed = false; /// Go over all basic blocks in function and replace /// EVEX encoded instrs by VEX encoding when possible. for (MachineBasicBlock &MBB : MF) { // Traverse the basic block. for (MachineInstr &MI : MBB) Changed |= CompressEvexToVexImpl(MI); } return Changed; } void EvexToVexInstPass::AddTableEntry(EvexToVexTableType &EvexToVexTable, uint16_t EvexOp, uint16_t VexOp) { EvexToVexTable[EvexOp] = VexOp; } // For EVEX instructions that can be encoded using VEX encoding // replace them by the VEX encoding in order to reduce size. bool EvexToVexInstPass::CompressEvexToVexImpl(MachineInstr &MI) const { // VEX format. // # of bytes: 0,2,3 1 1 0,1 0,1,2,4 0,1 // [Prefixes] [VEX] OPCODE ModR/M [SIB] [DISP] [IMM] // // EVEX format. // # of bytes: 4 1 1 1 4 / 1 1 // [Prefixes] EVEX Opcode ModR/M [SIB] [Disp32] / [Disp8*N] [Immediate] const MCInstrDesc &Desc = MI.getDesc(); // Check for EVEX instructions only. if ((Desc.TSFlags & X86II::EncodingMask) != X86II::EVEX) return false; // Check for EVEX instructions with mask or broadcast as in these cases // the EVEX prefix is needed in order to carry this information // thus preventing the transformation to VEX encoding. if (Desc.TSFlags & (X86II::EVEX_K | X86II::EVEX_B)) return false; // Check for non EVEX_V512 instrs only. // EVEX_V512 instr: bit EVEX_L2 = 1; bit VEX_L = 0. if ((Desc.TSFlags & X86II::EVEX_L2) && !(Desc.TSFlags & X86II::VEX_L)) return false; // EVEX_V128 instr: bit EVEX_L2 = 0, bit VEX_L = 0. bool IsEVEX_V128 = (!(Desc.TSFlags & X86II::EVEX_L2) && !(Desc.TSFlags & X86II::VEX_L)); // EVEX_V256 instr: bit EVEX_L2 = 0, bit VEX_L = 1. bool IsEVEX_V256 = (!(Desc.TSFlags & X86II::EVEX_L2) && (Desc.TSFlags & X86II::VEX_L)); unsigned NewOpc = 0; // Check for EVEX_V256 instructions. if (IsEVEX_V256) { // Search for opcode in the EvexToVex256 table. auto It = EvexToVex256Table.find(MI.getOpcode()); if (It != EvexToVex256Table.end()) NewOpc = It->second; } // Check for EVEX_V128 or Scalar instructions. else if (IsEVEX_V128) { // Search for opcode in the EvexToVex128 table. auto It = EvexToVex128Table.find(MI.getOpcode()); if (It != EvexToVex128Table.end()) NewOpc = It->second; } if (!NewOpc) return false; auto isHiRegIdx = [](unsigned Reg) { // Check for XMM register with indexes between 16 - 31. if (Reg >= X86::XMM16 && Reg <= X86::XMM31) return true; // Check for YMM register with indexes between 16 - 31. if (Reg >= X86::YMM16 && Reg <= X86::YMM31) return true; return false; }; // Check that operands are not ZMM regs or // XMM/YMM regs with hi indexes between 16 - 31. for (const MachineOperand &MO : MI.explicit_operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); assert (!(Reg >= X86::ZMM0 && Reg <= X86::ZMM31)); if (isHiRegIdx(Reg)) return false; } const MCInstrDesc &MCID = TII->get(NewOpc); MI.setDesc(MCID); MI.setAsmPrinterFlag(AC_EVEX_2_VEX); return true; }