//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "X86InstrInfo.h" #include "X86.h" #include "X86InstrBuilder.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; #define DEBUG_TYPE "x86-instr-info" #define GET_INSTRINFO_CTOR_DTOR #include "X86GenInstrInfo.inc" static cl::opt NoFusing("disable-spill-fusing", cl::desc("Disable fusing of spill code into instructions")); static cl::opt PrintFailedFusing("print-failed-fuse-candidates", cl::desc("Print instructions that the allocator wants to" " fuse, but the X86 backend currently can't"), cl::Hidden); static cl::opt ReMatPICStubLoad("remat-pic-stub-load", cl::desc("Re-materialize load from stub in PIC mode"), cl::init(false), cl::Hidden); static cl::opt PartialRegUpdateClearance("partial-reg-update-clearance", cl::desc("Clearance between two register writes " "for inserting XOR to avoid partial " "register update"), cl::init(64), cl::Hidden); static cl::opt UndefRegClearance("undef-reg-clearance", cl::desc("How many idle instructions we would like before " "certain undef register reads"), cl::init(128), cl::Hidden); enum { // Select which memory operand is being unfolded. // (stored in bits 0 - 3) TB_INDEX_0 = 0, TB_INDEX_1 = 1, TB_INDEX_2 = 2, TB_INDEX_3 = 3, TB_INDEX_4 = 4, TB_INDEX_MASK = 0xf, // Do not insert the reverse map (MemOp -> RegOp) into the table. // This may be needed because there is a many -> one mapping. TB_NO_REVERSE = 1 << 4, // Do not insert the forward map (RegOp -> MemOp) into the table. // This is needed for Native Client, which prohibits branch // instructions from using a memory operand. TB_NO_FORWARD = 1 << 5, TB_FOLDED_LOAD = 1 << 6, TB_FOLDED_STORE = 1 << 7, // Minimum alignment required for load/store. // Used for RegOp->MemOp conversion. // (stored in bits 8 - 15) TB_ALIGN_SHIFT = 8, TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT, TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT, TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT, TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT, TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT }; struct X86MemoryFoldTableEntry { uint16_t RegOp; uint16_t MemOp; uint16_t Flags; }; // Pin the vtable to this file. void X86InstrInfo::anchor() {} X86InstrInfo::X86InstrInfo(X86Subtarget &STI) : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32), (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32), X86::CATCHRET, (STI.is64Bit() ? X86::RETQ : X86::RETL)), Subtarget(STI), RI(STI.getTargetTriple()) { static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = { { X86::ADC32ri, X86::ADC32mi, 0 }, { X86::ADC32ri8, X86::ADC32mi8, 0 }, { X86::ADC32rr, X86::ADC32mr, 0 }, { X86::ADC64ri32, X86::ADC64mi32, 0 }, { X86::ADC64ri8, X86::ADC64mi8, 0 }, { X86::ADC64rr, X86::ADC64mr, 0 }, { X86::ADD16ri, X86::ADD16mi, 0 }, { X86::ADD16ri8, X86::ADD16mi8, 0 }, { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE }, { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE }, { X86::ADD16rr, X86::ADD16mr, 0 }, { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE }, { X86::ADD32ri, X86::ADD32mi, 0 }, { X86::ADD32ri8, X86::ADD32mi8, 0 }, { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE }, { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE }, { X86::ADD32rr, X86::ADD32mr, 0 }, { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE }, { X86::ADD64ri32, X86::ADD64mi32, 0 }, { X86::ADD64ri8, X86::ADD64mi8, 0 }, { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE }, { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE }, { X86::ADD64rr, X86::ADD64mr, 0 }, { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE }, { X86::ADD8ri, X86::ADD8mi, 0 }, { X86::ADD8rr, X86::ADD8mr, 0 }, { X86::AND16ri, X86::AND16mi, 0 }, { X86::AND16ri8, X86::AND16mi8, 0 }, { X86::AND16rr, X86::AND16mr, 0 }, { X86::AND32ri, X86::AND32mi, 0 }, { X86::AND32ri8, X86::AND32mi8, 0 }, { X86::AND32rr, X86::AND32mr, 0 }, { X86::AND64ri32, X86::AND64mi32, 0 }, { X86::AND64ri8, X86::AND64mi8, 0 }, { X86::AND64rr, X86::AND64mr, 0 }, { X86::AND8ri, X86::AND8mi, 0 }, { X86::AND8rr, X86::AND8mr, 0 }, { X86::DEC16r, X86::DEC16m, 0 }, { X86::DEC32r, X86::DEC32m, 0 }, { X86::DEC64r, X86::DEC64m, 0 }, { X86::DEC8r, X86::DEC8m, 0 }, { X86::INC16r, X86::INC16m, 0 }, { X86::INC32r, X86::INC32m, 0 }, { X86::INC64r, X86::INC64m, 0 }, { X86::INC8r, X86::INC8m, 0 }, { X86::NEG16r, X86::NEG16m, 0 }, { X86::NEG32r, X86::NEG32m, 0 }, { X86::NEG64r, X86::NEG64m, 0 }, { X86::NEG8r, X86::NEG8m, 0 }, { X86::NOT16r, X86::NOT16m, 0 }, { X86::NOT32r, X86::NOT32m, 0 }, { X86::NOT64r, X86::NOT64m, 0 }, { X86::NOT8r, X86::NOT8m, 0 }, { X86::OR16ri, X86::OR16mi, 0 }, { X86::OR16ri8, X86::OR16mi8, 0 }, { X86::OR16rr, X86::OR16mr, 0 }, { X86::OR32ri, X86::OR32mi, 0 }, { X86::OR32ri8, X86::OR32mi8, 0 }, { X86::OR32rr, X86::OR32mr, 0 }, { X86::OR64ri32, X86::OR64mi32, 0 }, { X86::OR64ri8, X86::OR64mi8, 0 }, { X86::OR64rr, X86::OR64mr, 0 }, { X86::OR8ri, X86::OR8mi, 0 }, { X86::OR8rr, X86::OR8mr, 0 }, { X86::ROL16r1, X86::ROL16m1, 0 }, { X86::ROL16rCL, X86::ROL16mCL, 0 }, { X86::ROL16ri, X86::ROL16mi, 0 }, { X86::ROL32r1, X86::ROL32m1, 0 }, { X86::ROL32rCL, X86::ROL32mCL, 0 }, { X86::ROL32ri, X86::ROL32mi, 0 }, { X86::ROL64r1, X86::ROL64m1, 0 }, { X86::ROL64rCL, X86::ROL64mCL, 0 }, { X86::ROL64ri, X86::ROL64mi, 0 }, { X86::ROL8r1, X86::ROL8m1, 0 }, { X86::ROL8rCL, X86::ROL8mCL, 0 }, { X86::ROL8ri, X86::ROL8mi, 0 }, { X86::ROR16r1, X86::ROR16m1, 0 }, { X86::ROR16rCL, X86::ROR16mCL, 0 }, { X86::ROR16ri, X86::ROR16mi, 0 }, { X86::ROR32r1, X86::ROR32m1, 0 }, { X86::ROR32rCL, X86::ROR32mCL, 0 }, { X86::ROR32ri, X86::ROR32mi, 0 }, { X86::ROR64r1, X86::ROR64m1, 0 }, { X86::ROR64rCL, X86::ROR64mCL, 0 }, { X86::ROR64ri, X86::ROR64mi, 0 }, { X86::ROR8r1, X86::ROR8m1, 0 }, { X86::ROR8rCL, X86::ROR8mCL, 0 }, { X86::ROR8ri, X86::ROR8mi, 0 }, { X86::SAR16r1, X86::SAR16m1, 0 }, { X86::SAR16rCL, X86::SAR16mCL, 0 }, { X86::SAR16ri, X86::SAR16mi, 0 }, { X86::SAR32r1, X86::SAR32m1, 0 }, { X86::SAR32rCL, X86::SAR32mCL, 0 }, { X86::SAR32ri, X86::SAR32mi, 0 }, { X86::SAR64r1, X86::SAR64m1, 0 }, { X86::SAR64rCL, X86::SAR64mCL, 0 }, { X86::SAR64ri, X86::SAR64mi, 0 }, { X86::SAR8r1, X86::SAR8m1, 0 }, { X86::SAR8rCL, X86::SAR8mCL, 0 }, { X86::SAR8ri, X86::SAR8mi, 0 }, { X86::SBB32ri, X86::SBB32mi, 0 }, { X86::SBB32ri8, X86::SBB32mi8, 0 }, { X86::SBB32rr, X86::SBB32mr, 0 }, { X86::SBB64ri32, X86::SBB64mi32, 0 }, { X86::SBB64ri8, X86::SBB64mi8, 0 }, { X86::SBB64rr, X86::SBB64mr, 0 }, { X86::SHL16r1, X86::SHL16m1, 0 }, { X86::SHL16rCL, X86::SHL16mCL, 0 }, { X86::SHL16ri, X86::SHL16mi, 0 }, { X86::SHL32r1, X86::SHL32m1, 0 }, { X86::SHL32rCL, X86::SHL32mCL, 0 }, { X86::SHL32ri, X86::SHL32mi, 0 }, { X86::SHL64r1, X86::SHL64m1, 0 }, { X86::SHL64rCL, X86::SHL64mCL, 0 }, { X86::SHL64ri, X86::SHL64mi, 0 }, { X86::SHL8r1, X86::SHL8m1, 0 }, { X86::SHL8rCL, X86::SHL8mCL, 0 }, { X86::SHL8ri, X86::SHL8mi, 0 }, { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 }, { X86::SHLD16rri8, X86::SHLD16mri8, 0 }, { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 }, { X86::SHLD32rri8, X86::SHLD32mri8, 0 }, { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 }, { X86::SHLD64rri8, X86::SHLD64mri8, 0 }, { X86::SHR16r1, X86::SHR16m1, 0 }, { X86::SHR16rCL, X86::SHR16mCL, 0 }, { X86::SHR16ri, X86::SHR16mi, 0 }, { X86::SHR32r1, X86::SHR32m1, 0 }, { X86::SHR32rCL, X86::SHR32mCL, 0 }, { X86::SHR32ri, X86::SHR32mi, 0 }, { X86::SHR64r1, X86::SHR64m1, 0 }, { X86::SHR64rCL, X86::SHR64mCL, 0 }, { X86::SHR64ri, X86::SHR64mi, 0 }, { X86::SHR8r1, X86::SHR8m1, 0 }, { X86::SHR8rCL, X86::SHR8mCL, 0 }, { X86::SHR8ri, X86::SHR8mi, 0 }, { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 }, { X86::SHRD16rri8, X86::SHRD16mri8, 0 }, { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 }, { X86::SHRD32rri8, X86::SHRD32mri8, 0 }, { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 }, { X86::SHRD64rri8, X86::SHRD64mri8, 0 }, { X86::SUB16ri, X86::SUB16mi, 0 }, { X86::SUB16ri8, X86::SUB16mi8, 0 }, { X86::SUB16rr, X86::SUB16mr, 0 }, { X86::SUB32ri, X86::SUB32mi, 0 }, { X86::SUB32ri8, X86::SUB32mi8, 0 }, { X86::SUB32rr, X86::SUB32mr, 0 }, { X86::SUB64ri32, X86::SUB64mi32, 0 }, { X86::SUB64ri8, X86::SUB64mi8, 0 }, { X86::SUB64rr, X86::SUB64mr, 0 }, { X86::SUB8ri, X86::SUB8mi, 0 }, { X86::SUB8rr, X86::SUB8mr, 0 }, { X86::XOR16ri, X86::XOR16mi, 0 }, { X86::XOR16ri8, X86::XOR16mi8, 0 }, { X86::XOR16rr, X86::XOR16mr, 0 }, { X86::XOR32ri, X86::XOR32mi, 0 }, { X86::XOR32ri8, X86::XOR32mi8, 0 }, { X86::XOR32rr, X86::XOR32mr, 0 }, { X86::XOR64ri32, X86::XOR64mi32, 0 }, { X86::XOR64ri8, X86::XOR64mi8, 0 }, { X86::XOR64rr, X86::XOR64mr, 0 }, { X86::XOR8ri, X86::XOR8mi, 0 }, { X86::XOR8rr, X86::XOR8mr, 0 } }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2Addr) { AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, // Index 0, folded load and store, no alignment requirement. Entry.Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE); } static const X86MemoryFoldTableEntry MemoryFoldTable0[] = { { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD }, { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD }, { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD }, { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD }, { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD }, { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD }, { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD }, { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD }, { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD }, { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD }, { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD }, { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD }, { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD }, { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD }, { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD }, { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD }, { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD }, { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD }, { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD }, { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD }, { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE }, { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD }, { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD }, { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD }, { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD }, { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD }, { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD }, { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD }, { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD }, { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD }, { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD }, { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE }, { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE }, { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE }, { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE }, { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE }, { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE }, { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE }, { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE }, { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE }, { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::MOVDQUrr, X86::MOVDQUmr, TB_FOLDED_STORE }, { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE }, { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE }, { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE }, { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE }, { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE }, { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE }, { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD }, { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD }, { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD }, { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD }, { X86::PEXTRDrr, X86::PEXTRDmr, TB_FOLDED_STORE }, { X86::PEXTRQrr, X86::PEXTRQmr, TB_FOLDED_STORE }, { X86::PUSH16r, X86::PUSH16rmm, TB_FOLDED_LOAD }, { X86::PUSH32r, X86::PUSH32rmm, TB_FOLDED_LOAD }, { X86::PUSH64r, X86::PUSH64rmm, TB_FOLDED_LOAD }, { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE }, { X86::SETAr, X86::SETAm, TB_FOLDED_STORE }, { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE }, { X86::SETBr, X86::SETBm, TB_FOLDED_STORE }, { X86::SETEr, X86::SETEm, TB_FOLDED_STORE }, { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE }, { X86::SETGr, X86::SETGm, TB_FOLDED_STORE }, { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE }, { X86::SETLr, X86::SETLm, TB_FOLDED_STORE }, { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE }, { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE }, { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE }, { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE }, { X86::SETOr, X86::SETOm, TB_FOLDED_STORE }, { X86::SETPr, X86::SETPm, TB_FOLDED_STORE }, { X86::SETSr, X86::SETSm, TB_FOLDED_STORE }, { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD }, { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD }, { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD }, { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD }, { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD }, { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD }, { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD }, // AVX 128-bit versions of foldable instructions { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE }, { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVDQUrr, X86::VMOVDQUmr, TB_FOLDED_STORE }, { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE }, { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE }, { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE }, { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE }, { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE }, { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE }, { X86::VPEXTRDrr, X86::VPEXTRDmr, TB_FOLDED_STORE }, { X86::VPEXTRQrr, X86::VPEXTRQmr, TB_FOLDED_STORE }, // AVX 256-bit foldable instructions { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVDQUYrr, X86::VMOVDQUYmr, TB_FOLDED_STORE }, { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE }, { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE }, // AVX-512 foldable instructions { X86::VEXTRACTF32x4Zrr,X86::VEXTRACTF32x4Zmr, TB_FOLDED_STORE }, { X86::VEXTRACTF32x8Zrr,X86::VEXTRACTF32x8Zmr, TB_FOLDED_STORE }, { X86::VEXTRACTF64x2Zrr,X86::VEXTRACTF64x2Zmr, TB_FOLDED_STORE }, { X86::VEXTRACTF64x4Zrr,X86::VEXTRACTF64x4Zmr, TB_FOLDED_STORE }, { X86::VEXTRACTI32x4Zrr,X86::VEXTRACTI32x4Zmr, TB_FOLDED_STORE }, { X86::VEXTRACTI32x8Zrr,X86::VEXTRACTI32x8Zmr, TB_FOLDED_STORE }, { X86::VEXTRACTI64x2Zrr,X86::VEXTRACTI64x2Zmr, TB_FOLDED_STORE }, { X86::VEXTRACTI64x4Zrr,X86::VEXTRACTI64x4Zmr, TB_FOLDED_STORE }, { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZmr, TB_FOLDED_STORE }, { X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 }, { X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 }, { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 }, { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 }, { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zmr, TB_FOLDED_STORE }, { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE }, { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE }, { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE }, { X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE }, { X86::VMOVPQIto64Zrr, X86::VMOVPQI2QIZmr, TB_FOLDED_STORE }, { X86::VMOVSDto64Zrr, X86::VMOVSDto64Zmr, TB_FOLDED_STORE }, { X86::VMOVSS2DIZrr, X86::VMOVSS2DIZmr, TB_FOLDED_STORE }, { X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE }, { X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE }, { X86::VPEXTRDZrr, X86::VPEXTRDZmr, TB_FOLDED_STORE }, { X86::VPEXTRQZrr, X86::VPEXTRQZmr, TB_FOLDED_STORE }, { X86::VPMOVDBZrr, X86::VPMOVDBZmr, TB_FOLDED_STORE }, { X86::VPMOVDWZrr, X86::VPMOVDWZmr, TB_FOLDED_STORE }, { X86::VPMOVQDZrr, X86::VPMOVQDZmr, TB_FOLDED_STORE }, { X86::VPMOVQWZrr, X86::VPMOVQWZmr, TB_FOLDED_STORE }, { X86::VPMOVWBZrr, X86::VPMOVWBZmr, TB_FOLDED_STORE }, { X86::VPMOVSDBZrr, X86::VPMOVSDBZmr, TB_FOLDED_STORE }, { X86::VPMOVSDWZrr, X86::VPMOVSDWZmr, TB_FOLDED_STORE }, { X86::VPMOVSQDZrr, X86::VPMOVSQDZmr, TB_FOLDED_STORE }, { X86::VPMOVSQWZrr, X86::VPMOVSQWZmr, TB_FOLDED_STORE }, { X86::VPMOVSWBZrr, X86::VPMOVSWBZmr, TB_FOLDED_STORE }, { X86::VPMOVUSDBZrr, X86::VPMOVUSDBZmr, TB_FOLDED_STORE }, { X86::VPMOVUSDWZrr, X86::VPMOVUSDWZmr, TB_FOLDED_STORE }, { X86::VPMOVUSQDZrr, X86::VPMOVUSQDZmr, TB_FOLDED_STORE }, { X86::VPMOVUSQWZrr, X86::VPMOVUSQWZmr, TB_FOLDED_STORE }, { X86::VPMOVUSWBZrr, X86::VPMOVUSWBZmr, TB_FOLDED_STORE }, // AVX-512 foldable instructions (256-bit versions) { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256mr, TB_FOLDED_STORE }, { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256mr, TB_FOLDED_STORE }, { X86::VEXTRACTI32x4Z256rr,X86::VEXTRACTI32x4Z256mr, TB_FOLDED_STORE }, { X86::VEXTRACTI64x2Z256rr,X86::VEXTRACTI64x2Z256mr, TB_FOLDED_STORE }, { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256mr, TB_FOLDED_STORE }, { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256mr, TB_FOLDED_STORE }, { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256mr, TB_FOLDED_STORE }, { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE }, { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE }, { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE }, { X86::VPMOVDWZ256rr, X86::VPMOVDWZ256mr, TB_FOLDED_STORE }, { X86::VPMOVQDZ256rr, X86::VPMOVQDZ256mr, TB_FOLDED_STORE }, { X86::VPMOVWBZ256rr, X86::VPMOVWBZ256mr, TB_FOLDED_STORE }, { X86::VPMOVSDWZ256rr, X86::VPMOVSDWZ256mr, TB_FOLDED_STORE }, { X86::VPMOVSQDZ256rr, X86::VPMOVSQDZ256mr, TB_FOLDED_STORE }, { X86::VPMOVSWBZ256rr, X86::VPMOVSWBZ256mr, TB_FOLDED_STORE }, { X86::VPMOVUSDWZ256rr, X86::VPMOVUSDWZ256mr, TB_FOLDED_STORE }, { X86::VPMOVUSQDZ256rr, X86::VPMOVUSQDZ256mr, TB_FOLDED_STORE }, { X86::VPMOVUSWBZ256rr, X86::VPMOVUSWBZ256mr, TB_FOLDED_STORE }, // AVX-512 foldable instructions (128-bit versions) { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128mr, TB_FOLDED_STORE }, { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128mr, TB_FOLDED_STORE }, { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128mr, TB_FOLDED_STORE }, { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE }, { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE }, { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE }, // F16C foldable instructions { X86::VCVTPS2PHrr, X86::VCVTPS2PHmr, TB_FOLDED_STORE }, { X86::VCVTPS2PHYrr, X86::VCVTPS2PHYmr, TB_FOLDED_STORE } }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable0) { AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, TB_INDEX_0 | Entry.Flags); } static const X86MemoryFoldTableEntry MemoryFoldTable1[] = { { X86::BSF16rr, X86::BSF16rm, 0 }, { X86::BSF32rr, X86::BSF32rm, 0 }, { X86::BSF64rr, X86::BSF64rm, 0 }, { X86::BSR16rr, X86::BSR16rm, 0 }, { X86::BSR32rr, X86::BSR32rm, 0 }, { X86::BSR64rr, X86::BSR64rm, 0 }, { X86::CMP16rr, X86::CMP16rm, 0 }, { X86::CMP32rr, X86::CMP32rm, 0 }, { X86::CMP64rr, X86::CMP64rm, 0 }, { X86::CMP8rr, X86::CMP8rm, 0 }, { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, { X86::IMUL16rri, X86::IMUL16rmi, 0 }, { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, { X86::IMUL32rri, X86::IMUL32rmi, 0 }, { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, { X86::Int_COMISDrr, X86::Int_COMISDrm, TB_NO_REVERSE }, { X86::Int_COMISSrr, X86::Int_COMISSrm, TB_NO_REVERSE }, { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, TB_NO_REVERSE }, { X86::CVTSD2SIrr, X86::CVTSD2SIrm, TB_NO_REVERSE }, { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, TB_NO_REVERSE }, { X86::CVTSS2SIrr, X86::CVTSS2SIrm, TB_NO_REVERSE }, { X86::CVTDQ2PDrr, X86::CVTDQ2PDrm, TB_NO_REVERSE }, { X86::CVTDQ2PSrr, X86::CVTDQ2PSrm, TB_ALIGN_16 }, { X86::CVTPD2DQrr, X86::CVTPD2DQrm, TB_ALIGN_16 }, { X86::CVTPD2PSrr, X86::CVTPD2PSrm, TB_ALIGN_16 }, { X86::CVTPS2DQrr, X86::CVTPS2DQrm, TB_ALIGN_16 }, { X86::CVTPS2PDrr, X86::CVTPS2PDrm, TB_NO_REVERSE }, { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 }, { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 }, { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, TB_NO_REVERSE }, { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, TB_NO_REVERSE }, { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, TB_NO_REVERSE }, { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, TB_NO_REVERSE }, { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, TB_NO_REVERSE }, { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, TB_NO_REVERSE }, { X86::MOV16rr, X86::MOV16rm, 0 }, { X86::MOV32rr, X86::MOV32rm, 0 }, { X86::MOV64rr, X86::MOV64rm, 0 }, { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, { X86::MOV8rr, X86::MOV8rm, 0 }, { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 }, { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 }, { X86::MOVDDUPrr, X86::MOVDDUPrm, TB_NO_REVERSE }, { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 }, { X86::MOVDQUrr, X86::MOVDQUrm, 0 }, { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 }, { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 }, { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, { X86::MOVUPDrr, X86::MOVUPDrm, 0 }, { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, { X86::MOVZPQILo2PQIrr, X86::MOVQI2PQIrm, TB_NO_REVERSE }, { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, { X86::PABSBrr, X86::PABSBrm, TB_ALIGN_16 }, { X86::PABSDrr, X86::PABSDrm, TB_ALIGN_16 }, { X86::PABSWrr, X86::PABSWrm, TB_ALIGN_16 }, { X86::PCMPESTRIrr, X86::PCMPESTRIrm, TB_ALIGN_16 }, { X86::PCMPESTRM128rr, X86::PCMPESTRM128rm, TB_ALIGN_16 }, { X86::PCMPISTRIrr, X86::PCMPISTRIrm, TB_ALIGN_16 }, { X86::PCMPISTRM128rr, X86::PCMPISTRM128rm, TB_ALIGN_16 }, { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128, TB_ALIGN_16 }, { X86::PMOVSXBDrr, X86::PMOVSXBDrm, TB_NO_REVERSE }, { X86::PMOVSXBQrr, X86::PMOVSXBQrm, TB_NO_REVERSE }, { X86::PMOVSXBWrr, X86::PMOVSXBWrm, TB_NO_REVERSE }, { X86::PMOVSXDQrr, X86::PMOVSXDQrm, TB_NO_REVERSE }, { X86::PMOVSXWDrr, X86::PMOVSXWDrm, TB_NO_REVERSE }, { X86::PMOVSXWQrr, X86::PMOVSXWQrm, TB_NO_REVERSE }, { X86::PMOVZXBDrr, X86::PMOVZXBDrm, TB_NO_REVERSE }, { X86::PMOVZXBQrr, X86::PMOVZXBQrm, TB_NO_REVERSE }, { X86::PMOVZXBWrr, X86::PMOVZXBWrm, TB_NO_REVERSE }, { X86::PMOVZXDQrr, X86::PMOVZXDQrm, TB_NO_REVERSE }, { X86::PMOVZXWDrr, X86::PMOVZXWDrm, TB_NO_REVERSE }, { X86::PMOVZXWQrr, X86::PMOVZXWQrm, TB_NO_REVERSE }, { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 }, { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 }, { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 }, { X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 }, { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 }, { X86::RCPSSr, X86::RCPSSm, 0 }, { X86::RCPSSr_Int, X86::RCPSSm_Int, TB_NO_REVERSE }, { X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 }, { X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 }, { X86::ROUNDSDr, X86::ROUNDSDm, 0 }, { X86::ROUNDSSr, X86::ROUNDSSm, 0 }, { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 }, { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, TB_NO_REVERSE }, { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 }, { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 }, { X86::SQRTSDr, X86::SQRTSDm, 0 }, { X86::SQRTSDr_Int, X86::SQRTSDm_Int, TB_NO_REVERSE }, { X86::SQRTSSr, X86::SQRTSSm, 0 }, { X86::SQRTSSr_Int, X86::SQRTSSm_Int, TB_NO_REVERSE }, { X86::TEST16rr, X86::TEST16rm, 0 }, { X86::TEST32rr, X86::TEST32rm, 0 }, { X86::TEST64rr, X86::TEST64rm, 0 }, { X86::TEST8rr, X86::TEST8rm, 0 }, // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, { X86::UCOMISSrr, X86::UCOMISSrm, 0 }, // MMX version of foldable instructions { X86::MMX_CVTPD2PIirr, X86::MMX_CVTPD2PIirm, 0 }, { X86::MMX_CVTPI2PDirr, X86::MMX_CVTPI2PDirm, 0 }, { X86::MMX_CVTPS2PIirr, X86::MMX_CVTPS2PIirm, 0 }, { X86::MMX_CVTTPD2PIirr, X86::MMX_CVTTPD2PIirm, 0 }, { X86::MMX_CVTTPS2PIirr, X86::MMX_CVTTPS2PIirm, 0 }, { X86::MMX_MOVD64to64rr, X86::MMX_MOVQ64rm, 0 }, { X86::MMX_PABSBrr64, X86::MMX_PABSBrm64, 0 }, { X86::MMX_PABSDrr64, X86::MMX_PABSDrm64, 0 }, { X86::MMX_PABSWrr64, X86::MMX_PABSWrm64, 0 }, { X86::MMX_PSHUFWri, X86::MMX_PSHUFWmi, 0 }, // 3DNow! version of foldable instructions { X86::PF2IDrr, X86::PF2IDrm, 0 }, { X86::PF2IWrr, X86::PF2IWrm, 0 }, { X86::PFRCPrr, X86::PFRCPrm, 0 }, { X86::PFRSQRTrr, X86::PFRSQRTrm, 0 }, { X86::PI2FDrr, X86::PI2FDrm, 0 }, { X86::PI2FWrr, X86::PI2FWrm, 0 }, { X86::PSWAPDrr, X86::PSWAPDrm, 0 }, // AVX 128-bit versions of foldable instructions { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, TB_NO_REVERSE }, { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, TB_NO_REVERSE }, { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, TB_NO_REVERSE }, { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, TB_NO_REVERSE }, { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 }, { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,TB_NO_REVERSE }, { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 }, { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, TB_NO_REVERSE }, { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 }, { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,TB_NO_REVERSE }, { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 }, { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, TB_NO_REVERSE }, { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, TB_NO_REVERSE }, { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, TB_NO_REVERSE }, { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, TB_NO_REVERSE }, { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, TB_NO_REVERSE }, { X86::VCVTDQ2PDrr, X86::VCVTDQ2PDrm, TB_NO_REVERSE }, { X86::VCVTDQ2PSrr, X86::VCVTDQ2PSrm, 0 }, { X86::VCVTPD2DQrr, X86::VCVTPD2DQrm, 0 }, { X86::VCVTPD2PSrr, X86::VCVTPD2PSrm, 0 }, { X86::VCVTPS2DQrr, X86::VCVTPS2DQrm, 0 }, { X86::VCVTPS2PDrr, X86::VCVTPS2PDrm, TB_NO_REVERSE }, { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQrm, 0 }, { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 }, { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 }, { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 }, { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 }, { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 }, { X86::VMOVDDUPrr, X86::VMOVDDUPrm, TB_NO_REVERSE }, { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 }, { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 }, { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 }, { X86::VMOVDQUrr, X86::VMOVDQUrm, 0 }, { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, 0 }, { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, 0 }, { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 }, { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 }, { X86::VMOVZPQILo2PQIrr,X86::VMOVQI2PQIrm, TB_NO_REVERSE }, { X86::VPABSBrr, X86::VPABSBrm, 0 }, { X86::VPABSDrr, X86::VPABSDrm, 0 }, { X86::VPABSWrr, X86::VPABSWrm, 0 }, { X86::VPCMPESTRIrr, X86::VPCMPESTRIrm, 0 }, { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm, 0 }, { X86::VPCMPISTRIrr, X86::VPCMPISTRIrm, 0 }, { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm, 0 }, { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128, 0 }, { X86::VPERMILPDri, X86::VPERMILPDmi, 0 }, { X86::VPERMILPSri, X86::VPERMILPSmi, 0 }, { X86::VPMOVSXBDrr, X86::VPMOVSXBDrm, TB_NO_REVERSE }, { X86::VPMOVSXBQrr, X86::VPMOVSXBQrm, TB_NO_REVERSE }, { X86::VPMOVSXBWrr, X86::VPMOVSXBWrm, TB_NO_REVERSE }, { X86::VPMOVSXDQrr, X86::VPMOVSXDQrm, TB_NO_REVERSE }, { X86::VPMOVSXWDrr, X86::VPMOVSXWDrm, TB_NO_REVERSE }, { X86::VPMOVSXWQrr, X86::VPMOVSXWQrm, TB_NO_REVERSE }, { X86::VPMOVZXBDrr, X86::VPMOVZXBDrm, TB_NO_REVERSE }, { X86::VPMOVZXBQrr, X86::VPMOVZXBQrm, TB_NO_REVERSE }, { X86::VPMOVZXBWrr, X86::VPMOVZXBWrm, TB_NO_REVERSE }, { X86::VPMOVZXDQrr, X86::VPMOVZXDQrm, TB_NO_REVERSE }, { X86::VPMOVZXWDrr, X86::VPMOVZXWDrm, TB_NO_REVERSE }, { X86::VPMOVZXWQrr, X86::VPMOVZXWQrm, TB_NO_REVERSE }, { X86::VPSHUFDri, X86::VPSHUFDmi, 0 }, { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 }, { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 }, { X86::VPTESTrr, X86::VPTESTrm, 0 }, { X86::VRCPPSr, X86::VRCPPSm, 0 }, { X86::VROUNDPDr, X86::VROUNDPDm, 0 }, { X86::VROUNDPSr, X86::VROUNDPSm, 0 }, { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 }, { X86::VSQRTPDr, X86::VSQRTPDm, 0 }, { X86::VSQRTPSr, X86::VSQRTPSm, 0 }, { X86::VTESTPDrr, X86::VTESTPDrm, 0 }, { X86::VTESTPSrr, X86::VTESTPSrm, 0 }, { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 }, { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 }, // AVX 256-bit foldable instructions { X86::VCVTDQ2PDYrr, X86::VCVTDQ2PDYrm, TB_NO_REVERSE }, { X86::VCVTDQ2PSYrr, X86::VCVTDQ2PSYrm, 0 }, { X86::VCVTPD2DQYrr, X86::VCVTPD2DQYrm, 0 }, { X86::VCVTPD2PSYrr, X86::VCVTPD2PSYrm, 0 }, { X86::VCVTPS2DQYrr, X86::VCVTPS2DQYrm, 0 }, { X86::VCVTPS2PDYrr, X86::VCVTPS2PDYrm, TB_NO_REVERSE }, { X86::VCVTTPD2DQYrr, X86::VCVTTPD2DQYrm, 0 }, { X86::VCVTTPS2DQYrr, X86::VCVTTPS2DQYrm, 0 }, { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 }, { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 }, { X86::VMOVDDUPYrr, X86::VMOVDDUPYrm, 0 }, { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 }, { X86::VMOVDQUYrr, X86::VMOVDQUYrm, 0 }, { X86::VMOVSLDUPYrr, X86::VMOVSLDUPYrm, 0 }, { X86::VMOVSHDUPYrr, X86::VMOVSHDUPYrm, 0 }, { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 }, { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 }, { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 }, { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 }, { X86::VPTESTYrr, X86::VPTESTYrm, 0 }, { X86::VRCPPSYr, X86::VRCPPSYm, 0 }, { X86::VROUNDYPDr, X86::VROUNDYPDm, 0 }, { X86::VROUNDYPSr, X86::VROUNDYPSm, 0 }, { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 }, { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 }, { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 }, { X86::VTESTPDYrr, X86::VTESTPDYrm, 0 }, { X86::VTESTPSYrr, X86::VTESTPSYrm, 0 }, // AVX2 foldable instructions // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the // VBROADCASTS{SD}rm memory instructions were available from AVX1. // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions // so they don't need an equivalent limitation. { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE }, { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE }, { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE }, { X86::VPABSBYrr, X86::VPABSBYrm, 0 }, { X86::VPABSDYrr, X86::VPABSDYrm, 0 }, { X86::VPABSWYrr, X86::VPABSWYrm, 0 }, { X86::VPBROADCASTBrr, X86::VPBROADCASTBrm, TB_NO_REVERSE }, { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm, TB_NO_REVERSE }, { X86::VPBROADCASTDrr, X86::VPBROADCASTDrm, TB_NO_REVERSE }, { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm, TB_NO_REVERSE }, { X86::VPBROADCASTQrr, X86::VPBROADCASTQrm, TB_NO_REVERSE }, { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm, TB_NO_REVERSE }, { X86::VPBROADCASTWrr, X86::VPBROADCASTWrm, TB_NO_REVERSE }, { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm, TB_NO_REVERSE }, { X86::VPERMPDYri, X86::VPERMPDYmi, 0 }, { X86::VPERMQYri, X86::VPERMQYmi, 0 }, { X86::VPMOVSXBDYrr, X86::VPMOVSXBDYrm, TB_NO_REVERSE }, { X86::VPMOVSXBQYrr, X86::VPMOVSXBQYrm, TB_NO_REVERSE }, { X86::VPMOVSXBWYrr, X86::VPMOVSXBWYrm, 0 }, { X86::VPMOVSXDQYrr, X86::VPMOVSXDQYrm, 0 }, { X86::VPMOVSXWDYrr, X86::VPMOVSXWDYrm, 0 }, { X86::VPMOVSXWQYrr, X86::VPMOVSXWQYrm, TB_NO_REVERSE }, { X86::VPMOVZXBDYrr, X86::VPMOVZXBDYrm, TB_NO_REVERSE }, { X86::VPMOVZXBQYrr, X86::VPMOVZXBQYrm, TB_NO_REVERSE }, { X86::VPMOVZXBWYrr, X86::VPMOVZXBWYrm, 0 }, { X86::VPMOVZXDQYrr, X86::VPMOVZXDQYrm, 0 }, { X86::VPMOVZXWDYrr, X86::VPMOVZXWDYrm, 0 }, { X86::VPMOVZXWQYrr, X86::VPMOVZXWQYrm, TB_NO_REVERSE }, { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 }, { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 }, { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 }, // XOP foldable instructions { X86::VFRCZPDrr, X86::VFRCZPDrm, 0 }, { X86::VFRCZPDrrY, X86::VFRCZPDrmY, 0 }, { X86::VFRCZPSrr, X86::VFRCZPSrm, 0 }, { X86::VFRCZPSrrY, X86::VFRCZPSrmY, 0 }, { X86::VFRCZSDrr, X86::VFRCZSDrm, 0 }, { X86::VFRCZSSrr, X86::VFRCZSSrm, 0 }, { X86::VPHADDBDrr, X86::VPHADDBDrm, 0 }, { X86::VPHADDBQrr, X86::VPHADDBQrm, 0 }, { X86::VPHADDBWrr, X86::VPHADDBWrm, 0 }, { X86::VPHADDDQrr, X86::VPHADDDQrm, 0 }, { X86::VPHADDWDrr, X86::VPHADDWDrm, 0 }, { X86::VPHADDWQrr, X86::VPHADDWQrm, 0 }, { X86::VPHADDUBDrr, X86::VPHADDUBDrm, 0 }, { X86::VPHADDUBQrr, X86::VPHADDUBQrm, 0 }, { X86::VPHADDUBWrr, X86::VPHADDUBWrm, 0 }, { X86::VPHADDUDQrr, X86::VPHADDUDQrm, 0 }, { X86::VPHADDUWDrr, X86::VPHADDUWDrm, 0 }, { X86::VPHADDUWQrr, X86::VPHADDUWQrm, 0 }, { X86::VPHSUBBWrr, X86::VPHSUBBWrm, 0 }, { X86::VPHSUBDQrr, X86::VPHSUBDQrm, 0 }, { X86::VPHSUBWDrr, X86::VPHSUBWDrm, 0 }, { X86::VPROTBri, X86::VPROTBmi, 0 }, { X86::VPROTBrr, X86::VPROTBmr, 0 }, { X86::VPROTDri, X86::VPROTDmi, 0 }, { X86::VPROTDrr, X86::VPROTDmr, 0 }, { X86::VPROTQri, X86::VPROTQmi, 0 }, { X86::VPROTQrr, X86::VPROTQmr, 0 }, { X86::VPROTWri, X86::VPROTWmi, 0 }, { X86::VPROTWrr, X86::VPROTWmr, 0 }, { X86::VPSHABrr, X86::VPSHABmr, 0 }, { X86::VPSHADrr, X86::VPSHADmr, 0 }, { X86::VPSHAQrr, X86::VPSHAQmr, 0 }, { X86::VPSHAWrr, X86::VPSHAWmr, 0 }, { X86::VPSHLBrr, X86::VPSHLBmr, 0 }, { X86::VPSHLDrr, X86::VPSHLDmr, 0 }, { X86::VPSHLQrr, X86::VPSHLQmr, 0 }, { X86::VPSHLWrr, X86::VPSHLWmr, 0 }, // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions { X86::BEXTR32rr, X86::BEXTR32rm, 0 }, { X86::BEXTR64rr, X86::BEXTR64rm, 0 }, { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 }, { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 }, { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 }, { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 }, { X86::BLCI32rr, X86::BLCI32rm, 0 }, { X86::BLCI64rr, X86::BLCI64rm, 0 }, { X86::BLCIC32rr, X86::BLCIC32rm, 0 }, { X86::BLCIC64rr, X86::BLCIC64rm, 0 }, { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 }, { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 }, { X86::BLCS32rr, X86::BLCS32rm, 0 }, { X86::BLCS64rr, X86::BLCS64rm, 0 }, { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 }, { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 }, { X86::BLSI32rr, X86::BLSI32rm, 0 }, { X86::BLSI64rr, X86::BLSI64rm, 0 }, { X86::BLSIC32rr, X86::BLSIC32rm, 0 }, { X86::BLSIC64rr, X86::BLSIC64rm, 0 }, { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 }, { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 }, { X86::BLSR32rr, X86::BLSR32rm, 0 }, { X86::BLSR64rr, X86::BLSR64rm, 0 }, { X86::BZHI32rr, X86::BZHI32rm, 0 }, { X86::BZHI64rr, X86::BZHI64rm, 0 }, { X86::LZCNT16rr, X86::LZCNT16rm, 0 }, { X86::LZCNT32rr, X86::LZCNT32rm, 0 }, { X86::LZCNT64rr, X86::LZCNT64rm, 0 }, { X86::POPCNT16rr, X86::POPCNT16rm, 0 }, { X86::POPCNT32rr, X86::POPCNT32rm, 0 }, { X86::POPCNT64rr, X86::POPCNT64rm, 0 }, { X86::RORX32ri, X86::RORX32mi, 0 }, { X86::RORX64ri, X86::RORX64mi, 0 }, { X86::SARX32rr, X86::SARX32rm, 0 }, { X86::SARX64rr, X86::SARX64rm, 0 }, { X86::SHRX32rr, X86::SHRX32rm, 0 }, { X86::SHRX64rr, X86::SHRX64rm, 0 }, { X86::SHLX32rr, X86::SHLX32rm, 0 }, { X86::SHLX64rr, X86::SHLX64rm, 0 }, { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 }, { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 }, { X86::TZCNT16rr, X86::TZCNT16rm, 0 }, { X86::TZCNT32rr, X86::TZCNT32rm, 0 }, { X86::TZCNT64rr, X86::TZCNT64rm, 0 }, { X86::TZMSK32rr, X86::TZMSK32rm, 0 }, { X86::TZMSK64rr, X86::TZMSK64rm, 0 }, // AVX-512 foldable instructions { X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE }, { X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE }, { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 }, { X86::VMOV64toSDZrr, X86::VMOV64toSDZrm, 0 }, { X86::VMOVDI2PDIZrr, X86::VMOVDI2PDIZrm, 0 }, { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 }, { X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 }, { X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 }, { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 }, { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 }, { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zrm, 0 }, { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zrm, 0 }, { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 }, { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 }, { X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 }, { X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 }, { X86::VMOVZPQILo2PQIZrr,X86::VMOVQI2PQIZrm, TB_NO_REVERSE }, { X86::VPABSBZrr, X86::VPABSBZrm, 0 }, { X86::VPABSDZrr, X86::VPABSDZrm, 0 }, { X86::VPABSQZrr, X86::VPABSQZrm, 0 }, { X86::VPABSWZrr, X86::VPABSWZrm, 0 }, { X86::VPERMILPDZri, X86::VPERMILPDZmi, 0 }, { X86::VPERMILPSZri, X86::VPERMILPSZmi, 0 }, { X86::VPERMPDZri, X86::VPERMPDZmi, 0 }, { X86::VPERMQZri, X86::VPERMQZmi, 0 }, { X86::VPMOVSXBDZrr, X86::VPMOVSXBDZrm, 0 }, { X86::VPMOVSXBQZrr, X86::VPMOVSXBQZrm, TB_NO_REVERSE }, { X86::VPMOVSXBWZrr, X86::VPMOVSXBWZrm, 0 }, { X86::VPMOVSXDQZrr, X86::VPMOVSXDQZrm, 0 }, { X86::VPMOVSXWDZrr, X86::VPMOVSXWDZrm, 0 }, { X86::VPMOVSXWQZrr, X86::VPMOVSXWQZrm, 0 }, { X86::VPMOVZXBDZrr, X86::VPMOVZXBDZrm, 0 }, { X86::VPMOVZXBQZrr, X86::VPMOVZXBQZrm, TB_NO_REVERSE }, { X86::VPMOVZXBWZrr, X86::VPMOVZXBWZrm, 0 }, { X86::VPMOVZXDQZrr, X86::VPMOVZXDQZrm, 0 }, { X86::VPMOVZXWDZrr, X86::VPMOVZXWDZrm, 0 }, { X86::VPMOVZXWQZrr, X86::VPMOVZXWQZrm, 0 }, { X86::VPSHUFDZri, X86::VPSHUFDZmi, 0 }, { X86::VPSHUFHWZri, X86::VPSHUFHWZmi, 0 }, { X86::VPSHUFLWZri, X86::VPSHUFLWZmi, 0 }, { X86::VPSLLDQZ512rr, X86::VPSLLDQZ512rm, 0 }, { X86::VPSLLDZri, X86::VPSLLDZmi, 0 }, { X86::VPSLLQZri, X86::VPSLLQZmi, 0 }, { X86::VPSLLWZri, X86::VPSLLWZmi, 0 }, { X86::VPSRADZri, X86::VPSRADZmi, 0 }, { X86::VPSRAQZri, X86::VPSRAQZmi, 0 }, { X86::VPSRAWZri, X86::VPSRAWZmi, 0 }, { X86::VPSRLDQZ512rr, X86::VPSRLDQZ512rm, 0 }, { X86::VPSRLDZri, X86::VPSRLDZmi, 0 }, { X86::VPSRLQZri, X86::VPSRLQZmi, 0 }, { X86::VPSRLWZri, X86::VPSRLWZmi, 0 }, // AVX-512 foldable instructions (256-bit versions) { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE }, { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE }, { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 }, { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 }, { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256rm, TB_ALIGN_32 }, { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256rm, TB_ALIGN_32 }, { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256rm, 0 }, { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256rm, 0 }, { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256rm, 0 }, { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256rm, 0 }, { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256rm, 0 }, { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 }, { X86::VPABSBZ256rr, X86::VPABSBZ256rm, 0 }, { X86::VPABSDZ256rr, X86::VPABSDZ256rm, 0 }, { X86::VPABSQZ256rr, X86::VPABSQZ256rm, 0 }, { X86::VPABSWZ256rr, X86::VPABSWZ256rm, 0 }, { X86::VPERMILPDZ256ri, X86::VPERMILPDZ256mi, 0 }, { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256mi, 0 }, { X86::VPERMPDZ256ri, X86::VPERMPDZ256mi, 0 }, { X86::VPERMQZ256ri, X86::VPERMQZ256mi, 0 }, { X86::VPMOVSXBDZ256rr, X86::VPMOVSXBDZ256rm, TB_NO_REVERSE }, { X86::VPMOVSXBQZ256rr, X86::VPMOVSXBQZ256rm, TB_NO_REVERSE }, { X86::VPMOVSXBWZ256rr, X86::VPMOVSXBWZ256rm, 0 }, { X86::VPMOVSXDQZ256rr, X86::VPMOVSXDQZ256rm, 0 }, { X86::VPMOVSXWDZ256rr, X86::VPMOVSXWDZ256rm, 0 }, { X86::VPMOVSXWQZ256rr, X86::VPMOVSXWQZ256rm, TB_NO_REVERSE }, { X86::VPMOVZXBDZ256rr, X86::VPMOVZXBDZ256rm, TB_NO_REVERSE }, { X86::VPMOVZXBQZ256rr, X86::VPMOVZXBQZ256rm, TB_NO_REVERSE }, { X86::VPMOVZXBWZ256rr, X86::VPMOVZXBWZ256rm, 0 }, { X86::VPMOVZXDQZ256rr, X86::VPMOVZXDQZ256rm, 0 }, { X86::VPMOVZXWDZ256rr, X86::VPMOVZXWDZ256rm, 0 }, { X86::VPMOVZXWQZ256rr, X86::VPMOVZXWQZ256rm, TB_NO_REVERSE }, { X86::VPSHUFDZ256ri, X86::VPSHUFDZ256mi, 0 }, { X86::VPSHUFHWZ256ri, X86::VPSHUFHWZ256mi, 0 }, { X86::VPSHUFLWZ256ri, X86::VPSHUFLWZ256mi, 0 }, { X86::VPSLLDQZ256rr, X86::VPSLLDQZ256rm, 0 }, { X86::VPSLLDZ256ri, X86::VPSLLDZ256mi, 0 }, { X86::VPSLLQZ256ri, X86::VPSLLQZ256mi, 0 }, { X86::VPSLLWZ256ri, X86::VPSLLWZ256mi, 0 }, { X86::VPSRADZ256ri, X86::VPSRADZ256mi, 0 }, { X86::VPSRAQZ256ri, X86::VPSRAQZ256mi, 0 }, { X86::VPSRAWZ256ri, X86::VPSRAWZ256mi, 0 }, { X86::VPSRLDQZ256rr, X86::VPSRLDQZ256rm, 0 }, { X86::VPSRLDZ256ri, X86::VPSRLDZ256mi, 0 }, { X86::VPSRLQZ256ri, X86::VPSRLQZ256mi, 0 }, { X86::VPSRLWZ256ri, X86::VPSRLWZ256mi, 0 }, // AVX-512 foldable instructions (128-bit versions) { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE }, { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 }, { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 }, { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128rm, TB_ALIGN_16 }, { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128rm, TB_ALIGN_16 }, { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128rm, 0 }, { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128rm, 0 }, { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128rm, 0 }, { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128rm, 0 }, { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 }, { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 }, { X86::VPABSBZ128rr, X86::VPABSBZ128rm, 0 }, { X86::VPABSDZ128rr, X86::VPABSDZ128rm, 0 }, { X86::VPABSQZ128rr, X86::VPABSQZ128rm, 0 }, { X86::VPABSWZ128rr, X86::VPABSWZ128rm, 0 }, { X86::VPERMILPDZ128ri, X86::VPERMILPDZ128mi, 0 }, { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128mi, 0 }, { X86::VPMOVSXBDZ128rr, X86::VPMOVSXBDZ128rm, TB_NO_REVERSE }, { X86::VPMOVSXBQZ128rr, X86::VPMOVSXBQZ128rm, TB_NO_REVERSE }, { X86::VPMOVSXBWZ128rr, X86::VPMOVSXBWZ128rm, TB_NO_REVERSE }, { X86::VPMOVSXDQZ128rr, X86::VPMOVSXDQZ128rm, TB_NO_REVERSE }, { X86::VPMOVSXWDZ128rr, X86::VPMOVSXWDZ128rm, TB_NO_REVERSE }, { X86::VPMOVSXWQZ128rr, X86::VPMOVSXWQZ128rm, TB_NO_REVERSE }, { X86::VPMOVZXBDZ128rr, X86::VPMOVZXBDZ128rm, TB_NO_REVERSE }, { X86::VPMOVZXBQZ128rr, X86::VPMOVZXBQZ128rm, TB_NO_REVERSE }, { X86::VPMOVZXBWZ128rr, X86::VPMOVZXBWZ128rm, TB_NO_REVERSE }, { X86::VPMOVZXDQZ128rr, X86::VPMOVZXDQZ128rm, TB_NO_REVERSE }, { X86::VPMOVZXWDZ128rr, X86::VPMOVZXWDZ128rm, TB_NO_REVERSE }, { X86::VPMOVZXWQZ128rr, X86::VPMOVZXWQZ128rm, TB_NO_REVERSE }, { X86::VPSHUFDZ128ri, X86::VPSHUFDZ128mi, 0 }, { X86::VPSHUFHWZ128ri, X86::VPSHUFHWZ128mi, 0 }, { X86::VPSHUFLWZ128ri, X86::VPSHUFLWZ128mi, 0 }, { X86::VPSLLDQZ128rr, X86::VPSLLDQZ128rm, 0 }, { X86::VPSLLDZ128ri, X86::VPSLLDZ128mi, 0 }, { X86::VPSLLQZ128ri, X86::VPSLLQZ128mi, 0 }, { X86::VPSLLWZ128ri, X86::VPSLLWZ128mi, 0 }, { X86::VPSRADZ128ri, X86::VPSRADZ128mi, 0 }, { X86::VPSRAQZ128ri, X86::VPSRAQZ128mi, 0 }, { X86::VPSRAWZ128ri, X86::VPSRAWZ128mi, 0 }, { X86::VPSRLDQZ128rr, X86::VPSRLDQZ128rm, 0 }, { X86::VPSRLDZ128ri, X86::VPSRLDZ128mi, 0 }, { X86::VPSRLQZ128ri, X86::VPSRLQZ128mi, 0 }, { X86::VPSRLWZ128ri, X86::VPSRLWZ128mi, 0 }, // F16C foldable instructions { X86::VCVTPH2PSrr, X86::VCVTPH2PSrm, 0 }, { X86::VCVTPH2PSYrr, X86::VCVTPH2PSYrm, 0 }, // AES foldable instructions { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 }, { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 }, { X86::VAESIMCrr, X86::VAESIMCrm, 0 }, { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 } }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable1) { AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, // Index 1, folded load Entry.Flags | TB_INDEX_1 | TB_FOLDED_LOAD); } static const X86MemoryFoldTableEntry MemoryFoldTable2[] = { { X86::ADC32rr, X86::ADC32rm, 0 }, { X86::ADC64rr, X86::ADC64rm, 0 }, { X86::ADD16rr, X86::ADD16rm, 0 }, { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE }, { X86::ADD32rr, X86::ADD32rm, 0 }, { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE }, { X86::ADD64rr, X86::ADD64rm, 0 }, { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE }, { X86::ADD8rr, X86::ADD8rm, 0 }, { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 }, { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 }, { X86::ADDSDrr, X86::ADDSDrm, 0 }, { X86::ADDSDrr_Int, X86::ADDSDrm_Int, TB_NO_REVERSE }, { X86::ADDSSrr, X86::ADDSSrm, 0 }, { X86::ADDSSrr_Int, X86::ADDSSrm_Int, TB_NO_REVERSE }, { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 }, { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 }, { X86::AND16rr, X86::AND16rm, 0 }, { X86::AND32rr, X86::AND32rm, 0 }, { X86::AND64rr, X86::AND64rm, 0 }, { X86::AND8rr, X86::AND8rm, 0 }, { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 }, { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 }, { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 }, { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 }, { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 }, { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 }, { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 }, { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 }, { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 }, { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 }, { X86::CMPSDrr, X86::CMPSDrm, 0 }, { X86::CMPSSrr, X86::CMPSSrm, 0 }, { X86::CRC32r32r32, X86::CRC32r32m32, 0 }, { X86::CRC32r64r64, X86::CRC32r64m64, 0 }, { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 }, { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 }, { X86::DIVSDrr, X86::DIVSDrm, 0 }, { X86::DIVSDrr_Int, X86::DIVSDrm_Int, TB_NO_REVERSE }, { X86::DIVSSrr, X86::DIVSSrm, 0 }, { X86::DIVSSrr_Int, X86::DIVSSrm_Int, TB_NO_REVERSE }, { X86::DPPDrri, X86::DPPDrmi, TB_ALIGN_16 }, { X86::DPPSrri, X86::DPPSrmi, TB_ALIGN_16 }, { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 }, { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 }, { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 }, { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 }, { X86::IMUL16rr, X86::IMUL16rm, 0 }, { X86::IMUL32rr, X86::IMUL32rm, 0 }, { X86::IMUL64rr, X86::IMUL64rm, 0 }, { X86::Int_CMPSDrr, X86::Int_CMPSDrm, TB_NO_REVERSE }, { X86::Int_CMPSSrr, X86::Int_CMPSSrm, TB_NO_REVERSE }, { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, TB_NO_REVERSE }, { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, TB_NO_REVERSE }, { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 }, { X86::MAXCPDrr, X86::MAXCPDrm, TB_ALIGN_16 }, { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 }, { X86::MAXCPSrr, X86::MAXCPSrm, TB_ALIGN_16 }, { X86::MAXSDrr, X86::MAXSDrm, 0 }, { X86::MAXCSDrr, X86::MAXCSDrm, 0 }, { X86::MAXSDrr_Int, X86::MAXSDrm_Int, TB_NO_REVERSE }, { X86::MAXSSrr, X86::MAXSSrm, 0 }, { X86::MAXCSSrr, X86::MAXCSSrm, 0 }, { X86::MAXSSrr_Int, X86::MAXSSrm_Int, TB_NO_REVERSE }, { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 }, { X86::MINCPDrr, X86::MINCPDrm, TB_ALIGN_16 }, { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 }, { X86::MINCPSrr, X86::MINCPSrm, TB_ALIGN_16 }, { X86::MINSDrr, X86::MINSDrm, 0 }, { X86::MINCSDrr, X86::MINCSDrm, 0 }, { X86::MINSDrr_Int, X86::MINSDrm_Int, TB_NO_REVERSE }, { X86::MINSSrr, X86::MINSSrm, 0 }, { X86::MINCSSrr, X86::MINCSSrm, 0 }, { X86::MINSSrr_Int, X86::MINSSrm_Int, TB_NO_REVERSE }, { X86::MOVLHPSrr, X86::MOVHPSrm, TB_NO_REVERSE }, { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 }, { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 }, { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 }, { X86::MULSDrr, X86::MULSDrm, 0 }, { X86::MULSDrr_Int, X86::MULSDrm_Int, TB_NO_REVERSE }, { X86::MULSSrr, X86::MULSSrm, 0 }, { X86::MULSSrr_Int, X86::MULSSrm_Int, TB_NO_REVERSE }, { X86::OR16rr, X86::OR16rm, 0 }, { X86::OR32rr, X86::OR32rm, 0 }, { X86::OR64rr, X86::OR64rm, 0 }, { X86::OR8rr, X86::OR8rm, 0 }, { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 }, { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 }, { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 }, { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 }, { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 }, { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 }, { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 }, { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 }, { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 }, { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 }, { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 }, { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 }, { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 }, { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 }, { X86::PALIGNRrri, X86::PALIGNRrmi, TB_ALIGN_16 }, { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 }, { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 }, { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 }, { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 }, { X86::PBLENDVBrr0, X86::PBLENDVBrm0, TB_ALIGN_16 }, { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 }, { X86::PCLMULQDQrr, X86::PCLMULQDQrm, TB_ALIGN_16 }, { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 }, { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 }, { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 }, { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 }, { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 }, { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 }, { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 }, { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 }, { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 }, { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 }, { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 }, { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 }, { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 }, { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 }, { X86::PINSRBrr, X86::PINSRBrm, 0 }, { X86::PINSRDrr, X86::PINSRDrm, 0 }, { X86::PINSRQrr, X86::PINSRQrm, 0 }, { X86::PINSRWrri, X86::PINSRWrmi, 0 }, { X86::PMADDUBSWrr, X86::PMADDUBSWrm, TB_ALIGN_16 }, { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 }, { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 }, { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 }, { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 }, { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 }, { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 }, { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 }, { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 }, { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 }, { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 }, { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 }, { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 }, { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 }, { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 }, { X86::PMULHRSWrr, X86::PMULHRSWrm, TB_ALIGN_16 }, { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 }, { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 }, { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 }, { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 }, { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 }, { X86::PORrr, X86::PORrm, TB_ALIGN_16 }, { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 }, { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 }, { X86::PSIGNBrr128, X86::PSIGNBrm128, TB_ALIGN_16 }, { X86::PSIGNWrr128, X86::PSIGNWrm128, TB_ALIGN_16 }, { X86::PSIGNDrr128, X86::PSIGNDrm128, TB_ALIGN_16 }, { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 }, { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 }, { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 }, { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 }, { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 }, { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 }, { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 }, { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 }, { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 }, { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 }, { X86::PSUBQrr, X86::PSUBQrm, TB_ALIGN_16 }, { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 }, { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 }, { X86::PSUBUSBrr, X86::PSUBUSBrm, TB_ALIGN_16 }, { X86::PSUBUSWrr, X86::PSUBUSWrm, TB_ALIGN_16 }, { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 }, { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 }, { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 }, { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 }, { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 }, { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 }, { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 }, { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 }, { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 }, { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 }, { X86::ROUNDSDr_Int, X86::ROUNDSDm_Int, TB_NO_REVERSE }, { X86::ROUNDSSr_Int, X86::ROUNDSSm_Int, TB_NO_REVERSE }, { X86::SBB32rr, X86::SBB32rm, 0 }, { X86::SBB64rr, X86::SBB64rm, 0 }, { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 }, { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 }, { X86::SUB16rr, X86::SUB16rm, 0 }, { X86::SUB32rr, X86::SUB32rm, 0 }, { X86::SUB64rr, X86::SUB64rm, 0 }, { X86::SUB8rr, X86::SUB8rm, 0 }, { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 }, { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 }, { X86::SUBSDrr, X86::SUBSDrm, 0 }, { X86::SUBSDrr_Int, X86::SUBSDrm_Int, TB_NO_REVERSE }, { X86::SUBSSrr, X86::SUBSSrm, 0 }, { X86::SUBSSrr_Int, X86::SUBSSrm_Int, TB_NO_REVERSE }, // FIXME: TEST*rr -> swapped operand of TEST*mr. { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 }, { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 }, { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 }, { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 }, { X86::XOR16rr, X86::XOR16rm, 0 }, { X86::XOR32rr, X86::XOR32rm, 0 }, { X86::XOR64rr, X86::XOR64rm, 0 }, { X86::XOR8rr, X86::XOR8rm, 0 }, { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 }, { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 }, // MMX version of foldable instructions { X86::MMX_CVTPI2PSirr, X86::MMX_CVTPI2PSirm, 0 }, { X86::MMX_PACKSSDWirr, X86::MMX_PACKSSDWirm, 0 }, { X86::MMX_PACKSSWBirr, X86::MMX_PACKSSWBirm, 0 }, { X86::MMX_PACKUSWBirr, X86::MMX_PACKUSWBirm, 0 }, { X86::MMX_PADDBirr, X86::MMX_PADDBirm, 0 }, { X86::MMX_PADDDirr, X86::MMX_PADDDirm, 0 }, { X86::MMX_PADDQirr, X86::MMX_PADDQirm, 0 }, { X86::MMX_PADDSBirr, X86::MMX_PADDSBirm, 0 }, { X86::MMX_PADDSWirr, X86::MMX_PADDSWirm, 0 }, { X86::MMX_PADDUSBirr, X86::MMX_PADDUSBirm, 0 }, { X86::MMX_PADDUSWirr, X86::MMX_PADDUSWirm, 0 }, { X86::MMX_PADDWirr, X86::MMX_PADDWirm, 0 }, { X86::MMX_PALIGNR64irr, X86::MMX_PALIGNR64irm, 0 }, { X86::MMX_PANDNirr, X86::MMX_PANDNirm, 0 }, { X86::MMX_PANDirr, X86::MMX_PANDirm, 0 }, { X86::MMX_PAVGBirr, X86::MMX_PAVGBirm, 0 }, { X86::MMX_PAVGWirr, X86::MMX_PAVGWirm, 0 }, { X86::MMX_PCMPEQBirr, X86::MMX_PCMPEQBirm, 0 }, { X86::MMX_PCMPEQDirr, X86::MMX_PCMPEQDirm, 0 }, { X86::MMX_PCMPEQWirr, X86::MMX_PCMPEQWirm, 0 }, { X86::MMX_PCMPGTBirr, X86::MMX_PCMPGTBirm, 0 }, { X86::MMX_PCMPGTDirr, X86::MMX_PCMPGTDirm, 0 }, { X86::MMX_PCMPGTWirr, X86::MMX_PCMPGTWirm, 0 }, { X86::MMX_PHADDSWrr64, X86::MMX_PHADDSWrm64, 0 }, { X86::MMX_PHADDWrr64, X86::MMX_PHADDWrm64, 0 }, { X86::MMX_PHADDrr64, X86::MMX_PHADDrm64, 0 }, { X86::MMX_PHSUBDrr64, X86::MMX_PHSUBDrm64, 0 }, { X86::MMX_PHSUBSWrr64, X86::MMX_PHSUBSWrm64, 0 }, { X86::MMX_PHSUBWrr64, X86::MMX_PHSUBWrm64, 0 }, { X86::MMX_PINSRWirri, X86::MMX_PINSRWirmi, 0 }, { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 }, { X86::MMX_PMADDWDirr, X86::MMX_PMADDWDirm, 0 }, { X86::MMX_PMAXSWirr, X86::MMX_PMAXSWirm, 0 }, { X86::MMX_PMAXUBirr, X86::MMX_PMAXUBirm, 0 }, { X86::MMX_PMINSWirr, X86::MMX_PMINSWirm, 0 }, { X86::MMX_PMINUBirr, X86::MMX_PMINUBirm, 0 }, { X86::MMX_PMULHRSWrr64, X86::MMX_PMULHRSWrm64, 0 }, { X86::MMX_PMULHUWirr, X86::MMX_PMULHUWirm, 0 }, { X86::MMX_PMULHWirr, X86::MMX_PMULHWirm, 0 }, { X86::MMX_PMULLWirr, X86::MMX_PMULLWirm, 0 }, { X86::MMX_PMULUDQirr, X86::MMX_PMULUDQirm, 0 }, { X86::MMX_PORirr, X86::MMX_PORirm, 0 }, { X86::MMX_PSADBWirr, X86::MMX_PSADBWirm, 0 }, { X86::MMX_PSHUFBrr64, X86::MMX_PSHUFBrm64, 0 }, { X86::MMX_PSIGNBrr64, X86::MMX_PSIGNBrm64, 0 }, { X86::MMX_PSIGNDrr64, X86::MMX_PSIGNDrm64, 0 }, { X86::MMX_PSIGNWrr64, X86::MMX_PSIGNWrm64, 0 }, { X86::MMX_PSLLDrr, X86::MMX_PSLLDrm, 0 }, { X86::MMX_PSLLQrr, X86::MMX_PSLLQrm, 0 }, { X86::MMX_PSLLWrr, X86::MMX_PSLLWrm, 0 }, { X86::MMX_PSRADrr, X86::MMX_PSRADrm, 0 }, { X86::MMX_PSRAWrr, X86::MMX_PSRAWrm, 0 }, { X86::MMX_PSRLDrr, X86::MMX_PSRLDrm, 0 }, { X86::MMX_PSRLQrr, X86::MMX_PSRLQrm, 0 }, { X86::MMX_PSRLWrr, X86::MMX_PSRLWrm, 0 }, { X86::MMX_PSUBBirr, X86::MMX_PSUBBirm, 0 }, { X86::MMX_PSUBDirr, X86::MMX_PSUBDirm, 0 }, { X86::MMX_PSUBQirr, X86::MMX_PSUBQirm, 0 }, { X86::MMX_PSUBSBirr, X86::MMX_PSUBSBirm, 0 }, { X86::MMX_PSUBSWirr, X86::MMX_PSUBSWirm, 0 }, { X86::MMX_PSUBUSBirr, X86::MMX_PSUBUSBirm, 0 }, { X86::MMX_PSUBUSWirr, X86::MMX_PSUBUSWirm, 0 }, { X86::MMX_PSUBWirr, X86::MMX_PSUBWirm, 0 }, { X86::MMX_PUNPCKHBWirr, X86::MMX_PUNPCKHBWirm, 0 }, { X86::MMX_PUNPCKHDQirr, X86::MMX_PUNPCKHDQirm, 0 }, { X86::MMX_PUNPCKHWDirr, X86::MMX_PUNPCKHWDirm, 0 }, { X86::MMX_PUNPCKLBWirr, X86::MMX_PUNPCKLBWirm, 0 }, { X86::MMX_PUNPCKLDQirr, X86::MMX_PUNPCKLDQirm, 0 }, { X86::MMX_PUNPCKLWDirr, X86::MMX_PUNPCKLWDirm, 0 }, { X86::MMX_PXORirr, X86::MMX_PXORirm, 0 }, // 3DNow! version of foldable instructions { X86::PAVGUSBrr, X86::PAVGUSBrm, 0 }, { X86::PFACCrr, X86::PFACCrm, 0 }, { X86::PFADDrr, X86::PFADDrm, 0 }, { X86::PFCMPEQrr, X86::PFCMPEQrm, 0 }, { X86::PFCMPGErr, X86::PFCMPGErm, 0 }, { X86::PFCMPGTrr, X86::PFCMPGTrm, 0 }, { X86::PFMAXrr, X86::PFMAXrm, 0 }, { X86::PFMINrr, X86::PFMINrm, 0 }, { X86::PFMULrr, X86::PFMULrm, 0 }, { X86::PFNACCrr, X86::PFNACCrm, 0 }, { X86::PFPNACCrr, X86::PFPNACCrm, 0 }, { X86::PFRCPIT1rr, X86::PFRCPIT1rm, 0 }, { X86::PFRCPIT2rr, X86::PFRCPIT2rm, 0 }, { X86::PFRSQIT1rr, X86::PFRSQIT1rm, 0 }, { X86::PFSUBrr, X86::PFSUBrm, 0 }, { X86::PFSUBRrr, X86::PFSUBRrm, 0 }, { X86::PMULHRWrr, X86::PMULHRWrm, 0 }, // AVX 128-bit versions of foldable instructions { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 }, { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 }, { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 }, { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 }, { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 }, { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 }, { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 }, { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 }, { X86::VADDPDrr, X86::VADDPDrm, 0 }, { X86::VADDPSrr, X86::VADDPSrm, 0 }, { X86::VADDSDrr, X86::VADDSDrm, 0 }, { X86::VADDSDrr_Int, X86::VADDSDrm_Int, TB_NO_REVERSE }, { X86::VADDSSrr, X86::VADDSSrm, 0 }, { X86::VADDSSrr_Int, X86::VADDSSrm_Int, TB_NO_REVERSE }, { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 }, { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 }, { X86::VANDNPDrr, X86::VANDNPDrm, 0 }, { X86::VANDNPSrr, X86::VANDNPSrm, 0 }, { X86::VANDPDrr, X86::VANDPDrm, 0 }, { X86::VANDPSrr, X86::VANDPSrm, 0 }, { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 }, { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 }, { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 }, { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 }, { X86::VCMPPDrri, X86::VCMPPDrmi, 0 }, { X86::VCMPPSrri, X86::VCMPPSrmi, 0 }, { X86::VCMPSDrr, X86::VCMPSDrm, 0 }, { X86::VCMPSSrr, X86::VCMPSSrm, 0 }, { X86::VDIVPDrr, X86::VDIVPDrm, 0 }, { X86::VDIVPSrr, X86::VDIVPSrm, 0 }, { X86::VDIVSDrr, X86::VDIVSDrm, 0 }, { X86::VDIVSDrr_Int, X86::VDIVSDrm_Int, TB_NO_REVERSE }, { X86::VDIVSSrr, X86::VDIVSSrm, 0 }, { X86::VDIVSSrr_Int, X86::VDIVSSrm_Int, TB_NO_REVERSE }, { X86::VDPPDrri, X86::VDPPDrmi, 0 }, { X86::VDPPSrri, X86::VDPPSrmi, 0 }, { X86::VHADDPDrr, X86::VHADDPDrm, 0 }, { X86::VHADDPSrr, X86::VHADDPSrm, 0 }, { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 }, { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 }, { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, TB_NO_REVERSE }, { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, TB_NO_REVERSE }, { X86::VMAXCPDrr, X86::VMAXCPDrm, 0 }, { X86::VMAXCPSrr, X86::VMAXCPSrm, 0 }, { X86::VMAXCSDrr, X86::VMAXCSDrm, 0 }, { X86::VMAXCSSrr, X86::VMAXCSSrm, 0 }, { X86::VMAXPDrr, X86::VMAXPDrm, 0 }, { X86::VMAXPSrr, X86::VMAXPSrm, 0 }, { X86::VMAXSDrr, X86::VMAXSDrm, 0 }, { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, TB_NO_REVERSE }, { X86::VMAXSSrr, X86::VMAXSSrm, 0 }, { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, TB_NO_REVERSE }, { X86::VMINCPDrr, X86::VMINCPDrm, 0 }, { X86::VMINCPSrr, X86::VMINCPSrm, 0 }, { X86::VMINCSDrr, X86::VMINCSDrm, 0 }, { X86::VMINCSSrr, X86::VMINCSSrm, 0 }, { X86::VMINPDrr, X86::VMINPDrm, 0 }, { X86::VMINPSrr, X86::VMINPSrm, 0 }, { X86::VMINSDrr, X86::VMINSDrm, 0 }, { X86::VMINSDrr_Int, X86::VMINSDrm_Int, TB_NO_REVERSE }, { X86::VMINSSrr, X86::VMINSSrm, 0 }, { X86::VMINSSrr_Int, X86::VMINSSrm_Int, TB_NO_REVERSE }, { X86::VMOVLHPSrr, X86::VMOVHPSrm, TB_NO_REVERSE }, { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 }, { X86::VMULPDrr, X86::VMULPDrm, 0 }, { X86::VMULPSrr, X86::VMULPSrm, 0 }, { X86::VMULSDrr, X86::VMULSDrm, 0 }, { X86::VMULSDrr_Int, X86::VMULSDrm_Int, TB_NO_REVERSE }, { X86::VMULSSrr, X86::VMULSSrm, 0 }, { X86::VMULSSrr_Int, X86::VMULSSrm_Int, TB_NO_REVERSE }, { X86::VORPDrr, X86::VORPDrm, 0 }, { X86::VORPSrr, X86::VORPSrm, 0 }, { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 }, { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 }, { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 }, { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 }, { X86::VPADDBrr, X86::VPADDBrm, 0 }, { X86::VPADDDrr, X86::VPADDDrm, 0 }, { X86::VPADDQrr, X86::VPADDQrm, 0 }, { X86::VPADDSBrr, X86::VPADDSBrm, 0 }, { X86::VPADDSWrr, X86::VPADDSWrm, 0 }, { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 }, { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 }, { X86::VPADDWrr, X86::VPADDWrm, 0 }, { X86::VPALIGNRrri, X86::VPALIGNRrmi, 0 }, { X86::VPANDNrr, X86::VPANDNrm, 0 }, { X86::VPANDrr, X86::VPANDrm, 0 }, { X86::VPAVGBrr, X86::VPAVGBrm, 0 }, { X86::VPAVGWrr, X86::VPAVGWrm, 0 }, { X86::VPBLENDVBrr, X86::VPBLENDVBrm, 0 }, { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 }, { X86::VPCLMULQDQrr, X86::VPCLMULQDQrm, 0 }, { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 }, { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 }, { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 }, { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 }, { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 }, { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 }, { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 }, { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 }, { X86::VPHADDDrr, X86::VPHADDDrm, 0 }, { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 }, { X86::VPHADDWrr, X86::VPHADDWrm, 0 }, { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 }, { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 }, { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 }, { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 }, { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 }, { X86::VPINSRBrr, X86::VPINSRBrm, 0 }, { X86::VPINSRDrr, X86::VPINSRDrm, 0 }, { X86::VPINSRQrr, X86::VPINSRQrm, 0 }, { X86::VPINSRWrri, X86::VPINSRWrmi, 0 }, { X86::VPMADDUBSWrr, X86::VPMADDUBSWrm, 0 }, { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 }, { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 }, { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 }, { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 }, { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 }, { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 }, { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 }, { X86::VPMINSBrr, X86::VPMINSBrm, 0 }, { X86::VPMINSDrr, X86::VPMINSDrm, 0 }, { X86::VPMINSWrr, X86::VPMINSWrm, 0 }, { X86::VPMINUBrr, X86::VPMINUBrm, 0 }, { X86::VPMINUDrr, X86::VPMINUDrm, 0 }, { X86::VPMINUWrr, X86::VPMINUWrm, 0 }, { X86::VPMULDQrr, X86::VPMULDQrm, 0 }, { X86::VPMULHRSWrr, X86::VPMULHRSWrm, 0 }, { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 }, { X86::VPMULHWrr, X86::VPMULHWrm, 0 }, { X86::VPMULLDrr, X86::VPMULLDrm, 0 }, { X86::VPMULLWrr, X86::VPMULLWrm, 0 }, { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 }, { X86::VPORrr, X86::VPORrm, 0 }, { X86::VPSADBWrr, X86::VPSADBWrm, 0 }, { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 }, { X86::VPSIGNBrr128, X86::VPSIGNBrm128, 0 }, { X86::VPSIGNWrr128, X86::VPSIGNWrm128, 0 }, { X86::VPSIGNDrr128, X86::VPSIGNDrm128, 0 }, { X86::VPSLLDrr, X86::VPSLLDrm, 0 }, { X86::VPSLLQrr, X86::VPSLLQrm, 0 }, { X86::VPSLLWrr, X86::VPSLLWrm, 0 }, { X86::VPSRADrr, X86::VPSRADrm, 0 }, { X86::VPSRAWrr, X86::VPSRAWrm, 0 }, { X86::VPSRLDrr, X86::VPSRLDrm, 0 }, { X86::VPSRLQrr, X86::VPSRLQrm, 0 }, { X86::VPSRLWrr, X86::VPSRLWrm, 0 }, { X86::VPSUBBrr, X86::VPSUBBrm, 0 }, { X86::VPSUBDrr, X86::VPSUBDrm, 0 }, { X86::VPSUBQrr, X86::VPSUBQrm, 0 }, { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 }, { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 }, { X86::VPSUBUSBrr, X86::VPSUBUSBrm, 0 }, { X86::VPSUBUSWrr, X86::VPSUBUSWrm, 0 }, { X86::VPSUBWrr, X86::VPSUBWrm, 0 }, { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 }, { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 }, { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 }, { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 }, { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 }, { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 }, { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 }, { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 }, { X86::VPXORrr, X86::VPXORrm, 0 }, { X86::VRCPSSr, X86::VRCPSSm, 0 }, { X86::VRCPSSr_Int, X86::VRCPSSm_Int, TB_NO_REVERSE }, { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 }, { X86::VRSQRTSSr_Int, X86::VRSQRTSSm_Int, TB_NO_REVERSE }, { X86::VROUNDSDr, X86::VROUNDSDm, 0 }, { X86::VROUNDSDr_Int, X86::VROUNDSDm_Int, TB_NO_REVERSE }, { X86::VROUNDSSr, X86::VROUNDSSm, 0 }, { X86::VROUNDSSr_Int, X86::VROUNDSSm_Int, TB_NO_REVERSE }, { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 }, { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 }, { X86::VSQRTSDr, X86::VSQRTSDm, 0 }, { X86::VSQRTSDr_Int, X86::VSQRTSDm_Int, TB_NO_REVERSE }, { X86::VSQRTSSr, X86::VSQRTSSm, 0 }, { X86::VSQRTSSr_Int, X86::VSQRTSSm_Int, TB_NO_REVERSE }, { X86::VSUBPDrr, X86::VSUBPDrm, 0 }, { X86::VSUBPSrr, X86::VSUBPSrm, 0 }, { X86::VSUBSDrr, X86::VSUBSDrm, 0 }, { X86::VSUBSDrr_Int, X86::VSUBSDrm_Int, TB_NO_REVERSE }, { X86::VSUBSSrr, X86::VSUBSSrm, 0 }, { X86::VSUBSSrr_Int, X86::VSUBSSrm_Int, TB_NO_REVERSE }, { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 }, { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 }, { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 }, { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 }, { X86::VXORPDrr, X86::VXORPDrm, 0 }, { X86::VXORPSrr, X86::VXORPSrm, 0 }, // AVX 256-bit foldable instructions { X86::VADDPDYrr, X86::VADDPDYrm, 0 }, { X86::VADDPSYrr, X86::VADDPSYrm, 0 }, { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 }, { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 }, { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 }, { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 }, { X86::VANDPDYrr, X86::VANDPDYrm, 0 }, { X86::VANDPSYrr, X86::VANDPSYrm, 0 }, { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 }, { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 }, { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 }, { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 }, { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 }, { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 }, { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 }, { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 }, { X86::VDPPSYrri, X86::VDPPSYrmi, 0 }, { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 }, { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 }, { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 }, { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 }, { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 }, { X86::VMAXCPDYrr, X86::VMAXCPDYrm, 0 }, { X86::VMAXCPSYrr, X86::VMAXCPSYrm, 0 }, { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 }, { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 }, { X86::VMINCPDYrr, X86::VMINCPDYrm, 0 }, { X86::VMINCPSYrr, X86::VMINCPSYrm, 0 }, { X86::VMINPDYrr, X86::VMINPDYrm, 0 }, { X86::VMINPSYrr, X86::VMINPSYrm, 0 }, { X86::VMULPDYrr, X86::VMULPDYrm, 0 }, { X86::VMULPSYrr, X86::VMULPSYrm, 0 }, { X86::VORPDYrr, X86::VORPDYrm, 0 }, { X86::VORPSYrr, X86::VORPSYrm, 0 }, { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 }, { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 }, { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 }, { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 }, { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 }, { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 }, { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 }, { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 }, { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 }, { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 }, { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 }, { X86::VXORPDYrr, X86::VXORPDYrm, 0 }, { X86::VXORPSYrr, X86::VXORPSYrm, 0 }, // AVX2 foldable instructions { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 }, { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 }, { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 }, { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 }, { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 }, { X86::VPADDBYrr, X86::VPADDBYrm, 0 }, { X86::VPADDDYrr, X86::VPADDDYrm, 0 }, { X86::VPADDQYrr, X86::VPADDQYrm, 0 }, { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 }, { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 }, { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 }, { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 }, { X86::VPADDWYrr, X86::VPADDWYrm, 0 }, { X86::VPALIGNRYrri, X86::VPALIGNRYrmi, 0 }, { X86::VPANDNYrr, X86::VPANDNYrm, 0 }, { X86::VPANDYrr, X86::VPANDYrm, 0 }, { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 }, { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 }, { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 }, { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 }, { X86::VPBLENDVBYrr, X86::VPBLENDVBYrm, 0 }, { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 }, { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 }, { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 }, { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 }, { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 }, { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 }, { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 }, { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 }, { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 }, { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 }, { X86::VPERMDYrr, X86::VPERMDYrm, 0 }, { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 }, { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 }, { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 }, { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 }, { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 }, { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 }, { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 }, { X86::VPMADDUBSWYrr, X86::VPMADDUBSWYrm, 0 }, { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 }, { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 }, { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 }, { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 }, { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 }, { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 }, { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 }, { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 }, { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 }, { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 }, { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 }, { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 }, { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 }, { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 }, { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 }, { X86::VPMULHRSWYrr, X86::VPMULHRSWYrm, 0 }, { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 }, { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 }, { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 }, { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 }, { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 }, { X86::VPORYrr, X86::VPORYrm, 0 }, { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 }, { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 }, { X86::VPSIGNBYrr256, X86::VPSIGNBYrm256, 0 }, { X86::VPSIGNWYrr256, X86::VPSIGNWYrm256, 0 }, { X86::VPSIGNDYrr256, X86::VPSIGNDYrm256, 0 }, { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 }, { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 }, { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 }, { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 }, { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 }, { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 }, { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 }, { X86::VPSRADYrr, X86::VPSRADYrm, 0 }, { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 }, { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 }, { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 }, { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 }, { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 }, { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 }, { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 }, { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 }, { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 }, { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 }, { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 }, { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 }, { X86::VPSUBQYrr, X86::VPSUBQYrm, 0 }, { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 }, { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 }, { X86::VPSUBUSBYrr, X86::VPSUBUSBYrm, 0 }, { X86::VPSUBUSWYrr, X86::VPSUBUSWYrm, 0 }, { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 }, { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 }, { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 }, { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 }, { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 }, { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 }, { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 }, { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 }, { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 }, { X86::VPXORYrr, X86::VPXORYrm, 0 }, // FMA4 foldable patterns { X86::VFMADDSS4rr, X86::VFMADDSS4mr, TB_ALIGN_NONE }, { X86::VFMADDSS4rr_Int, X86::VFMADDSS4mr_Int, TB_NO_REVERSE }, { X86::VFMADDSD4rr, X86::VFMADDSD4mr, TB_ALIGN_NONE }, { X86::VFMADDSD4rr_Int, X86::VFMADDSD4mr_Int, TB_NO_REVERSE }, { X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_NONE }, { X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_NONE }, { X86::VFMADDPS4Yrr, X86::VFMADDPS4Ymr, TB_ALIGN_NONE }, { X86::VFMADDPD4Yrr, X86::VFMADDPD4Ymr, TB_ALIGN_NONE }, { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, TB_ALIGN_NONE }, { X86::VFNMADDSS4rr_Int, X86::VFNMADDSS4mr_Int, TB_NO_REVERSE }, { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, TB_ALIGN_NONE }, { X86::VFNMADDSD4rr_Int, X86::VFNMADDSD4mr_Int, TB_NO_REVERSE }, { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_NONE }, { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_NONE }, { X86::VFNMADDPS4Yrr, X86::VFNMADDPS4Ymr, TB_ALIGN_NONE }, { X86::VFNMADDPD4Yrr, X86::VFNMADDPD4Ymr, TB_ALIGN_NONE }, { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, TB_ALIGN_NONE }, { X86::VFMSUBSS4rr_Int, X86::VFMSUBSS4mr_Int, TB_NO_REVERSE }, { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, TB_ALIGN_NONE }, { X86::VFMSUBSD4rr_Int, X86::VFMSUBSD4mr_Int, TB_NO_REVERSE }, { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_NONE }, { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_NONE }, { X86::VFMSUBPS4Yrr, X86::VFMSUBPS4Ymr, TB_ALIGN_NONE }, { X86::VFMSUBPD4Yrr, X86::VFMSUBPD4Ymr, TB_ALIGN_NONE }, { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, TB_ALIGN_NONE }, { X86::VFNMSUBSS4rr_Int, X86::VFNMSUBSS4mr_Int, TB_NO_REVERSE }, { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, TB_ALIGN_NONE }, { X86::VFNMSUBSD4rr_Int, X86::VFNMSUBSD4mr_Int, TB_NO_REVERSE }, { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_NONE }, { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_NONE }, { X86::VFNMSUBPS4Yrr, X86::VFNMSUBPS4Ymr, TB_ALIGN_NONE }, { X86::VFNMSUBPD4Yrr, X86::VFNMSUBPD4Ymr, TB_ALIGN_NONE }, { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_NONE }, { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_NONE }, { X86::VFMADDSUBPS4Yrr, X86::VFMADDSUBPS4Ymr, TB_ALIGN_NONE }, { X86::VFMADDSUBPD4Yrr, X86::VFMADDSUBPD4Ymr, TB_ALIGN_NONE }, { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_NONE }, { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_NONE }, { X86::VFMSUBADDPS4Yrr, X86::VFMSUBADDPS4Ymr, TB_ALIGN_NONE }, { X86::VFMSUBADDPD4Yrr, X86::VFMSUBADDPD4Ymr, TB_ALIGN_NONE }, // XOP foldable instructions { X86::VPCMOVrrr, X86::VPCMOVrmr, 0 }, { X86::VPCMOVYrrr, X86::VPCMOVYrmr, 0 }, { X86::VPCOMBri, X86::VPCOMBmi, 0 }, { X86::VPCOMDri, X86::VPCOMDmi, 0 }, { X86::VPCOMQri, X86::VPCOMQmi, 0 }, { X86::VPCOMWri, X86::VPCOMWmi, 0 }, { X86::VPCOMUBri, X86::VPCOMUBmi, 0 }, { X86::VPCOMUDri, X86::VPCOMUDmi, 0 }, { X86::VPCOMUQri, X86::VPCOMUQmi, 0 }, { X86::VPCOMUWri, X86::VPCOMUWmi, 0 }, { X86::VPERMIL2PDrr, X86::VPERMIL2PDmr, 0 }, { X86::VPERMIL2PDYrr, X86::VPERMIL2PDYmr, 0 }, { X86::VPERMIL2PSrr, X86::VPERMIL2PSmr, 0 }, { X86::VPERMIL2PSYrr, X86::VPERMIL2PSYmr, 0 }, { X86::VPMACSDDrr, X86::VPMACSDDrm, 0 }, { X86::VPMACSDQHrr, X86::VPMACSDQHrm, 0 }, { X86::VPMACSDQLrr, X86::VPMACSDQLrm, 0 }, { X86::VPMACSSDDrr, X86::VPMACSSDDrm, 0 }, { X86::VPMACSSDQHrr, X86::VPMACSSDQHrm, 0 }, { X86::VPMACSSDQLrr, X86::VPMACSSDQLrm, 0 }, { X86::VPMACSSWDrr, X86::VPMACSSWDrm, 0 }, { X86::VPMACSSWWrr, X86::VPMACSSWWrm, 0 }, { X86::VPMACSWDrr, X86::VPMACSWDrm, 0 }, { X86::VPMACSWWrr, X86::VPMACSWWrm, 0 }, { X86::VPMADCSSWDrr, X86::VPMADCSSWDrm, 0 }, { X86::VPMADCSWDrr, X86::VPMADCSWDrm, 0 }, { X86::VPPERMrrr, X86::VPPERMrmr, 0 }, { X86::VPROTBrr, X86::VPROTBrm, 0 }, { X86::VPROTDrr, X86::VPROTDrm, 0 }, { X86::VPROTQrr, X86::VPROTQrm, 0 }, { X86::VPROTWrr, X86::VPROTWrm, 0 }, { X86::VPSHABrr, X86::VPSHABrm, 0 }, { X86::VPSHADrr, X86::VPSHADrm, 0 }, { X86::VPSHAQrr, X86::VPSHAQrm, 0 }, { X86::VPSHAWrr, X86::VPSHAWrm, 0 }, { X86::VPSHLBrr, X86::VPSHLBrm, 0 }, { X86::VPSHLDrr, X86::VPSHLDrm, 0 }, { X86::VPSHLQrr, X86::VPSHLQrm, 0 }, { X86::VPSHLWrr, X86::VPSHLWrm, 0 }, // BMI/BMI2 foldable instructions { X86::ANDN32rr, X86::ANDN32rm, 0 }, { X86::ANDN64rr, X86::ANDN64rm, 0 }, { X86::MULX32rr, X86::MULX32rm, 0 }, { X86::MULX64rr, X86::MULX64rm, 0 }, { X86::PDEP32rr, X86::PDEP32rm, 0 }, { X86::PDEP64rr, X86::PDEP64rm, 0 }, { X86::PEXT32rr, X86::PEXT32rm, 0 }, { X86::PEXT64rr, X86::PEXT64rm, 0 }, // ADX foldable instructions { X86::ADCX32rr, X86::ADCX32rm, 0 }, { X86::ADCX64rr, X86::ADCX64rm, 0 }, { X86::ADOX32rr, X86::ADOX32rm, 0 }, { X86::ADOX64rr, X86::ADOX64rm, 0 }, // AVX-512 foldable instructions { X86::VADDPDZrr, X86::VADDPDZrm, 0 }, { X86::VADDPSZrr, X86::VADDPSZrm, 0 }, { X86::VADDSDZrr, X86::VADDSDZrm, 0 }, { X86::VADDSDZrr_Int, X86::VADDSDZrm_Int, TB_NO_REVERSE }, { X86::VADDSSZrr, X86::VADDSSZrm, 0 }, { X86::VADDSSZrr_Int, X86::VADDSSZrm_Int, TB_NO_REVERSE }, { X86::VALIGNDZrri, X86::VALIGNDZrmi, 0 }, { X86::VALIGNQZrri, X86::VALIGNQZrmi, 0 }, { X86::VANDNPDZrr, X86::VANDNPDZrm, 0 }, { X86::VANDNPSZrr, X86::VANDNPSZrm, 0 }, { X86::VANDPDZrr, X86::VANDPDZrm, 0 }, { X86::VANDPSZrr, X86::VANDPSZrm, 0 }, { X86::VCMPPDZrri, X86::VCMPPDZrmi, 0 }, { X86::VCMPPSZrri, X86::VCMPPSZrmi, 0 }, { X86::VCMPSDZrr, X86::VCMPSDZrm, 0 }, { X86::VCMPSDZrr_Int, X86::VCMPSDZrm_Int, TB_NO_REVERSE }, { X86::VCMPSSZrr, X86::VCMPSSZrm, 0 }, { X86::VCMPSSZrr_Int, X86::VCMPSSZrm_Int, TB_NO_REVERSE }, { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 }, { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 }, { X86::VDIVSDZrr, X86::VDIVSDZrm, 0 }, { X86::VDIVSDZrr_Int, X86::VDIVSDZrm_Int, TB_NO_REVERSE }, { X86::VDIVSSZrr, X86::VDIVSSZrm, 0 }, { X86::VDIVSSZrr_Int, X86::VDIVSSZrm_Int, TB_NO_REVERSE }, { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrm, 0 }, { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrm, 0 }, { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrm, 0 }, { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrm, 0 }, { X86::VINSERTI32x4Zrr, X86::VINSERTI32x4Zrm, 0 }, { X86::VINSERTI32x8Zrr, X86::VINSERTI32x8Zrm, 0 }, { X86::VINSERTI64x2Zrr, X86::VINSERTI64x2Zrm, 0 }, { X86::VINSERTI64x4Zrr, X86::VINSERTI64x4Zrm, 0 }, { X86::VMAXCPDZrr, X86::VMAXCPDZrm, 0 }, { X86::VMAXCPSZrr, X86::VMAXCPSZrm, 0 }, { X86::VMAXCSDZrr, X86::VMAXCSDZrm, 0 }, { X86::VMAXCSSZrr, X86::VMAXCSSZrm, 0 }, { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 }, { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 }, { X86::VMAXSDZrr, X86::VMAXSDZrm, 0 }, { X86::VMAXSDZrr_Int, X86::VMAXSDZrm_Int, TB_NO_REVERSE }, { X86::VMAXSSZrr, X86::VMAXSSZrm, 0 }, { X86::VMAXSSZrr_Int, X86::VMAXSSZrm_Int, TB_NO_REVERSE }, { X86::VMINCPDZrr, X86::VMINCPDZrm, 0 }, { X86::VMINCPSZrr, X86::VMINCPSZrm, 0 }, { X86::VMINCSDZrr, X86::VMINCSDZrm, 0 }, { X86::VMINCSSZrr, X86::VMINCSSZrm, 0 }, { X86::VMINPDZrr, X86::VMINPDZrm, 0 }, { X86::VMINPSZrr, X86::VMINPSZrm, 0 }, { X86::VMINSDZrr, X86::VMINSDZrm, 0 }, { X86::VMINSDZrr_Int, X86::VMINSDZrm_Int, TB_NO_REVERSE }, { X86::VMINSSZrr, X86::VMINSSZrm, 0 }, { X86::VMINSSZrr_Int, X86::VMINSSZrm_Int, TB_NO_REVERSE }, { X86::VMOVLHPSZrr, X86::VMOVHPSZ128rm, TB_NO_REVERSE }, { X86::VMULPDZrr, X86::VMULPDZrm, 0 }, { X86::VMULPSZrr, X86::VMULPSZrm, 0 }, { X86::VMULSDZrr, X86::VMULSDZrm, 0 }, { X86::VMULSDZrr_Int, X86::VMULSDZrm_Int, TB_NO_REVERSE }, { X86::VMULSSZrr, X86::VMULSSZrm, 0 }, { X86::VMULSSZrr_Int, X86::VMULSSZrm_Int, TB_NO_REVERSE }, { X86::VORPDZrr, X86::VORPDZrm, 0 }, { X86::VORPSZrr, X86::VORPSZrm, 0 }, { X86::VPACKSSDWZrr, X86::VPACKSSDWZrm, 0 }, { X86::VPACKSSWBZrr, X86::VPACKSSWBZrm, 0 }, { X86::VPACKUSDWZrr, X86::VPACKUSDWZrm, 0 }, { X86::VPACKUSWBZrr, X86::VPACKUSWBZrm, 0 }, { X86::VPADDBZrr, X86::VPADDBZrm, 0 }, { X86::VPADDDZrr, X86::VPADDDZrm, 0 }, { X86::VPADDQZrr, X86::VPADDQZrm, 0 }, { X86::VPADDSBZrr, X86::VPADDSBZrm, 0 }, { X86::VPADDSWZrr, X86::VPADDSWZrm, 0 }, { X86::VPADDUSBZrr, X86::VPADDUSBZrm, 0 }, { X86::VPADDUSWZrr, X86::VPADDUSWZrm, 0 }, { X86::VPADDWZrr, X86::VPADDWZrm, 0 }, { X86::VPALIGNRZrri, X86::VPALIGNRZrmi, 0 }, { X86::VPANDDZrr, X86::VPANDDZrm, 0 }, { X86::VPANDNDZrr, X86::VPANDNDZrm, 0 }, { X86::VPANDNQZrr, X86::VPANDNQZrm, 0 }, { X86::VPANDQZrr, X86::VPANDQZrm, 0 }, { X86::VPAVGBZrr, X86::VPAVGBZrm, 0 }, { X86::VPAVGWZrr, X86::VPAVGWZrm, 0 }, { X86::VPCMPBZrri, X86::VPCMPBZrmi, 0 }, { X86::VPCMPDZrri, X86::VPCMPDZrmi, 0 }, { X86::VPCMPEQBZrr, X86::VPCMPEQBZrm, 0 }, { X86::VPCMPEQDZrr, X86::VPCMPEQDZrm, 0 }, { X86::VPCMPEQQZrr, X86::VPCMPEQQZrm, 0 }, { X86::VPCMPEQWZrr, X86::VPCMPEQWZrm, 0 }, { X86::VPCMPGTBZrr, X86::VPCMPGTBZrm, 0 }, { X86::VPCMPGTDZrr, X86::VPCMPGTDZrm, 0 }, { X86::VPCMPGTQZrr, X86::VPCMPGTQZrm, 0 }, { X86::VPCMPGTWZrr, X86::VPCMPGTWZrm, 0 }, { X86::VPCMPQZrri, X86::VPCMPQZrmi, 0 }, { X86::VPCMPUBZrri, X86::VPCMPUBZrmi, 0 }, { X86::VPCMPUDZrri, X86::VPCMPUDZrmi, 0 }, { X86::VPCMPUQZrri, X86::VPCMPUQZrmi, 0 }, { X86::VPCMPUWZrri, X86::VPCMPUWZrmi, 0 }, { X86::VPCMPWZrri, X86::VPCMPWZrmi, 0 }, { X86::VPERMBZrr, X86::VPERMBZrm, 0 }, { X86::VPERMDZrr, X86::VPERMDZrm, 0 }, { X86::VPERMILPDZrr, X86::VPERMILPDZrm, 0 }, { X86::VPERMILPSZrr, X86::VPERMILPSZrm, 0 }, { X86::VPERMPDZrr, X86::VPERMPDZrm, 0 }, { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 }, { X86::VPERMQZrr, X86::VPERMQZrm, 0 }, { X86::VPERMWZrr, X86::VPERMWZrm, 0 }, { X86::VPINSRBZrr, X86::VPINSRBZrm, 0 }, { X86::VPINSRDZrr, X86::VPINSRDZrm, 0 }, { X86::VPINSRQZrr, X86::VPINSRQZrm, 0 }, { X86::VPINSRWZrr, X86::VPINSRWZrm, 0 }, { X86::VPMADDUBSWZrr, X86::VPMADDUBSWZrm, 0 }, { X86::VPMADDWDZrr, X86::VPMADDWDZrm, 0 }, { X86::VPMAXSBZrr, X86::VPMAXSBZrm, 0 }, { X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 }, { X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 }, { X86::VPMAXSWZrr, X86::VPMAXSWZrm, 0 }, { X86::VPMAXUBZrr, X86::VPMAXUBZrm, 0 }, { X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 }, { X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 }, { X86::VPMAXUWZrr, X86::VPMAXUWZrm, 0 }, { X86::VPMINSBZrr, X86::VPMINSBZrm, 0 }, { X86::VPMINSDZrr, X86::VPMINSDZrm, 0 }, { X86::VPMINSQZrr, X86::VPMINSQZrm, 0 }, { X86::VPMINSWZrr, X86::VPMINSWZrm, 0 }, { X86::VPMINUBZrr, X86::VPMINUBZrm, 0 }, { X86::VPMINUDZrr, X86::VPMINUDZrm, 0 }, { X86::VPMINUQZrr, X86::VPMINUQZrm, 0 }, { X86::VPMINUWZrr, X86::VPMINUWZrm, 0 }, { X86::VPMULDQZrr, X86::VPMULDQZrm, 0 }, { X86::VPMULLDZrr, X86::VPMULLDZrm, 0 }, { X86::VPMULLQZrr, X86::VPMULLQZrm, 0 }, { X86::VPMULLWZrr, X86::VPMULLWZrm, 0 }, { X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 }, { X86::VPORDZrr, X86::VPORDZrm, 0 }, { X86::VPORQZrr, X86::VPORQZrm, 0 }, { X86::VPSADBWZ512rr, X86::VPSADBWZ512rm, 0 }, { X86::VPSHUFBZrr, X86::VPSHUFBZrm, 0 }, { X86::VPSLLDZrr, X86::VPSLLDZrm, 0 }, { X86::VPSLLQZrr, X86::VPSLLQZrm, 0 }, { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 }, { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 }, { X86::VPSLLVWZrr, X86::VPSLLVWZrm, 0 }, { X86::VPSLLWZrr, X86::VPSLLWZrm, 0 }, { X86::VPSRADZrr, X86::VPSRADZrm, 0 }, { X86::VPSRAQZrr, X86::VPSRAQZrm, 0 }, { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 }, { X86::VPSRAVQZrr, X86::VPSRAVQZrm, 0 }, { X86::VPSRAVWZrr, X86::VPSRAVWZrm, 0 }, { X86::VPSRAWZrr, X86::VPSRAWZrm, 0 }, { X86::VPSRLDZrr, X86::VPSRLDZrm, 0 }, { X86::VPSRLQZrr, X86::VPSRLQZrm, 0 }, { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 }, { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 }, { X86::VPSRLVWZrr, X86::VPSRLVWZrm, 0 }, { X86::VPSRLWZrr, X86::VPSRLWZrm, 0 }, { X86::VPSUBBZrr, X86::VPSUBBZrm, 0 }, { X86::VPSUBDZrr, X86::VPSUBDZrm, 0 }, { X86::VPSUBQZrr, X86::VPSUBQZrm, 0 }, { X86::VPSUBSBZrr, X86::VPSUBSBZrm, 0 }, { X86::VPSUBSWZrr, X86::VPSUBSWZrm, 0 }, { X86::VPSUBUSBZrr, X86::VPSUBUSBZrm, 0 }, { X86::VPSUBUSWZrr, X86::VPSUBUSWZrm, 0 }, { X86::VPSUBWZrr, X86::VPSUBWZrm, 0 }, { X86::VPUNPCKHBWZrr, X86::VPUNPCKHBWZrm, 0 }, { X86::VPUNPCKHDQZrr, X86::VPUNPCKHDQZrm, 0 }, { X86::VPUNPCKHQDQZrr, X86::VPUNPCKHQDQZrm, 0 }, { X86::VPUNPCKHWDZrr, X86::VPUNPCKHWDZrm, 0 }, { X86::VPUNPCKLBWZrr, X86::VPUNPCKLBWZrm, 0 }, { X86::VPUNPCKLDQZrr, X86::VPUNPCKLDQZrm, 0 }, { X86::VPUNPCKLQDQZrr, X86::VPUNPCKLQDQZrm, 0 }, { X86::VPUNPCKLWDZrr, X86::VPUNPCKLWDZrm, 0 }, { X86::VPXORDZrr, X86::VPXORDZrm, 0 }, { X86::VPXORQZrr, X86::VPXORQZrm, 0 }, { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 }, { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 }, { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 }, { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 }, { X86::VSUBSDZrr, X86::VSUBSDZrm, 0 }, { X86::VSUBSDZrr_Int, X86::VSUBSDZrm_Int, TB_NO_REVERSE }, { X86::VSUBSSZrr, X86::VSUBSSZrm, 0 }, { X86::VSUBSSZrr_Int, X86::VSUBSSZrm_Int, TB_NO_REVERSE }, { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrm, 0 }, { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrm, 0 }, { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrm, 0 }, { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrm, 0 }, { X86::VXORPDZrr, X86::VXORPDZrm, 0 }, { X86::VXORPSZrr, X86::VXORPSZrm, 0 }, // AVX-512{F,VL} foldable instructions { X86::VADDPDZ128rr, X86::VADDPDZ128rm, 0 }, { X86::VADDPDZ256rr, X86::VADDPDZ256rm, 0 }, { X86::VADDPSZ128rr, X86::VADDPSZ128rm, 0 }, { X86::VADDPSZ256rr, X86::VADDPSZ256rm, 0 }, { X86::VALIGNDZ128rri, X86::VALIGNDZ128rmi, 0 }, { X86::VALIGNDZ256rri, X86::VALIGNDZ256rmi, 0 }, { X86::VALIGNQZ128rri, X86::VALIGNQZ128rmi, 0 }, { X86::VALIGNQZ256rri, X86::VALIGNQZ256rmi, 0 }, { X86::VANDNPDZ128rr, X86::VANDNPDZ128rm, 0 }, { X86::VANDNPDZ256rr, X86::VANDNPDZ256rm, 0 }, { X86::VANDNPSZ128rr, X86::VANDNPSZ128rm, 0 }, { X86::VANDNPSZ256rr, X86::VANDNPSZ256rm, 0 }, { X86::VANDPDZ128rr, X86::VANDPDZ128rm, 0 }, { X86::VANDPDZ256rr, X86::VANDPDZ256rm, 0 }, { X86::VANDPSZ128rr, X86::VANDPSZ128rm, 0 }, { X86::VANDPSZ256rr, X86::VANDPSZ256rm, 0 }, { X86::VCMPPDZ128rri, X86::VCMPPDZ128rmi, 0 }, { X86::VCMPPDZ256rri, X86::VCMPPDZ256rmi, 0 }, { X86::VCMPPSZ128rri, X86::VCMPPSZ128rmi, 0 }, { X86::VCMPPSZ256rri, X86::VCMPPSZ256rmi, 0 }, { X86::VDIVPDZ128rr, X86::VDIVPDZ128rm, 0 }, { X86::VDIVPDZ256rr, X86::VDIVPDZ256rm, 0 }, { X86::VDIVPSZ128rr, X86::VDIVPSZ128rm, 0 }, { X86::VDIVPSZ256rr, X86::VDIVPSZ256rm, 0 }, { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rm, 0 }, { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rm, 0 }, { X86::VINSERTI32x4Z256rr,X86::VINSERTI32x4Z256rm, 0 }, { X86::VINSERTI64x2Z256rr,X86::VINSERTI64x2Z256rm, 0 }, { X86::VMAXCPDZ128rr, X86::VMAXCPDZ128rm, 0 }, { X86::VMAXCPDZ256rr, X86::VMAXCPDZ256rm, 0 }, { X86::VMAXCPSZ128rr, X86::VMAXCPSZ128rm, 0 }, { X86::VMAXCPSZ256rr, X86::VMAXCPSZ256rm, 0 }, { X86::VMAXPDZ128rr, X86::VMAXPDZ128rm, 0 }, { X86::VMAXPDZ256rr, X86::VMAXPDZ256rm, 0 }, { X86::VMAXPSZ128rr, X86::VMAXPSZ128rm, 0 }, { X86::VMAXPSZ256rr, X86::VMAXPSZ256rm, 0 }, { X86::VMINCPDZ128rr, X86::VMINCPDZ128rm, 0 }, { X86::VMINCPDZ256rr, X86::VMINCPDZ256rm, 0 }, { X86::VMINCPSZ128rr, X86::VMINCPSZ128rm, 0 }, { X86::VMINCPSZ256rr, X86::VMINCPSZ256rm, 0 }, { X86::VMINPDZ128rr, X86::VMINPDZ128rm, 0 }, { X86::VMINPDZ256rr, X86::VMINPDZ256rm, 0 }, { X86::VMINPSZ128rr, X86::VMINPSZ128rm, 0 }, { X86::VMINPSZ256rr, X86::VMINPSZ256rm, 0 }, { X86::VMULPDZ128rr, X86::VMULPDZ128rm, 0 }, { X86::VMULPDZ256rr, X86::VMULPDZ256rm, 0 }, { X86::VMULPSZ128rr, X86::VMULPSZ128rm, 0 }, { X86::VMULPSZ256rr, X86::VMULPSZ256rm, 0 }, { X86::VORPDZ128rr, X86::VORPDZ128rm, 0 }, { X86::VORPDZ256rr, X86::VORPDZ256rm, 0 }, { X86::VORPSZ128rr, X86::VORPSZ128rm, 0 }, { X86::VORPSZ256rr, X86::VORPSZ256rm, 0 }, { X86::VPACKSSDWZ256rr, X86::VPACKSSDWZ256rm, 0 }, { X86::VPACKSSDWZ128rr, X86::VPACKSSDWZ128rm, 0 }, { X86::VPACKSSWBZ256rr, X86::VPACKSSWBZ256rm, 0 }, { X86::VPACKSSWBZ128rr, X86::VPACKSSWBZ128rm, 0 }, { X86::VPACKUSDWZ256rr, X86::VPACKUSDWZ256rm, 0 }, { X86::VPACKUSDWZ128rr, X86::VPACKUSDWZ128rm, 0 }, { X86::VPACKUSWBZ256rr, X86::VPACKUSWBZ256rm, 0 }, { X86::VPACKUSWBZ128rr, X86::VPACKUSWBZ128rm, 0 }, { X86::VPADDBZ128rr, X86::VPADDBZ128rm, 0 }, { X86::VPADDBZ256rr, X86::VPADDBZ256rm, 0 }, { X86::VPADDDZ128rr, X86::VPADDDZ128rm, 0 }, { X86::VPADDDZ256rr, X86::VPADDDZ256rm, 0 }, { X86::VPADDQZ128rr, X86::VPADDQZ128rm, 0 }, { X86::VPADDQZ256rr, X86::VPADDQZ256rm, 0 }, { X86::VPADDSBZ128rr, X86::VPADDSBZ128rm, 0 }, { X86::VPADDSBZ256rr, X86::VPADDSBZ256rm, 0 }, { X86::VPADDSWZ128rr, X86::VPADDSWZ128rm, 0 }, { X86::VPADDSWZ256rr, X86::VPADDSWZ256rm, 0 }, { X86::VPADDUSBZ128rr, X86::VPADDUSBZ128rm, 0 }, { X86::VPADDUSBZ256rr, X86::VPADDUSBZ256rm, 0 }, { X86::VPADDUSWZ128rr, X86::VPADDUSWZ128rm, 0 }, { X86::VPADDUSWZ256rr, X86::VPADDUSWZ256rm, 0 }, { X86::VPADDWZ128rr, X86::VPADDWZ128rm, 0 }, { X86::VPADDWZ256rr, X86::VPADDWZ256rm, 0 }, { X86::VPALIGNRZ128rri, X86::VPALIGNRZ128rmi, 0 }, { X86::VPALIGNRZ256rri, X86::VPALIGNRZ256rmi, 0 }, { X86::VPANDDZ128rr, X86::VPANDDZ128rm, 0 }, { X86::VPANDDZ256rr, X86::VPANDDZ256rm, 0 }, { X86::VPANDNDZ128rr, X86::VPANDNDZ128rm, 0 }, { X86::VPANDNDZ256rr, X86::VPANDNDZ256rm, 0 }, { X86::VPANDNQZ128rr, X86::VPANDNQZ128rm, 0 }, { X86::VPANDNQZ256rr, X86::VPANDNQZ256rm, 0 }, { X86::VPANDQZ128rr, X86::VPANDQZ128rm, 0 }, { X86::VPANDQZ256rr, X86::VPANDQZ256rm, 0 }, { X86::VPAVGBZ128rr, X86::VPAVGBZ128rm, 0 }, { X86::VPAVGBZ256rr, X86::VPAVGBZ256rm, 0 }, { X86::VPAVGWZ128rr, X86::VPAVGWZ128rm, 0 }, { X86::VPAVGWZ256rr, X86::VPAVGWZ256rm, 0 }, { X86::VPCMPBZ128rri, X86::VPCMPBZ128rmi, 0 }, { X86::VPCMPBZ256rri, X86::VPCMPBZ256rmi, 0 }, { X86::VPCMPDZ128rri, X86::VPCMPDZ128rmi, 0 }, { X86::VPCMPDZ256rri, X86::VPCMPDZ256rmi, 0 }, { X86::VPCMPEQBZ128rr, X86::VPCMPEQBZ128rm, 0 }, { X86::VPCMPEQBZ256rr, X86::VPCMPEQBZ256rm, 0 }, { X86::VPCMPEQDZ128rr, X86::VPCMPEQDZ128rm, 0 }, { X86::VPCMPEQDZ256rr, X86::VPCMPEQDZ256rm, 0 }, { X86::VPCMPEQQZ128rr, X86::VPCMPEQQZ128rm, 0 }, { X86::VPCMPEQQZ256rr, X86::VPCMPEQQZ256rm, 0 }, { X86::VPCMPEQWZ128rr, X86::VPCMPEQWZ128rm, 0 }, { X86::VPCMPEQWZ256rr, X86::VPCMPEQWZ256rm, 0 }, { X86::VPCMPGTBZ128rr, X86::VPCMPGTBZ128rm, 0 }, { X86::VPCMPGTBZ256rr, X86::VPCMPGTBZ256rm, 0 }, { X86::VPCMPGTDZ128rr, X86::VPCMPGTDZ128rm, 0 }, { X86::VPCMPGTDZ256rr, X86::VPCMPGTDZ256rm, 0 }, { X86::VPCMPGTQZ128rr, X86::VPCMPGTQZ128rm, 0 }, { X86::VPCMPGTQZ256rr, X86::VPCMPGTQZ256rm, 0 }, { X86::VPCMPGTWZ128rr, X86::VPCMPGTWZ128rm, 0 }, { X86::VPCMPGTWZ256rr, X86::VPCMPGTWZ256rm, 0 }, { X86::VPCMPQZ128rri, X86::VPCMPQZ128rmi, 0 }, { X86::VPCMPQZ256rri, X86::VPCMPQZ256rmi, 0 }, { X86::VPCMPUBZ128rri, X86::VPCMPUBZ128rmi, 0 }, { X86::VPCMPUBZ256rri, X86::VPCMPUBZ256rmi, 0 }, { X86::VPCMPUDZ128rri, X86::VPCMPUDZ128rmi, 0 }, { X86::VPCMPUDZ256rri, X86::VPCMPUDZ256rmi, 0 }, { X86::VPCMPUQZ128rri, X86::VPCMPUQZ128rmi, 0 }, { X86::VPCMPUQZ256rri, X86::VPCMPUQZ256rmi, 0 }, { X86::VPCMPUWZ128rri, X86::VPCMPUWZ128rmi, 0 }, { X86::VPCMPUWZ256rri, X86::VPCMPUWZ256rmi, 0 }, { X86::VPCMPWZ128rri, X86::VPCMPWZ128rmi, 0 }, { X86::VPCMPWZ256rri, X86::VPCMPWZ256rmi, 0 }, { X86::VPERMBZ128rr, X86::VPERMBZ128rm, 0 }, { X86::VPERMBZ256rr, X86::VPERMBZ256rm, 0 }, { X86::VPERMDZ256rr, X86::VPERMDZ256rm, 0 }, { X86::VPERMILPDZ128rr, X86::VPERMILPDZ128rm, 0 }, { X86::VPERMILPDZ256rr, X86::VPERMILPDZ256rm, 0 }, { X86::VPERMILPSZ128rr, X86::VPERMILPSZ128rm, 0 }, { X86::VPERMILPSZ256rr, X86::VPERMILPSZ256rm, 0 }, { X86::VPERMPDZ256rr, X86::VPERMPDZ256rm, 0 }, { X86::VPERMPSZ256rr, X86::VPERMPSZ256rm, 0 }, { X86::VPERMQZ256rr, X86::VPERMQZ256rm, 0 }, { X86::VPERMWZ128rr, X86::VPERMWZ128rm, 0 }, { X86::VPERMWZ256rr, X86::VPERMWZ256rm, 0 }, { X86::VPMADDUBSWZ128rr, X86::VPMADDUBSWZ128rm, 0 }, { X86::VPMADDUBSWZ256rr, X86::VPMADDUBSWZ256rm, 0 }, { X86::VPMADDWDZ128rr, X86::VPMADDWDZ128rm, 0 }, { X86::VPMADDWDZ256rr, X86::VPMADDWDZ256rm, 0 }, { X86::VPMAXSBZ128rr, X86::VPMAXSBZ128rm, 0 }, { X86::VPMAXSBZ256rr, X86::VPMAXSBZ256rm, 0 }, { X86::VPMAXSDZ128rr, X86::VPMAXSDZ128rm, 0 }, { X86::VPMAXSDZ256rr, X86::VPMAXSDZ256rm, 0 }, { X86::VPMAXSQZ128rr, X86::VPMAXSQZ128rm, 0 }, { X86::VPMAXSQZ256rr, X86::VPMAXSQZ256rm, 0 }, { X86::VPMAXSWZ128rr, X86::VPMAXSWZ128rm, 0 }, { X86::VPMAXSWZ256rr, X86::VPMAXSWZ256rm, 0 }, { X86::VPMAXUBZ128rr, X86::VPMAXUBZ128rm, 0 }, { X86::VPMAXUBZ256rr, X86::VPMAXUBZ256rm, 0 }, { X86::VPMAXUDZ128rr, X86::VPMAXUDZ128rm, 0 }, { X86::VPMAXUDZ256rr, X86::VPMAXUDZ256rm, 0 }, { X86::VPMAXUQZ128rr, X86::VPMAXUQZ128rm, 0 }, { X86::VPMAXUQZ256rr, X86::VPMAXUQZ256rm, 0 }, { X86::VPMAXUWZ128rr, X86::VPMAXUWZ128rm, 0 }, { X86::VPMAXUWZ256rr, X86::VPMAXUWZ256rm, 0 }, { X86::VPMINSBZ128rr, X86::VPMINSBZ128rm, 0 }, { X86::VPMINSBZ256rr, X86::VPMINSBZ256rm, 0 }, { X86::VPMINSDZ128rr, X86::VPMINSDZ128rm, 0 }, { X86::VPMINSDZ256rr, X86::VPMINSDZ256rm, 0 }, { X86::VPMINSQZ128rr, X86::VPMINSQZ128rm, 0 }, { X86::VPMINSQZ256rr, X86::VPMINSQZ256rm, 0 }, { X86::VPMINSWZ128rr, X86::VPMINSWZ128rm, 0 }, { X86::VPMINSWZ256rr, X86::VPMINSWZ256rm, 0 }, { X86::VPMINUBZ128rr, X86::VPMINUBZ128rm, 0 }, { X86::VPMINUBZ256rr, X86::VPMINUBZ256rm, 0 }, { X86::VPMINUDZ128rr, X86::VPMINUDZ128rm, 0 }, { X86::VPMINUDZ256rr, X86::VPMINUDZ256rm, 0 }, { X86::VPMINUQZ128rr, X86::VPMINUQZ128rm, 0 }, { X86::VPMINUQZ256rr, X86::VPMINUQZ256rm, 0 }, { X86::VPMINUWZ128rr, X86::VPMINUWZ128rm, 0 }, { X86::VPMINUWZ256rr, X86::VPMINUWZ256rm, 0 }, { X86::VPMULDQZ128rr, X86::VPMULDQZ128rm, 0 }, { X86::VPMULDQZ256rr, X86::VPMULDQZ256rm, 0 }, { X86::VPMULLDZ128rr, X86::VPMULLDZ128rm, 0 }, { X86::VPMULLDZ256rr, X86::VPMULLDZ256rm, 0 }, { X86::VPMULLQZ128rr, X86::VPMULLQZ128rm, 0 }, { X86::VPMULLQZ256rr, X86::VPMULLQZ256rm, 0 }, { X86::VPMULLWZ128rr, X86::VPMULLWZ128rm, 0 }, { X86::VPMULLWZ256rr, X86::VPMULLWZ256rm, 0 }, { X86::VPMULUDQZ128rr, X86::VPMULUDQZ128rm, 0 }, { X86::VPMULUDQZ256rr, X86::VPMULUDQZ256rm, 0 }, { X86::VPORDZ128rr, X86::VPORDZ128rm, 0 }, { X86::VPORDZ256rr, X86::VPORDZ256rm, 0 }, { X86::VPORQZ128rr, X86::VPORQZ128rm, 0 }, { X86::VPORQZ256rr, X86::VPORQZ256rm, 0 }, { X86::VPSADBWZ128rr, X86::VPSADBWZ128rm, 0 }, { X86::VPSADBWZ256rr, X86::VPSADBWZ256rm, 0 }, { X86::VPSHUFBZ128rr, X86::VPSHUFBZ128rm, 0 }, { X86::VPSHUFBZ256rr, X86::VPSHUFBZ256rm, 0 }, { X86::VPSLLDZ128rr, X86::VPSLLDZ128rm, 0 }, { X86::VPSLLDZ256rr, X86::VPSLLDZ256rm, 0 }, { X86::VPSLLQZ128rr, X86::VPSLLQZ128rm, 0 }, { X86::VPSLLQZ256rr, X86::VPSLLQZ256rm, 0 }, { X86::VPSLLVDZ128rr, X86::VPSLLVDZ128rm, 0 }, { X86::VPSLLVDZ256rr, X86::VPSLLVDZ256rm, 0 }, { X86::VPSLLVQZ128rr, X86::VPSLLVQZ128rm, 0 }, { X86::VPSLLVQZ256rr, X86::VPSLLVQZ256rm, 0 }, { X86::VPSLLVWZ128rr, X86::VPSLLVWZ128rm, 0 }, { X86::VPSLLVWZ256rr, X86::VPSLLVWZ256rm, 0 }, { X86::VPSLLWZ128rr, X86::VPSLLWZ128rm, 0 }, { X86::VPSLLWZ256rr, X86::VPSLLWZ256rm, 0 }, { X86::VPSRADZ128rr, X86::VPSRADZ128rm, 0 }, { X86::VPSRADZ256rr, X86::VPSRADZ256rm, 0 }, { X86::VPSRAQZ128rr, X86::VPSRAQZ128rm, 0 }, { X86::VPSRAQZ256rr, X86::VPSRAQZ256rm, 0 }, { X86::VPSRAVDZ128rr, X86::VPSRAVDZ128rm, 0 }, { X86::VPSRAVDZ256rr, X86::VPSRAVDZ256rm, 0 }, { X86::VPSRAVQZ128rr, X86::VPSRAVQZ128rm, 0 }, { X86::VPSRAVQZ256rr, X86::VPSRAVQZ256rm, 0 }, { X86::VPSRAVWZ128rr, X86::VPSRAVWZ128rm, 0 }, { X86::VPSRAVWZ256rr, X86::VPSRAVWZ256rm, 0 }, { X86::VPSRAWZ128rr, X86::VPSRAWZ128rm, 0 }, { X86::VPSRAWZ256rr, X86::VPSRAWZ256rm, 0 }, { X86::VPSRLDZ128rr, X86::VPSRLDZ128rm, 0 }, { X86::VPSRLDZ256rr, X86::VPSRLDZ256rm, 0 }, { X86::VPSRLQZ128rr, X86::VPSRLQZ128rm, 0 }, { X86::VPSRLQZ256rr, X86::VPSRLQZ256rm, 0 }, { X86::VPSRLVDZ128rr, X86::VPSRLVDZ128rm, 0 }, { X86::VPSRLVDZ256rr, X86::VPSRLVDZ256rm, 0 }, { X86::VPSRLVQZ128rr, X86::VPSRLVQZ128rm, 0 }, { X86::VPSRLVQZ256rr, X86::VPSRLVQZ256rm, 0 }, { X86::VPSRLVWZ128rr, X86::VPSRLVWZ128rm, 0 }, { X86::VPSRLVWZ256rr, X86::VPSRLVWZ256rm, 0 }, { X86::VPSRLWZ128rr, X86::VPSRLWZ128rm, 0 }, { X86::VPSRLWZ256rr, X86::VPSRLWZ256rm, 0 }, { X86::VPSUBBZ128rr, X86::VPSUBBZ128rm, 0 }, { X86::VPSUBBZ256rr, X86::VPSUBBZ256rm, 0 }, { X86::VPSUBDZ128rr, X86::VPSUBDZ128rm, 0 }, { X86::VPSUBDZ256rr, X86::VPSUBDZ256rm, 0 }, { X86::VPSUBQZ128rr, X86::VPSUBQZ128rm, 0 }, { X86::VPSUBQZ256rr, X86::VPSUBQZ256rm, 0 }, { X86::VPSUBSBZ128rr, X86::VPSUBSBZ128rm, 0 }, { X86::VPSUBSBZ256rr, X86::VPSUBSBZ256rm, 0 }, { X86::VPSUBSWZ128rr, X86::VPSUBSWZ128rm, 0 }, { X86::VPSUBSWZ256rr, X86::VPSUBSWZ256rm, 0 }, { X86::VPSUBUSBZ128rr, X86::VPSUBUSBZ128rm, 0 }, { X86::VPSUBUSBZ256rr, X86::VPSUBUSBZ256rm, 0 }, { X86::VPSUBUSWZ128rr, X86::VPSUBUSWZ128rm, 0 }, { X86::VPSUBUSWZ256rr, X86::VPSUBUSWZ256rm, 0 }, { X86::VPSUBWZ128rr, X86::VPSUBWZ128rm, 0 }, { X86::VPSUBWZ256rr, X86::VPSUBWZ256rm, 0 }, { X86::VPUNPCKHBWZ128rr, X86::VPUNPCKHBWZ128rm, 0 }, { X86::VPUNPCKHBWZ256rr, X86::VPUNPCKHBWZ256rm, 0 }, { X86::VPUNPCKHDQZ128rr, X86::VPUNPCKHDQZ128rm, 0 }, { X86::VPUNPCKHDQZ256rr, X86::VPUNPCKHDQZ256rm, 0 }, { X86::VPUNPCKHQDQZ128rr, X86::VPUNPCKHQDQZ128rm, 0 }, { X86::VPUNPCKHQDQZ256rr, X86::VPUNPCKHQDQZ256rm, 0 }, { X86::VPUNPCKHWDZ128rr, X86::VPUNPCKHWDZ128rm, 0 }, { X86::VPUNPCKHWDZ256rr, X86::VPUNPCKHWDZ256rm, 0 }, { X86::VPUNPCKLBWZ128rr, X86::VPUNPCKLBWZ128rm, 0 }, { X86::VPUNPCKLBWZ256rr, X86::VPUNPCKLBWZ256rm, 0 }, { X86::VPUNPCKLDQZ128rr, X86::VPUNPCKLDQZ128rm, 0 }, { X86::VPUNPCKLDQZ256rr, X86::VPUNPCKLDQZ256rm, 0 }, { X86::VPUNPCKLQDQZ128rr, X86::VPUNPCKLQDQZ128rm, 0 }, { X86::VPUNPCKLQDQZ256rr, X86::VPUNPCKLQDQZ256rm, 0 }, { X86::VPUNPCKLWDZ128rr, X86::VPUNPCKLWDZ128rm, 0 }, { X86::VPUNPCKLWDZ256rr, X86::VPUNPCKLWDZ256rm, 0 }, { X86::VPXORDZ128rr, X86::VPXORDZ128rm, 0 }, { X86::VPXORDZ256rr, X86::VPXORDZ256rm, 0 }, { X86::VPXORQZ128rr, X86::VPXORQZ128rm, 0 }, { X86::VPXORQZ256rr, X86::VPXORQZ256rm, 0 }, { X86::VSHUFPDZ128rri, X86::VSHUFPDZ128rmi, 0 }, { X86::VSHUFPDZ256rri, X86::VSHUFPDZ256rmi, 0 }, { X86::VSHUFPSZ128rri, X86::VSHUFPSZ128rmi, 0 }, { X86::VSHUFPSZ256rri, X86::VSHUFPSZ256rmi, 0 }, { X86::VSUBPDZ128rr, X86::VSUBPDZ128rm, 0 }, { X86::VSUBPDZ256rr, X86::VSUBPDZ256rm, 0 }, { X86::VSUBPSZ128rr, X86::VSUBPSZ128rm, 0 }, { X86::VSUBPSZ256rr, X86::VSUBPSZ256rm, 0 }, { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rm, 0 }, { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rm, 0 }, { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rm, 0 }, { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rm, 0 }, { X86::VUNPCKLPDZ128rr, X86::VUNPCKLPDZ128rm, 0 }, { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rm, 0 }, { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rm, 0 }, { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rm, 0 }, { X86::VXORPDZ128rr, X86::VXORPDZ128rm, 0 }, { X86::VXORPDZ256rr, X86::VXORPDZ256rm, 0 }, { X86::VXORPSZ128rr, X86::VXORPSZ128rm, 0 }, { X86::VXORPSZ256rr, X86::VXORPSZ256rm, 0 }, // AVX-512 masked foldable instructions { X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE }, { X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE }, { X86::VPABSBZrrkz, X86::VPABSBZrmkz, 0 }, { X86::VPABSDZrrkz, X86::VPABSDZrmkz, 0 }, { X86::VPABSQZrrkz, X86::VPABSQZrmkz, 0 }, { X86::VPABSWZrrkz, X86::VPABSWZrmkz, 0 }, { X86::VPERMILPDZrikz, X86::VPERMILPDZmikz, 0 }, { X86::VPERMILPSZrikz, X86::VPERMILPSZmikz, 0 }, { X86::VPERMPDZrikz, X86::VPERMPDZmikz, 0 }, { X86::VPERMQZrikz, X86::VPERMQZmikz, 0 }, { X86::VPMOVSXBDZrrkz, X86::VPMOVSXBDZrmkz, 0 }, { X86::VPMOVSXBQZrrkz, X86::VPMOVSXBQZrmkz, TB_NO_REVERSE }, { X86::VPMOVSXBWZrrkz, X86::VPMOVSXBWZrmkz, 0 }, { X86::VPMOVSXDQZrrkz, X86::VPMOVSXDQZrmkz, 0 }, { X86::VPMOVSXWDZrrkz, X86::VPMOVSXWDZrmkz, 0 }, { X86::VPMOVSXWQZrrkz, X86::VPMOVSXWQZrmkz, 0 }, { X86::VPMOVZXBDZrrkz, X86::VPMOVZXBDZrmkz, 0 }, { X86::VPMOVZXBQZrrkz, X86::VPMOVZXBQZrmkz, TB_NO_REVERSE }, { X86::VPMOVZXBWZrrkz, X86::VPMOVZXBWZrmkz, 0 }, { X86::VPMOVZXDQZrrkz, X86::VPMOVZXDQZrmkz, 0 }, { X86::VPMOVZXWDZrrkz, X86::VPMOVZXWDZrmkz, 0 }, { X86::VPMOVZXWQZrrkz, X86::VPMOVZXWQZrmkz, 0 }, { X86::VPSHUFDZrikz, X86::VPSHUFDZmikz, 0 }, { X86::VPSHUFHWZrikz, X86::VPSHUFHWZmikz, 0 }, { X86::VPSHUFLWZrikz, X86::VPSHUFLWZmikz, 0 }, { X86::VPSLLDZrikz, X86::VPSLLDZmikz, 0 }, { X86::VPSLLQZrikz, X86::VPSLLQZmikz, 0 }, { X86::VPSLLWZrikz, X86::VPSLLWZmikz, 0 }, { X86::VPSRADZrikz, X86::VPSRADZmikz, 0 }, { X86::VPSRAQZrikz, X86::VPSRAQZmikz, 0 }, { X86::VPSRAWZrikz, X86::VPSRAWZmikz, 0 }, { X86::VPSRLDZrikz, X86::VPSRLDZmikz, 0 }, { X86::VPSRLQZrikz, X86::VPSRLQZmikz, 0 }, { X86::VPSRLWZrikz, X86::VPSRLWZmikz, 0 }, // AVX-512VL 256-bit masked foldable instructions { X86::VBROADCASTSDZ256rkz, X86::VBROADCASTSDZ256mkz, TB_NO_REVERSE }, { X86::VBROADCASTSSZ256rkz, X86::VBROADCASTSSZ256mkz, TB_NO_REVERSE }, { X86::VPABSBZ256rrkz, X86::VPABSBZ256rmkz, 0 }, { X86::VPABSDZ256rrkz, X86::VPABSDZ256rmkz, 0 }, { X86::VPABSQZ256rrkz, X86::VPABSQZ256rmkz, 0 }, { X86::VPABSWZ256rrkz, X86::VPABSWZ256rmkz, 0 }, { X86::VPERMILPDZ256rikz, X86::VPERMILPDZ256mikz, 0 }, { X86::VPERMILPSZ256rikz, X86::VPERMILPSZ256mikz, 0 }, { X86::VPERMPDZ256rikz, X86::VPERMPDZ256mikz, 0 }, { X86::VPERMQZ256rikz, X86::VPERMQZ256mikz, 0 }, { X86::VPMOVSXBDZ256rrkz, X86::VPMOVSXBDZ256rmkz, TB_NO_REVERSE }, { X86::VPMOVSXBQZ256rrkz, X86::VPMOVSXBQZ256rmkz, TB_NO_REVERSE }, { X86::VPMOVSXBWZ256rrkz, X86::VPMOVSXBWZ256rmkz, 0 }, { X86::VPMOVSXDQZ256rrkz, X86::VPMOVSXDQZ256rmkz, 0 }, { X86::VPMOVSXWDZ256rrkz, X86::VPMOVSXWDZ256rmkz, 0 }, { X86::VPMOVSXWQZ256rrkz, X86::VPMOVSXWQZ256rmkz, TB_NO_REVERSE }, { X86::VPMOVZXBDZ256rrkz, X86::VPMOVZXBDZ256rmkz, TB_NO_REVERSE }, { X86::VPMOVZXBQZ256rrkz, X86::VPMOVZXBQZ256rmkz, TB_NO_REVERSE }, { X86::VPMOVZXBWZ256rrkz, X86::VPMOVZXBWZ256rmkz, 0 }, { X86::VPMOVZXDQZ256rrkz, X86::VPMOVZXDQZ256rmkz, 0 }, { X86::VPMOVZXWDZ256rrkz, X86::VPMOVZXWDZ256rmkz, 0 }, { X86::VPMOVZXWQZ256rrkz, X86::VPMOVZXWQZ256rmkz, TB_NO_REVERSE }, { X86::VPSHUFDZ256rikz, X86::VPSHUFDZ256mikz, 0 }, { X86::VPSHUFHWZ256rikz, X86::VPSHUFHWZ256mikz, 0 }, { X86::VPSHUFLWZ256rikz, X86::VPSHUFLWZ256mikz, 0 }, { X86::VPSLLDZ256rikz, X86::VPSLLDZ256mikz, 0 }, { X86::VPSLLQZ256rikz, X86::VPSLLQZ256mikz, 0 }, { X86::VPSLLWZ256rikz, X86::VPSLLWZ256mikz, 0 }, { X86::VPSRADZ256rikz, X86::VPSRADZ256mikz, 0 }, { X86::VPSRAQZ256rikz, X86::VPSRAQZ256mikz, 0 }, { X86::VPSRAWZ256rikz, X86::VPSRAWZ256mikz, 0 }, { X86::VPSRLDZ256rikz, X86::VPSRLDZ256mikz, 0 }, { X86::VPSRLQZ256rikz, X86::VPSRLQZ256mikz, 0 }, { X86::VPSRLWZ256rikz, X86::VPSRLWZ256mikz, 0 }, // AVX-512VL 128-bit masked foldable instructions { X86::VBROADCASTSSZ128rkz, X86::VBROADCASTSSZ128mkz, TB_NO_REVERSE }, { X86::VPABSBZ128rrkz, X86::VPABSBZ128rmkz, 0 }, { X86::VPABSDZ128rrkz, X86::VPABSDZ128rmkz, 0 }, { X86::VPABSQZ128rrkz, X86::VPABSQZ128rmkz, 0 }, { X86::VPABSWZ128rrkz, X86::VPABSWZ128rmkz, 0 }, { X86::VPERMILPDZ128rikz, X86::VPERMILPDZ128mikz, 0 }, { X86::VPERMILPSZ128rikz, X86::VPERMILPSZ128mikz, 0 }, { X86::VPMOVSXBDZ128rrkz, X86::VPMOVSXBDZ128rmkz, TB_NO_REVERSE }, { X86::VPMOVSXBQZ128rrkz, X86::VPMOVSXBQZ128rmkz, TB_NO_REVERSE }, { X86::VPMOVSXBWZ128rrkz, X86::VPMOVSXBWZ128rmkz, TB_NO_REVERSE }, { X86::VPMOVSXDQZ128rrkz, X86::VPMOVSXDQZ128rmkz, TB_NO_REVERSE }, { X86::VPMOVSXWDZ128rrkz, X86::VPMOVSXWDZ128rmkz, TB_NO_REVERSE }, { X86::VPMOVSXWQZ128rrkz, X86::VPMOVSXWQZ128rmkz, TB_NO_REVERSE }, { X86::VPMOVZXBDZ128rrkz, X86::VPMOVZXBDZ128rmkz, TB_NO_REVERSE }, { X86::VPMOVZXBQZ128rrkz, X86::VPMOVZXBQZ128rmkz, TB_NO_REVERSE }, { X86::VPMOVZXBWZ128rrkz, X86::VPMOVZXBWZ128rmkz, TB_NO_REVERSE }, { X86::VPMOVZXDQZ128rrkz, X86::VPMOVZXDQZ128rmkz, TB_NO_REVERSE }, { X86::VPMOVZXWDZ128rrkz, X86::VPMOVZXWDZ128rmkz, TB_NO_REVERSE }, { X86::VPMOVZXWQZ128rrkz, X86::VPMOVZXWQZ128rmkz, TB_NO_REVERSE }, { X86::VPSHUFDZ128rikz, X86::VPSHUFDZ128mikz, 0 }, { X86::VPSHUFHWZ128rikz, X86::VPSHUFHWZ128mikz, 0 }, { X86::VPSHUFLWZ128rikz, X86::VPSHUFLWZ128mikz, 0 }, { X86::VPSLLDZ128rikz, X86::VPSLLDZ128mikz, 0 }, { X86::VPSLLQZ128rikz, X86::VPSLLQZ128mikz, 0 }, { X86::VPSLLWZ128rikz, X86::VPSLLWZ128mikz, 0 }, { X86::VPSRADZ128rikz, X86::VPSRADZ128mikz, 0 }, { X86::VPSRAQZ128rikz, X86::VPSRAQZ128mikz, 0 }, { X86::VPSRAWZ128rikz, X86::VPSRAWZ128mikz, 0 }, { X86::VPSRLDZ128rikz, X86::VPSRLDZ128mikz, 0 }, { X86::VPSRLQZ128rikz, X86::VPSRLQZ128mikz, 0 }, { X86::VPSRLWZ128rikz, X86::VPSRLWZ128mikz, 0 }, // AES foldable instructions { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 }, { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 }, { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 }, { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 }, { X86::VAESDECLASTrr, X86::VAESDECLASTrm, 0 }, { X86::VAESDECrr, X86::VAESDECrm, 0 }, { X86::VAESENCLASTrr, X86::VAESENCLASTrm, 0 }, { X86::VAESENCrr, X86::VAESENCrm, 0 }, // SHA foldable instructions { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 }, { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 }, { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 }, { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 }, { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 }, { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 }, { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 } }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2) { AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, // Index 2, folded load Entry.Flags | TB_INDEX_2 | TB_FOLDED_LOAD); } static const X86MemoryFoldTableEntry MemoryFoldTable3[] = { // FMA4 foldable patterns { X86::VFMADDSS4rr, X86::VFMADDSS4rm, TB_ALIGN_NONE }, { X86::VFMADDSS4rr_Int, X86::VFMADDSS4rm_Int, TB_NO_REVERSE }, { X86::VFMADDSD4rr, X86::VFMADDSD4rm, TB_ALIGN_NONE }, { X86::VFMADDSD4rr_Int, X86::VFMADDSD4rm_Int, TB_NO_REVERSE }, { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_NONE }, { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_NONE }, { X86::VFMADDPS4Yrr, X86::VFMADDPS4Yrm, TB_ALIGN_NONE }, { X86::VFMADDPD4Yrr, X86::VFMADDPD4Yrm, TB_ALIGN_NONE }, { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, TB_ALIGN_NONE }, { X86::VFNMADDSS4rr_Int, X86::VFNMADDSS4rm_Int, TB_NO_REVERSE }, { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, TB_ALIGN_NONE }, { X86::VFNMADDSD4rr_Int, X86::VFNMADDSD4rm_Int, TB_NO_REVERSE }, { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_NONE }, { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_NONE }, { X86::VFNMADDPS4Yrr, X86::VFNMADDPS4Yrm, TB_ALIGN_NONE }, { X86::VFNMADDPD4Yrr, X86::VFNMADDPD4Yrm, TB_ALIGN_NONE }, { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, TB_ALIGN_NONE }, { X86::VFMSUBSS4rr_Int, X86::VFMSUBSS4rm_Int, TB_NO_REVERSE }, { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, TB_ALIGN_NONE }, { X86::VFMSUBSD4rr_Int, X86::VFMSUBSD4rm_Int, TB_NO_REVERSE }, { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_NONE }, { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_NONE }, { X86::VFMSUBPS4Yrr, X86::VFMSUBPS4Yrm, TB_ALIGN_NONE }, { X86::VFMSUBPD4Yrr, X86::VFMSUBPD4Yrm, TB_ALIGN_NONE }, { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, TB_ALIGN_NONE }, { X86::VFNMSUBSS4rr_Int, X86::VFNMSUBSS4rm_Int, TB_NO_REVERSE }, { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, TB_ALIGN_NONE }, { X86::VFNMSUBSD4rr_Int, X86::VFNMSUBSD4rm_Int, TB_NO_REVERSE }, { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_NONE }, { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_NONE }, { X86::VFNMSUBPS4Yrr, X86::VFNMSUBPS4Yrm, TB_ALIGN_NONE }, { X86::VFNMSUBPD4Yrr, X86::VFNMSUBPD4Yrm, TB_ALIGN_NONE }, { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_NONE }, { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_NONE }, { X86::VFMADDSUBPS4Yrr, X86::VFMADDSUBPS4Yrm, TB_ALIGN_NONE }, { X86::VFMADDSUBPD4Yrr, X86::VFMADDSUBPD4Yrm, TB_ALIGN_NONE }, { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_NONE }, { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_NONE }, { X86::VFMSUBADDPS4Yrr, X86::VFMSUBADDPS4Yrm, TB_ALIGN_NONE }, { X86::VFMSUBADDPD4Yrr, X86::VFMSUBADDPD4Yrm, TB_ALIGN_NONE }, // XOP foldable instructions { X86::VPCMOVrrr, X86::VPCMOVrrm, 0 }, { X86::VPCMOVYrrr, X86::VPCMOVYrrm, 0 }, { X86::VPERMIL2PDrr, X86::VPERMIL2PDrm, 0 }, { X86::VPERMIL2PDYrr, X86::VPERMIL2PDYrm, 0 }, { X86::VPERMIL2PSrr, X86::VPERMIL2PSrm, 0 }, { X86::VPERMIL2PSYrr, X86::VPERMIL2PSYrm, 0 }, { X86::VPPERMrrr, X86::VPPERMrrm, 0 }, // AVX-512 instructions with 3 source operands. { X86::VPERMI2Brr, X86::VPERMI2Brm, 0 }, { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 }, { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 }, { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 }, { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 }, { X86::VPERMI2Wrr, X86::VPERMI2Wrm, 0 }, { X86::VPERMT2Brr, X86::VPERMT2Brm, 0 }, { X86::VPERMT2Drr, X86::VPERMT2Drm, 0 }, { X86::VPERMT2PSrr, X86::VPERMT2PSrm, 0 }, { X86::VPERMT2PDrr, X86::VPERMT2PDrm, 0 }, { X86::VPERMT2Qrr, X86::VPERMT2Qrm, 0 }, { X86::VPERMT2Wrr, X86::VPERMT2Wrm, 0 }, { X86::VPTERNLOGDZrri, X86::VPTERNLOGDZrmi, 0 }, { X86::VPTERNLOGQZrri, X86::VPTERNLOGQZrmi, 0 }, // AVX-512VL 256-bit instructions with 3 source operands. { X86::VPERMI2B256rr, X86::VPERMI2B256rm, 0 }, { X86::VPERMI2D256rr, X86::VPERMI2D256rm, 0 }, { X86::VPERMI2PD256rr, X86::VPERMI2PD256rm, 0 }, { X86::VPERMI2PS256rr, X86::VPERMI2PS256rm, 0 }, { X86::VPERMI2Q256rr, X86::VPERMI2Q256rm, 0 }, { X86::VPERMI2W256rr, X86::VPERMI2W256rm, 0 }, { X86::VPERMT2B256rr, X86::VPERMT2B256rm, 0 }, { X86::VPERMT2D256rr, X86::VPERMT2D256rm, 0 }, { X86::VPERMT2PD256rr, X86::VPERMT2PD256rm, 0 }, { X86::VPERMT2PS256rr, X86::VPERMT2PS256rm, 0 }, { X86::VPERMT2Q256rr, X86::VPERMT2Q256rm, 0 }, { X86::VPERMT2W256rr, X86::VPERMT2W256rm, 0 }, { X86::VPTERNLOGDZ256rri, X86::VPTERNLOGDZ256rmi, 0 }, { X86::VPTERNLOGQZ256rri, X86::VPTERNLOGQZ256rmi, 0 }, // AVX-512VL 128-bit instructions with 3 source operands. { X86::VPERMI2B128rr, X86::VPERMI2B128rm, 0 }, { X86::VPERMI2D128rr, X86::VPERMI2D128rm, 0 }, { X86::VPERMI2PD128rr, X86::VPERMI2PD128rm, 0 }, { X86::VPERMI2PS128rr, X86::VPERMI2PS128rm, 0 }, { X86::VPERMI2Q128rr, X86::VPERMI2Q128rm, 0 }, { X86::VPERMI2W128rr, X86::VPERMI2W128rm, 0 }, { X86::VPERMT2B128rr, X86::VPERMT2B128rm, 0 }, { X86::VPERMT2D128rr, X86::VPERMT2D128rm, 0 }, { X86::VPERMT2PD128rr, X86::VPERMT2PD128rm, 0 }, { X86::VPERMT2PS128rr, X86::VPERMT2PS128rm, 0 }, { X86::VPERMT2Q128rr, X86::VPERMT2Q128rm, 0 }, { X86::VPERMT2W128rr, X86::VPERMT2W128rm, 0 }, { X86::VPTERNLOGDZ128rri, X86::VPTERNLOGDZ128rmi, 0 }, { X86::VPTERNLOGQZ128rri, X86::VPTERNLOGQZ128rmi, 0 }, // AVX-512 masked instructions { X86::VADDPDZrrkz, X86::VADDPDZrmkz, 0 }, { X86::VADDPSZrrkz, X86::VADDPSZrmkz, 0 }, { X86::VADDSDZrr_Intkz, X86::VADDSDZrm_Intkz, TB_NO_REVERSE }, { X86::VADDSSZrr_Intkz, X86::VADDSSZrm_Intkz, TB_NO_REVERSE }, { X86::VALIGNDZrrikz, X86::VALIGNDZrmikz, 0 }, { X86::VALIGNQZrrikz, X86::VALIGNQZrmikz, 0 }, { X86::VANDNPDZrrkz, X86::VANDNPDZrmkz, 0 }, { X86::VANDNPSZrrkz, X86::VANDNPSZrmkz, 0 }, { X86::VANDPDZrrkz, X86::VANDPDZrmkz, 0 }, { X86::VANDPSZrrkz, X86::VANDPSZrmkz, 0 }, { X86::VDIVPDZrrkz, X86::VDIVPDZrmkz, 0 }, { X86::VDIVPSZrrkz, X86::VDIVPSZrmkz, 0 }, { X86::VDIVSDZrr_Intkz, X86::VDIVSDZrm_Intkz, TB_NO_REVERSE }, { X86::VDIVSSZrr_Intkz, X86::VDIVSSZrm_Intkz, TB_NO_REVERSE }, { X86::VINSERTF32x4Zrrkz, X86::VINSERTF32x4Zrmkz, 0 }, { X86::VINSERTF32x8Zrrkz, X86::VINSERTF32x8Zrmkz, 0 }, { X86::VINSERTF64x2Zrrkz, X86::VINSERTF64x2Zrmkz, 0 }, { X86::VINSERTF64x4Zrrkz, X86::VINSERTF64x4Zrmkz, 0 }, { X86::VINSERTI32x4Zrrkz, X86::VINSERTI32x4Zrmkz, 0 }, { X86::VINSERTI32x8Zrrkz, X86::VINSERTI32x8Zrmkz, 0 }, { X86::VINSERTI64x2Zrrkz, X86::VINSERTI64x2Zrmkz, 0 }, { X86::VINSERTI64x4Zrrkz, X86::VINSERTI64x4Zrmkz, 0 }, { X86::VMAXCPDZrrkz, X86::VMAXCPDZrmkz, 0 }, { X86::VMAXCPSZrrkz, X86::VMAXCPSZrmkz, 0 }, { X86::VMAXPDZrrkz, X86::VMAXPDZrmkz, 0 }, { X86::VMAXPSZrrkz, X86::VMAXPSZrmkz, 0 }, { X86::VMAXSDZrr_Intkz, X86::VMAXSDZrm_Intkz, 0 }, { X86::VMAXSSZrr_Intkz, X86::VMAXSSZrm_Intkz, 0 }, { X86::VMINCPDZrrkz, X86::VMINCPDZrmkz, 0 }, { X86::VMINCPSZrrkz, X86::VMINCPSZrmkz, 0 }, { X86::VMINPDZrrkz, X86::VMINPDZrmkz, 0 }, { X86::VMINPSZrrkz, X86::VMINPSZrmkz, 0 }, { X86::VMINSDZrr_Intkz, X86::VMINSDZrm_Intkz, 0 }, { X86::VMINSSZrr_Intkz, X86::VMINSSZrm_Intkz, 0 }, { X86::VMULPDZrrkz, X86::VMULPDZrmkz, 0 }, { X86::VMULPSZrrkz, X86::VMULPSZrmkz, 0 }, { X86::VMULSDZrr_Intkz, X86::VMULSDZrm_Intkz, TB_NO_REVERSE }, { X86::VMULSSZrr_Intkz, X86::VMULSSZrm_Intkz, TB_NO_REVERSE }, { X86::VORPDZrrkz, X86::VORPDZrmkz, 0 }, { X86::VORPSZrrkz, X86::VORPSZrmkz, 0 }, { X86::VPACKSSDWZrrkz, X86::VPACKSSDWZrmkz, 0 }, { X86::VPACKSSWBZrrkz, X86::VPACKSSWBZrmkz, 0 }, { X86::VPACKUSDWZrrkz, X86::VPACKUSDWZrmkz, 0 }, { X86::VPACKUSWBZrrkz, X86::VPACKUSWBZrmkz, 0 }, { X86::VPADDBZrrkz, X86::VPADDBZrmkz, 0 }, { X86::VPADDDZrrkz, X86::VPADDDZrmkz, 0 }, { X86::VPADDQZrrkz, X86::VPADDQZrmkz, 0 }, { X86::VPADDSBZrrkz, X86::VPADDSBZrmkz, 0 }, { X86::VPADDSWZrrkz, X86::VPADDSWZrmkz, 0 }, { X86::VPADDUSBZrrkz, X86::VPADDUSBZrmkz, 0 }, { X86::VPADDUSWZrrkz, X86::VPADDUSWZrmkz, 0 }, { X86::VPADDWZrrkz, X86::VPADDWZrmkz, 0 }, { X86::VPALIGNRZrrikz, X86::VPALIGNRZrmikz, 0 }, { X86::VPANDDZrrkz, X86::VPANDDZrmkz, 0 }, { X86::VPANDNDZrrkz, X86::VPANDNDZrmkz, 0 }, { X86::VPANDNQZrrkz, X86::VPANDNQZrmkz, 0 }, { X86::VPANDQZrrkz, X86::VPANDQZrmkz, 0 }, { X86::VPAVGBZrrkz, X86::VPAVGBZrmkz, 0 }, { X86::VPAVGWZrrkz, X86::VPAVGWZrmkz, 0 }, { X86::VPERMBZrrkz, X86::VPERMBZrmkz, 0 }, { X86::VPERMDZrrkz, X86::VPERMDZrmkz, 0 }, { X86::VPERMILPDZrrkz, X86::VPERMILPDZrmkz, 0 }, { X86::VPERMILPSZrrkz, X86::VPERMILPSZrmkz, 0 }, { X86::VPERMPDZrrkz, X86::VPERMPDZrmkz, 0 }, { X86::VPERMPSZrrkz, X86::VPERMPSZrmkz, 0 }, { X86::VPERMQZrrkz, X86::VPERMQZrmkz, 0 }, { X86::VPERMWZrrkz, X86::VPERMWZrmkz, 0 }, { X86::VPMADDUBSWZrrkz, X86::VPMADDUBSWZrmkz, 0 }, { X86::VPMADDWDZrrkz, X86::VPMADDWDZrmkz, 0 }, { X86::VPMAXSBZrrkz, X86::VPMAXSBZrmkz, 0 }, { X86::VPMAXSDZrrkz, X86::VPMAXSDZrmkz, 0 }, { X86::VPMAXSQZrrkz, X86::VPMAXSQZrmkz, 0 }, { X86::VPMAXSWZrrkz, X86::VPMAXSWZrmkz, 0 }, { X86::VPMAXUBZrrkz, X86::VPMAXUBZrmkz, 0 }, { X86::VPMAXUDZrrkz, X86::VPMAXUDZrmkz, 0 }, { X86::VPMAXUQZrrkz, X86::VPMAXUQZrmkz, 0 }, { X86::VPMAXUWZrrkz, X86::VPMAXUWZrmkz, 0 }, { X86::VPMINSBZrrkz, X86::VPMINSBZrmkz, 0 }, { X86::VPMINSDZrrkz, X86::VPMINSDZrmkz, 0 }, { X86::VPMINSQZrrkz, X86::VPMINSQZrmkz, 0 }, { X86::VPMINSWZrrkz, X86::VPMINSWZrmkz, 0 }, { X86::VPMINUBZrrkz, X86::VPMINUBZrmkz, 0 }, { X86::VPMINUDZrrkz, X86::VPMINUDZrmkz, 0 }, { X86::VPMINUQZrrkz, X86::VPMINUQZrmkz, 0 }, { X86::VPMINUWZrrkz, X86::VPMINUWZrmkz, 0 }, { X86::VPMULLDZrrkz, X86::VPMULLDZrmkz, 0 }, { X86::VPMULLQZrrkz, X86::VPMULLQZrmkz, 0 }, { X86::VPMULLWZrrkz, X86::VPMULLWZrmkz, 0 }, { X86::VPMULDQZrrkz, X86::VPMULDQZrmkz, 0 }, { X86::VPMULUDQZrrkz, X86::VPMULUDQZrmkz, 0 }, { X86::VPORDZrrkz, X86::VPORDZrmkz, 0 }, { X86::VPORQZrrkz, X86::VPORQZrmkz, 0 }, { X86::VPSHUFBZrrkz, X86::VPSHUFBZrmkz, 0 }, { X86::VPSLLDZrrkz, X86::VPSLLDZrmkz, 0 }, { X86::VPSLLQZrrkz, X86::VPSLLQZrmkz, 0 }, { X86::VPSLLVDZrrkz, X86::VPSLLVDZrmkz, 0 }, { X86::VPSLLVQZrrkz, X86::VPSLLVQZrmkz, 0 }, { X86::VPSLLVWZrrkz, X86::VPSLLVWZrmkz, 0 }, { X86::VPSLLWZrrkz, X86::VPSLLWZrmkz, 0 }, { X86::VPSRADZrrkz, X86::VPSRADZrmkz, 0 }, { X86::VPSRAQZrrkz, X86::VPSRAQZrmkz, 0 }, { X86::VPSRAVDZrrkz, X86::VPSRAVDZrmkz, 0 }, { X86::VPSRAVQZrrkz, X86::VPSRAVQZrmkz, 0 }, { X86::VPSRAVWZrrkz, X86::VPSRAVWZrmkz, 0 }, { X86::VPSRAWZrrkz, X86::VPSRAWZrmkz, 0 }, { X86::VPSRLDZrrkz, X86::VPSRLDZrmkz, 0 }, { X86::VPSRLQZrrkz, X86::VPSRLQZrmkz, 0 }, { X86::VPSRLVDZrrkz, X86::VPSRLVDZrmkz, 0 }, { X86::VPSRLVQZrrkz, X86::VPSRLVQZrmkz, 0 }, { X86::VPSRLVWZrrkz, X86::VPSRLVWZrmkz, 0 }, { X86::VPSRLWZrrkz, X86::VPSRLWZrmkz, 0 }, { X86::VPSUBBZrrkz, X86::VPSUBBZrmkz, 0 }, { X86::VPSUBDZrrkz, X86::VPSUBDZrmkz, 0 }, { X86::VPSUBQZrrkz, X86::VPSUBQZrmkz, 0 }, { X86::VPSUBSBZrrkz, X86::VPSUBSBZrmkz, 0 }, { X86::VPSUBSWZrrkz, X86::VPSUBSWZrmkz, 0 }, { X86::VPSUBUSBZrrkz, X86::VPSUBUSBZrmkz, 0 }, { X86::VPSUBUSWZrrkz, X86::VPSUBUSWZrmkz, 0 }, { X86::VPSUBWZrrkz, X86::VPSUBWZrmkz, 0 }, { X86::VPUNPCKHBWZrrkz, X86::VPUNPCKHBWZrmkz, 0 }, { X86::VPUNPCKHDQZrrkz, X86::VPUNPCKHDQZrmkz, 0 }, { X86::VPUNPCKHQDQZrrkz, X86::VPUNPCKHQDQZrmkz, 0 }, { X86::VPUNPCKHWDZrrkz, X86::VPUNPCKHWDZrmkz, 0 }, { X86::VPUNPCKLBWZrrkz, X86::VPUNPCKLBWZrmkz, 0 }, { X86::VPUNPCKLDQZrrkz, X86::VPUNPCKLDQZrmkz, 0 }, { X86::VPUNPCKLQDQZrrkz, X86::VPUNPCKLQDQZrmkz, 0 }, { X86::VPUNPCKLWDZrrkz, X86::VPUNPCKLWDZrmkz, 0 }, { X86::VPXORDZrrkz, X86::VPXORDZrmkz, 0 }, { X86::VPXORQZrrkz, X86::VPXORQZrmkz, 0 }, { X86::VSHUFPDZrrikz, X86::VSHUFPDZrmikz, 0 }, { X86::VSHUFPSZrrikz, X86::VSHUFPSZrmikz, 0 }, { X86::VSUBPDZrrkz, X86::VSUBPDZrmkz, 0 }, { X86::VSUBPSZrrkz, X86::VSUBPSZrmkz, 0 }, { X86::VSUBSDZrr_Intkz, X86::VSUBSDZrm_Intkz, TB_NO_REVERSE }, { X86::VSUBSSZrr_Intkz, X86::VSUBSSZrm_Intkz, TB_NO_REVERSE }, { X86::VUNPCKHPDZrrkz, X86::VUNPCKHPDZrmkz, 0 }, { X86::VUNPCKHPSZrrkz, X86::VUNPCKHPSZrmkz, 0 }, { X86::VUNPCKLPDZrrkz, X86::VUNPCKLPDZrmkz, 0 }, { X86::VUNPCKLPSZrrkz, X86::VUNPCKLPSZrmkz, 0 }, { X86::VXORPDZrrkz, X86::VXORPDZrmkz, 0 }, { X86::VXORPSZrrkz, X86::VXORPSZrmkz, 0 }, // AVX-512{F,VL} masked arithmetic instructions 256-bit { X86::VADDPDZ256rrkz, X86::VADDPDZ256rmkz, 0 }, { X86::VADDPSZ256rrkz, X86::VADDPSZ256rmkz, 0 }, { X86::VALIGNDZ256rrikz, X86::VALIGNDZ256rmikz, 0 }, { X86::VALIGNQZ256rrikz, X86::VALIGNQZ256rmikz, 0 }, { X86::VANDNPDZ256rrkz, X86::VANDNPDZ256rmkz, 0 }, { X86::VANDNPSZ256rrkz, X86::VANDNPSZ256rmkz, 0 }, { X86::VANDPDZ256rrkz, X86::VANDPDZ256rmkz, 0 }, { X86::VANDPSZ256rrkz, X86::VANDPSZ256rmkz, 0 }, { X86::VDIVPDZ256rrkz, X86::VDIVPDZ256rmkz, 0 }, { X86::VDIVPSZ256rrkz, X86::VDIVPSZ256rmkz, 0 }, { X86::VINSERTF32x4Z256rrkz, X86::VINSERTF32x4Z256rmkz, 0 }, { X86::VINSERTF64x2Z256rrkz, X86::VINSERTF64x2Z256rmkz, 0 }, { X86::VINSERTI32x4Z256rrkz, X86::VINSERTI32x4Z256rmkz, 0 }, { X86::VINSERTI64x2Z256rrkz, X86::VINSERTI64x2Z256rmkz, 0 }, { X86::VMAXCPDZ256rrkz, X86::VMAXCPDZ256rmkz, 0 }, { X86::VMAXCPSZ256rrkz, X86::VMAXCPSZ256rmkz, 0 }, { X86::VMAXPDZ256rrkz, X86::VMAXPDZ256rmkz, 0 }, { X86::VMAXPSZ256rrkz, X86::VMAXPSZ256rmkz, 0 }, { X86::VMINCPDZ256rrkz, X86::VMINCPDZ256rmkz, 0 }, { X86::VMINCPSZ256rrkz, X86::VMINCPSZ256rmkz, 0 }, { X86::VMINPDZ256rrkz, X86::VMINPDZ256rmkz, 0 }, { X86::VMINPSZ256rrkz, X86::VMINPSZ256rmkz, 0 }, { X86::VMULPDZ256rrkz, X86::VMULPDZ256rmkz, 0 }, { X86::VMULPSZ256rrkz, X86::VMULPSZ256rmkz, 0 }, { X86::VORPDZ256rrkz, X86::VORPDZ256rmkz, 0 }, { X86::VORPSZ256rrkz, X86::VORPSZ256rmkz, 0 }, { X86::VPACKSSDWZ256rrkz, X86::VPACKSSDWZ256rmkz, 0 }, { X86::VPACKSSWBZ256rrkz, X86::VPACKSSWBZ256rmkz, 0 }, { X86::VPACKUSDWZ256rrkz, X86::VPACKUSDWZ256rmkz, 0 }, { X86::VPACKUSWBZ256rrkz, X86::VPACKUSWBZ256rmkz, 0 }, { X86::VPADDBZ256rrkz, X86::VPADDBZ256rmkz, 0 }, { X86::VPADDDZ256rrkz, X86::VPADDDZ256rmkz, 0 }, { X86::VPADDQZ256rrkz, X86::VPADDQZ256rmkz, 0 }, { X86::VPADDSBZ256rrkz, X86::VPADDSBZ256rmkz, 0 }, { X86::VPADDSWZ256rrkz, X86::VPADDSWZ256rmkz, 0 }, { X86::VPADDUSBZ256rrkz, X86::VPADDUSBZ256rmkz, 0 }, { X86::VPADDUSWZ256rrkz, X86::VPADDUSWZ256rmkz, 0 }, { X86::VPADDWZ256rrkz, X86::VPADDWZ256rmkz, 0 }, { X86::VPALIGNRZ256rrikz, X86::VPALIGNRZ256rmikz, 0 }, { X86::VPANDDZ256rrkz, X86::VPANDDZ256rmkz, 0 }, { X86::VPANDNDZ256rrkz, X86::VPANDNDZ256rmkz, 0 }, { X86::VPANDNQZ256rrkz, X86::VPANDNQZ256rmkz, 0 }, { X86::VPANDQZ256rrkz, X86::VPANDQZ256rmkz, 0 }, { X86::VPAVGBZ256rrkz, X86::VPAVGBZ256rmkz, 0 }, { X86::VPAVGWZ256rrkz, X86::VPAVGWZ256rmkz, 0 }, { X86::VPERMBZ256rrkz, X86::VPERMBZ256rmkz, 0 }, { X86::VPERMDZ256rrkz, X86::VPERMDZ256rmkz, 0 }, { X86::VPERMILPDZ256rrkz, X86::VPERMILPDZ256rmkz, 0 }, { X86::VPERMILPSZ256rrkz, X86::VPERMILPSZ256rmkz, 0 }, { X86::VPERMPDZ256rrkz, X86::VPERMPDZ256rmkz, 0 }, { X86::VPERMPSZ256rrkz, X86::VPERMPSZ256rmkz, 0 }, { X86::VPERMQZ256rrkz, X86::VPERMQZ256rmkz, 0 }, { X86::VPERMWZ256rrkz, X86::VPERMWZ256rmkz, 0 }, { X86::VPMADDUBSWZ256rrkz, X86::VPMADDUBSWZ256rmkz, 0 }, { X86::VPMADDWDZ256rrkz, X86::VPMADDWDZ256rmkz, 0 }, { X86::VPMAXSBZ256rrkz, X86::VPMAXSBZ256rmkz, 0 }, { X86::VPMAXSDZ256rrkz, X86::VPMAXSDZ256rmkz, 0 }, { X86::VPMAXSQZ256rrkz, X86::VPMAXSQZ256rmkz, 0 }, { X86::VPMAXSWZ256rrkz, X86::VPMAXSWZ256rmkz, 0 }, { X86::VPMAXUBZ256rrkz, X86::VPMAXUBZ256rmkz, 0 }, { X86::VPMAXUDZ256rrkz, X86::VPMAXUDZ256rmkz, 0 }, { X86::VPMAXUQZ256rrkz, X86::VPMAXUQZ256rmkz, 0 }, { X86::VPMAXUWZ256rrkz, X86::VPMAXUWZ256rmkz, 0 }, { X86::VPMINSBZ256rrkz, X86::VPMINSBZ256rmkz, 0 }, { X86::VPMINSDZ256rrkz, X86::VPMINSDZ256rmkz, 0 }, { X86::VPMINSQZ256rrkz, X86::VPMINSQZ256rmkz, 0 }, { X86::VPMINSWZ256rrkz, X86::VPMINSWZ256rmkz, 0 }, { X86::VPMINUBZ256rrkz, X86::VPMINUBZ256rmkz, 0 }, { X86::VPMINUDZ256rrkz, X86::VPMINUDZ256rmkz, 0 }, { X86::VPMINUQZ256rrkz, X86::VPMINUQZ256rmkz, 0 }, { X86::VPMINUWZ256rrkz, X86::VPMINUWZ256rmkz, 0 }, { X86::VPMULDQZ256rrkz, X86::VPMULDQZ256rmkz, 0 }, { X86::VPMULLDZ256rrkz, X86::VPMULLDZ256rmkz, 0 }, { X86::VPMULLQZ256rrkz, X86::VPMULLQZ256rmkz, 0 }, { X86::VPMULLWZ256rrkz, X86::VPMULLWZ256rmkz, 0 }, { X86::VPMULUDQZ256rrkz, X86::VPMULUDQZ256rmkz, 0 }, { X86::VPORDZ256rrkz, X86::VPORDZ256rmkz, 0 }, { X86::VPORQZ256rrkz, X86::VPORQZ256rmkz, 0 }, { X86::VPSHUFBZ256rrkz, X86::VPSHUFBZ256rmkz, 0 }, { X86::VPSLLDZ256rrkz, X86::VPSLLDZ256rmkz, 0 }, { X86::VPSLLQZ256rrkz, X86::VPSLLQZ256rmkz, 0 }, { X86::VPSLLVDZ256rrkz, X86::VPSLLVDZ256rmkz, 0 }, { X86::VPSLLVQZ256rrkz, X86::VPSLLVQZ256rmkz, 0 }, { X86::VPSLLVWZ256rrkz, X86::VPSLLVWZ256rmkz, 0 }, { X86::VPSLLWZ256rrkz, X86::VPSLLWZ256rmkz, 0 }, { X86::VPSRADZ256rrkz, X86::VPSRADZ256rmkz, 0 }, { X86::VPSRAQZ256rrkz, X86::VPSRAQZ256rmkz, 0 }, { X86::VPSRAVDZ256rrkz, X86::VPSRAVDZ256rmkz, 0 }, { X86::VPSRAVQZ256rrkz, X86::VPSRAVQZ256rmkz, 0 }, { X86::VPSRAVWZ256rrkz, X86::VPSRAVWZ256rmkz, 0 }, { X86::VPSRAWZ256rrkz, X86::VPSRAWZ256rmkz, 0 }, { X86::VPSRLDZ256rrkz, X86::VPSRLDZ256rmkz, 0 }, { X86::VPSRLQZ256rrkz, X86::VPSRLQZ256rmkz, 0 }, { X86::VPSRLVDZ256rrkz, X86::VPSRLVDZ256rmkz, 0 }, { X86::VPSRLVQZ256rrkz, X86::VPSRLVQZ256rmkz, 0 }, { X86::VPSRLVWZ256rrkz, X86::VPSRLVWZ256rmkz, 0 }, { X86::VPSRLWZ256rrkz, X86::VPSRLWZ256rmkz, 0 }, { X86::VPSUBBZ256rrkz, X86::VPSUBBZ256rmkz, 0 }, { X86::VPSUBDZ256rrkz, X86::VPSUBDZ256rmkz, 0 }, { X86::VPSUBQZ256rrkz, X86::VPSUBQZ256rmkz, 0 }, { X86::VPSUBSBZ256rrkz, X86::VPSUBSBZ256rmkz, 0 }, { X86::VPSUBSWZ256rrkz, X86::VPSUBSWZ256rmkz, 0 }, { X86::VPSUBUSBZ256rrkz, X86::VPSUBUSBZ256rmkz, 0 }, { X86::VPSUBUSWZ256rrkz, X86::VPSUBUSWZ256rmkz, 0 }, { X86::VPSUBWZ256rrkz, X86::VPSUBWZ256rmkz, 0 }, { X86::VPUNPCKHBWZ256rrkz, X86::VPUNPCKHBWZ256rmkz, 0 }, { X86::VPUNPCKHDQZ256rrkz, X86::VPUNPCKHDQZ256rmkz, 0 }, { X86::VPUNPCKHQDQZ256rrkz, X86::VPUNPCKHQDQZ256rmkz, 0 }, { X86::VPUNPCKHWDZ256rrkz, X86::VPUNPCKHWDZ256rmkz, 0 }, { X86::VPUNPCKLBWZ256rrkz, X86::VPUNPCKLBWZ256rmkz, 0 }, { X86::VPUNPCKLDQZ256rrkz, X86::VPUNPCKLDQZ256rmkz, 0 }, { X86::VPUNPCKLQDQZ256rrkz, X86::VPUNPCKLQDQZ256rmkz, 0 }, { X86::VPUNPCKLWDZ256rrkz, X86::VPUNPCKLWDZ256rmkz, 0 }, { X86::VPXORDZ256rrkz, X86::VPXORDZ256rmkz, 0 }, { X86::VPXORQZ256rrkz, X86::VPXORQZ256rmkz, 0 }, { X86::VSHUFPDZ256rrikz, X86::VSHUFPDZ256rmikz, 0 }, { X86::VSHUFPSZ256rrikz, X86::VSHUFPSZ256rmikz, 0 }, { X86::VSUBPDZ256rrkz, X86::VSUBPDZ256rmkz, 0 }, { X86::VSUBPSZ256rrkz, X86::VSUBPSZ256rmkz, 0 }, { X86::VUNPCKHPDZ256rrkz, X86::VUNPCKHPDZ256rmkz, 0 }, { X86::VUNPCKHPSZ256rrkz, X86::VUNPCKHPSZ256rmkz, 0 }, { X86::VUNPCKLPDZ256rrkz, X86::VUNPCKLPDZ256rmkz, 0 }, { X86::VUNPCKLPSZ256rrkz, X86::VUNPCKLPSZ256rmkz, 0 }, { X86::VXORPDZ256rrkz, X86::VXORPDZ256rmkz, 0 }, { X86::VXORPSZ256rrkz, X86::VXORPSZ256rmkz, 0 }, // AVX-512{F,VL} masked arithmetic instructions 128-bit { X86::VADDPDZ128rrkz, X86::VADDPDZ128rmkz, 0 }, { X86::VADDPSZ128rrkz, X86::VADDPSZ128rmkz, 0 }, { X86::VALIGNDZ128rrikz, X86::VALIGNDZ128rmikz, 0 }, { X86::VALIGNQZ128rrikz, X86::VALIGNQZ128rmikz, 0 }, { X86::VANDNPDZ128rrkz, X86::VANDNPDZ128rmkz, 0 }, { X86::VANDNPSZ128rrkz, X86::VANDNPSZ128rmkz, 0 }, { X86::VANDPDZ128rrkz, X86::VANDPDZ128rmkz, 0 }, { X86::VANDPSZ128rrkz, X86::VANDPSZ128rmkz, 0 }, { X86::VDIVPDZ128rrkz, X86::VDIVPDZ128rmkz, 0 }, { X86::VDIVPSZ128rrkz, X86::VDIVPSZ128rmkz, 0 }, { X86::VMAXCPDZ128rrkz, X86::VMAXCPDZ128rmkz, 0 }, { X86::VMAXCPSZ128rrkz, X86::VMAXCPSZ128rmkz, 0 }, { X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 }, { X86::VMAXPSZ128rrkz, X86::VMAXPSZ128rmkz, 0 }, { X86::VMINCPDZ128rrkz, X86::VMINCPDZ128rmkz, 0 }, { X86::VMINCPSZ128rrkz, X86::VMINCPSZ128rmkz, 0 }, { X86::VMINPDZ128rrkz, X86::VMINPDZ128rmkz, 0 }, { X86::VMINPSZ128rrkz, X86::VMINPSZ128rmkz, 0 }, { X86::VMULPDZ128rrkz, X86::VMULPDZ128rmkz, 0 }, { X86::VMULPSZ128rrkz, X86::VMULPSZ128rmkz, 0 }, { X86::VORPDZ128rrkz, X86::VORPDZ128rmkz, 0 }, { X86::VORPSZ128rrkz, X86::VORPSZ128rmkz, 0 }, { X86::VPACKSSDWZ128rrkz, X86::VPACKSSDWZ128rmkz, 0 }, { X86::VPACKSSWBZ128rrkz, X86::VPACKSSWBZ128rmkz, 0 }, { X86::VPACKUSDWZ128rrkz, X86::VPACKUSDWZ128rmkz, 0 }, { X86::VPACKUSWBZ128rrkz, X86::VPACKUSWBZ128rmkz, 0 }, { X86::VPADDBZ128rrkz, X86::VPADDBZ128rmkz, 0 }, { X86::VPADDDZ128rrkz, X86::VPADDDZ128rmkz, 0 }, { X86::VPADDQZ128rrkz, X86::VPADDQZ128rmkz, 0 }, { X86::VPADDSBZ128rrkz, X86::VPADDSBZ128rmkz, 0 }, { X86::VPADDSWZ128rrkz, X86::VPADDSWZ128rmkz, 0 }, { X86::VPADDUSBZ128rrkz, X86::VPADDUSBZ128rmkz, 0 }, { X86::VPADDUSWZ128rrkz, X86::VPADDUSWZ128rmkz, 0 }, { X86::VPADDWZ128rrkz, X86::VPADDWZ128rmkz, 0 }, { X86::VPALIGNRZ128rrikz, X86::VPALIGNRZ128rmikz, 0 }, { X86::VPANDDZ128rrkz, X86::VPANDDZ128rmkz, 0 }, { X86::VPANDNDZ128rrkz, X86::VPANDNDZ128rmkz, 0 }, { X86::VPANDNQZ128rrkz, X86::VPANDNQZ128rmkz, 0 }, { X86::VPANDQZ128rrkz, X86::VPANDQZ128rmkz, 0 }, { X86::VPAVGBZ128rrkz, X86::VPAVGBZ128rmkz, 0 }, { X86::VPAVGWZ128rrkz, X86::VPAVGWZ128rmkz, 0 }, { X86::VPERMBZ128rrkz, X86::VPERMBZ128rmkz, 0 }, { X86::VPERMILPDZ128rrkz, X86::VPERMILPDZ128rmkz, 0 }, { X86::VPERMILPSZ128rrkz, X86::VPERMILPSZ128rmkz, 0 }, { X86::VPERMWZ128rrkz, X86::VPERMWZ128rmkz, 0 }, { X86::VPMADDUBSWZ128rrkz, X86::VPMADDUBSWZ128rmkz, 0 }, { X86::VPMADDWDZ128rrkz, X86::VPMADDWDZ128rmkz, 0 }, { X86::VPMAXSBZ128rrkz, X86::VPMAXSBZ128rmkz, 0 }, { X86::VPMAXSDZ128rrkz, X86::VPMAXSDZ128rmkz, 0 }, { X86::VPMAXSQZ128rrkz, X86::VPMAXSQZ128rmkz, 0 }, { X86::VPMAXSWZ128rrkz, X86::VPMAXSWZ128rmkz, 0 }, { X86::VPMAXUBZ128rrkz, X86::VPMAXUBZ128rmkz, 0 }, { X86::VPMAXUDZ128rrkz, X86::VPMAXUDZ128rmkz, 0 }, { X86::VPMAXUQZ128rrkz, X86::VPMAXUQZ128rmkz, 0 }, { X86::VPMAXUWZ128rrkz, X86::VPMAXUWZ128rmkz, 0 }, { X86::VPMINSBZ128rrkz, X86::VPMINSBZ128rmkz, 0 }, { X86::VPMINSDZ128rrkz, X86::VPMINSDZ128rmkz, 0 }, { X86::VPMINSQZ128rrkz, X86::VPMINSQZ128rmkz, 0 }, { X86::VPMINSWZ128rrkz, X86::VPMINSWZ128rmkz, 0 }, { X86::VPMINUBZ128rrkz, X86::VPMINUBZ128rmkz, 0 }, { X86::VPMINUDZ128rrkz, X86::VPMINUDZ128rmkz, 0 }, { X86::VPMINUQZ128rrkz, X86::VPMINUQZ128rmkz, 0 }, { X86::VPMINUWZ128rrkz, X86::VPMINUWZ128rmkz, 0 }, { X86::VPMULDQZ128rrkz, X86::VPMULDQZ128rmkz, 0 }, { X86::VPMULLDZ128rrkz, X86::VPMULLDZ128rmkz, 0 }, { X86::VPMULLQZ128rrkz, X86::VPMULLQZ128rmkz, 0 }, { X86::VPMULLWZ128rrkz, X86::VPMULLWZ128rmkz, 0 }, { X86::VPMULUDQZ128rrkz, X86::VPMULUDQZ128rmkz, 0 }, { X86::VPORDZ128rrkz, X86::VPORDZ128rmkz, 0 }, { X86::VPORQZ128rrkz, X86::VPORQZ128rmkz, 0 }, { X86::VPSHUFBZ128rrkz, X86::VPSHUFBZ128rmkz, 0 }, { X86::VPSLLDZ128rrkz, X86::VPSLLDZ128rmkz, 0 }, { X86::VPSLLQZ128rrkz, X86::VPSLLQZ128rmkz, 0 }, { X86::VPSLLVDZ128rrkz, X86::VPSLLVDZ128rmkz, 0 }, { X86::VPSLLVQZ128rrkz, X86::VPSLLVQZ128rmkz, 0 }, { X86::VPSLLVWZ128rrkz, X86::VPSLLVWZ128rmkz, 0 }, { X86::VPSLLWZ128rrkz, X86::VPSLLWZ128rmkz, 0 }, { X86::VPSRADZ128rrkz, X86::VPSRADZ128rmkz, 0 }, { X86::VPSRAQZ128rrkz, X86::VPSRAQZ128rmkz, 0 }, { X86::VPSRAVDZ128rrkz, X86::VPSRAVDZ128rmkz, 0 }, { X86::VPSRAVQZ128rrkz, X86::VPSRAVQZ128rmkz, 0 }, { X86::VPSRAVWZ128rrkz, X86::VPSRAVWZ128rmkz, 0 }, { X86::VPSRAWZ128rrkz, X86::VPSRAWZ128rmkz, 0 }, { X86::VPSRLDZ128rrkz, X86::VPSRLDZ128rmkz, 0 }, { X86::VPSRLQZ128rrkz, X86::VPSRLQZ128rmkz, 0 }, { X86::VPSRLVDZ128rrkz, X86::VPSRLVDZ128rmkz, 0 }, { X86::VPSRLVQZ128rrkz, X86::VPSRLVQZ128rmkz, 0 }, { X86::VPSRLVWZ128rrkz, X86::VPSRLVWZ128rmkz, 0 }, { X86::VPSRLWZ128rrkz, X86::VPSRLWZ128rmkz, 0 }, { X86::VPSUBBZ128rrkz, X86::VPSUBBZ128rmkz, 0 }, { X86::VPSUBDZ128rrkz, X86::VPSUBDZ128rmkz, 0 }, { X86::VPSUBQZ128rrkz, X86::VPSUBQZ128rmkz, 0 }, { X86::VPSUBSBZ128rrkz, X86::VPSUBSBZ128rmkz, 0 }, { X86::VPSUBSWZ128rrkz, X86::VPSUBSWZ128rmkz, 0 }, { X86::VPSUBUSBZ128rrkz, X86::VPSUBUSBZ128rmkz, 0 }, { X86::VPSUBUSWZ128rrkz, X86::VPSUBUSWZ128rmkz, 0 }, { X86::VPSUBWZ128rrkz, X86::VPSUBWZ128rmkz, 0 }, { X86::VPUNPCKHBWZ128rrkz, X86::VPUNPCKHBWZ128rmkz, 0 }, { X86::VPUNPCKHDQZ128rrkz, X86::VPUNPCKHDQZ128rmkz, 0 }, { X86::VPUNPCKHQDQZ128rrkz, X86::VPUNPCKHQDQZ128rmkz, 0 }, { X86::VPUNPCKHWDZ128rrkz, X86::VPUNPCKHWDZ128rmkz, 0 }, { X86::VPUNPCKLBWZ128rrkz, X86::VPUNPCKLBWZ128rmkz, 0 }, { X86::VPUNPCKLDQZ128rrkz, X86::VPUNPCKLDQZ128rmkz, 0 }, { X86::VPUNPCKLQDQZ128rrkz, X86::VPUNPCKLQDQZ128rmkz, 0 }, { X86::VPUNPCKLWDZ128rrkz, X86::VPUNPCKLWDZ128rmkz, 0 }, { X86::VPXORDZ128rrkz, X86::VPXORDZ128rmkz, 0 }, { X86::VPXORQZ128rrkz, X86::VPXORQZ128rmkz, 0 }, { X86::VSHUFPDZ128rrikz, X86::VSHUFPDZ128rmikz, 0 }, { X86::VSHUFPSZ128rrikz, X86::VSHUFPSZ128rmikz, 0 }, { X86::VSUBPDZ128rrkz, X86::VSUBPDZ128rmkz, 0 }, { X86::VSUBPSZ128rrkz, X86::VSUBPSZ128rmkz, 0 }, { X86::VUNPCKHPDZ128rrkz, X86::VUNPCKHPDZ128rmkz, 0 }, { X86::VUNPCKHPSZ128rrkz, X86::VUNPCKHPSZ128rmkz, 0 }, { X86::VUNPCKLPDZ128rrkz, X86::VUNPCKLPDZ128rmkz, 0 }, { X86::VUNPCKLPSZ128rrkz, X86::VUNPCKLPSZ128rmkz, 0 }, { X86::VXORPDZ128rrkz, X86::VXORPDZ128rmkz, 0 }, { X86::VXORPSZ128rrkz, X86::VXORPSZ128rmkz, 0 }, // AVX-512 masked foldable instructions { X86::VBROADCASTSSZrk, X86::VBROADCASTSSZmk, TB_NO_REVERSE }, { X86::VBROADCASTSDZrk, X86::VBROADCASTSDZmk, TB_NO_REVERSE }, { X86::VPABSBZrrk, X86::VPABSBZrmk, 0 }, { X86::VPABSDZrrk, X86::VPABSDZrmk, 0 }, { X86::VPABSQZrrk, X86::VPABSQZrmk, 0 }, { X86::VPABSWZrrk, X86::VPABSWZrmk, 0 }, { X86::VPERMILPDZrik, X86::VPERMILPDZmik, 0 }, { X86::VPERMILPSZrik, X86::VPERMILPSZmik, 0 }, { X86::VPERMPDZrik, X86::VPERMPDZmik, 0 }, { X86::VPERMQZrik, X86::VPERMQZmik, 0 }, { X86::VPMOVSXBDZrrk, X86::VPMOVSXBDZrmk, 0 }, { X86::VPMOVSXBQZrrk, X86::VPMOVSXBQZrmk, TB_NO_REVERSE }, { X86::VPMOVSXBWZrrk, X86::VPMOVSXBWZrmk, 0 }, { X86::VPMOVSXDQZrrk, X86::VPMOVSXDQZrmk, 0 }, { X86::VPMOVSXWDZrrk, X86::VPMOVSXWDZrmk, 0 }, { X86::VPMOVSXWQZrrk, X86::VPMOVSXWQZrmk, 0 }, { X86::VPMOVZXBDZrrk, X86::VPMOVZXBDZrmk, 0 }, { X86::VPMOVZXBQZrrk, X86::VPMOVZXBQZrmk, TB_NO_REVERSE }, { X86::VPMOVZXBWZrrk, X86::VPMOVZXBWZrmk, 0 }, { X86::VPMOVZXDQZrrk, X86::VPMOVZXDQZrmk, 0 }, { X86::VPMOVZXWDZrrk, X86::VPMOVZXWDZrmk, 0 }, { X86::VPMOVZXWQZrrk, X86::VPMOVZXWQZrmk, 0 }, { X86::VPSHUFDZrik, X86::VPSHUFDZmik, 0 }, { X86::VPSHUFHWZrik, X86::VPSHUFHWZmik, 0 }, { X86::VPSHUFLWZrik, X86::VPSHUFLWZmik, 0 }, { X86::VPSLLDZrik, X86::VPSLLDZmik, 0 }, { X86::VPSLLQZrik, X86::VPSLLQZmik, 0 }, { X86::VPSLLWZrik, X86::VPSLLWZmik, 0 }, { X86::VPSRADZrik, X86::VPSRADZmik, 0 }, { X86::VPSRAQZrik, X86::VPSRAQZmik, 0 }, { X86::VPSRAWZrik, X86::VPSRAWZmik, 0 }, { X86::VPSRLDZrik, X86::VPSRLDZmik, 0 }, { X86::VPSRLQZrik, X86::VPSRLQZmik, 0 }, { X86::VPSRLWZrik, X86::VPSRLWZmik, 0 }, // AVX-512VL 256-bit masked foldable instructions { X86::VBROADCASTSSZ256rk, X86::VBROADCASTSSZ256mk, TB_NO_REVERSE }, { X86::VBROADCASTSDZ256rk, X86::VBROADCASTSDZ256mk, TB_NO_REVERSE }, { X86::VPABSBZ256rrk, X86::VPABSBZ256rmk, 0 }, { X86::VPABSDZ256rrk, X86::VPABSDZ256rmk, 0 }, { X86::VPABSQZ256rrk, X86::VPABSQZ256rmk, 0 }, { X86::VPABSWZ256rrk, X86::VPABSWZ256rmk, 0 }, { X86::VPERMILPDZ256rik, X86::VPERMILPDZ256mik, 0 }, { X86::VPERMILPSZ256rik, X86::VPERMILPSZ256mik, 0 }, { X86::VPERMPDZ256rik, X86::VPERMPDZ256mik, 0 }, { X86::VPERMQZ256rik, X86::VPERMQZ256mik, 0 }, { X86::VPMOVSXBDZ256rrk, X86::VPMOVSXBDZ256rmk, TB_NO_REVERSE }, { X86::VPMOVSXBQZ256rrk, X86::VPMOVSXBQZ256rmk, TB_NO_REVERSE }, { X86::VPMOVSXBWZ256rrk, X86::VPMOVSXBWZ256rmk, 0 }, { X86::VPMOVSXDQZ256rrk, X86::VPMOVSXDQZ256rmk, 0 }, { X86::VPMOVSXWDZ256rrk, X86::VPMOVSXWDZ256rmk, 0 }, { X86::VPMOVSXWQZ256rrk, X86::VPMOVSXWQZ256rmk, TB_NO_REVERSE }, { X86::VPMOVZXBDZ256rrk, X86::VPMOVZXBDZ256rmk, TB_NO_REVERSE }, { X86::VPMOVZXBQZ256rrk, X86::VPMOVZXBQZ256rmk, TB_NO_REVERSE }, { X86::VPMOVZXBWZ256rrk, X86::VPMOVZXBWZ256rmk, 0 }, { X86::VPMOVZXDQZ256rrk, X86::VPMOVZXDQZ256rmk, 0 }, { X86::VPMOVZXWDZ256rrk, X86::VPMOVZXWDZ256rmk, 0 }, { X86::VPMOVZXWQZ256rrk, X86::VPMOVZXWQZ256rmk, TB_NO_REVERSE }, { X86::VPSHUFDZ256rik, X86::VPSHUFDZ256mik, 0 }, { X86::VPSHUFHWZ256rik, X86::VPSHUFHWZ256mik, 0 }, { X86::VPSHUFLWZ256rik, X86::VPSHUFLWZ256mik, 0 }, { X86::VPSLLDZ256rik, X86::VPSLLDZ256mik, 0 }, { X86::VPSLLQZ256rik, X86::VPSLLQZ256mik, 0 }, { X86::VPSLLWZ256rik, X86::VPSLLWZ256mik, 0 }, { X86::VPSRADZ256rik, X86::VPSRADZ256mik, 0 }, { X86::VPSRAQZ256rik, X86::VPSRAQZ256mik, 0 }, { X86::VPSRAWZ256rik, X86::VPSRAWZ256mik, 0 }, { X86::VPSRLDZ256rik, X86::VPSRLDZ256mik, 0 }, { X86::VPSRLQZ256rik, X86::VPSRLQZ256mik, 0 }, { X86::VPSRLWZ256rik, X86::VPSRLWZ256mik, 0 }, // AVX-512VL 128-bit masked foldable instructions { X86::VBROADCASTSSZ128rk, X86::VBROADCASTSSZ128mk, TB_NO_REVERSE }, { X86::VPABSBZ128rrk, X86::VPABSBZ128rmk, 0 }, { X86::VPABSDZ128rrk, X86::VPABSDZ128rmk, 0 }, { X86::VPABSQZ128rrk, X86::VPABSQZ128rmk, 0 }, { X86::VPABSWZ128rrk, X86::VPABSWZ128rmk, 0 }, { X86::VPERMILPDZ128rik, X86::VPERMILPDZ128mik, 0 }, { X86::VPERMILPSZ128rik, X86::VPERMILPSZ128mik, 0 }, { X86::VPMOVSXBDZ128rrk, X86::VPMOVSXBDZ128rmk, TB_NO_REVERSE }, { X86::VPMOVSXBQZ128rrk, X86::VPMOVSXBQZ128rmk, TB_NO_REVERSE }, { X86::VPMOVSXBWZ128rrk, X86::VPMOVSXBWZ128rmk, TB_NO_REVERSE }, { X86::VPMOVSXDQZ128rrk, X86::VPMOVSXDQZ128rmk, TB_NO_REVERSE }, { X86::VPMOVSXWDZ128rrk, X86::VPMOVSXWDZ128rmk, TB_NO_REVERSE }, { X86::VPMOVSXWQZ128rrk, X86::VPMOVSXWQZ128rmk, TB_NO_REVERSE }, { X86::VPMOVZXBDZ128rrk, X86::VPMOVZXBDZ128rmk, TB_NO_REVERSE }, { X86::VPMOVZXBQZ128rrk, X86::VPMOVZXBQZ128rmk, TB_NO_REVERSE }, { X86::VPMOVZXBWZ128rrk, X86::VPMOVZXBWZ128rmk, TB_NO_REVERSE }, { X86::VPMOVZXDQZ128rrk, X86::VPMOVZXDQZ128rmk, TB_NO_REVERSE }, { X86::VPMOVZXWDZ128rrk, X86::VPMOVZXWDZ128rmk, TB_NO_REVERSE }, { X86::VPMOVZXWQZ128rrk, X86::VPMOVZXWQZ128rmk, TB_NO_REVERSE }, { X86::VPSHUFDZ128rik, X86::VPSHUFDZ128mik, 0 }, { X86::VPSHUFHWZ128rik, X86::VPSHUFHWZ128mik, 0 }, { X86::VPSHUFLWZ128rik, X86::VPSHUFLWZ128mik, 0 }, { X86::VPSLLDZ128rik, X86::VPSLLDZ128mik, 0 }, { X86::VPSLLQZ128rik, X86::VPSLLQZ128mik, 0 }, { X86::VPSLLWZ128rik, X86::VPSLLWZ128mik, 0 }, { X86::VPSRADZ128rik, X86::VPSRADZ128mik, 0 }, { X86::VPSRAQZ128rik, X86::VPSRAQZ128mik, 0 }, { X86::VPSRAWZ128rik, X86::VPSRAWZ128mik, 0 }, { X86::VPSRLDZ128rik, X86::VPSRLDZ128mik, 0 }, { X86::VPSRLQZ128rik, X86::VPSRLQZ128mik, 0 }, { X86::VPSRLWZ128rik, X86::VPSRLWZ128mik, 0 }, }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable3) { AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, // Index 3, folded load Entry.Flags | TB_INDEX_3 | TB_FOLDED_LOAD); } auto I = X86InstrFMA3Info::rm_begin(); auto E = X86InstrFMA3Info::rm_end(); for (; I != E; ++I) { if (!I.getGroup()->isKMasked()) { // Intrinsic forms need to pass TB_NO_REVERSE. if (I.getGroup()->isIntrinsic()) { AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable, I.getRegOpcode(), I.getMemOpcode(), TB_ALIGN_NONE | TB_INDEX_3 | TB_FOLDED_LOAD | TB_NO_REVERSE); } else { AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable, I.getRegOpcode(), I.getMemOpcode(), TB_ALIGN_NONE | TB_INDEX_3 | TB_FOLDED_LOAD); } } } static const X86MemoryFoldTableEntry MemoryFoldTable4[] = { // AVX-512 foldable masked instructions { X86::VADDPDZrrk, X86::VADDPDZrmk, 0 }, { X86::VADDPSZrrk, X86::VADDPSZrmk, 0 }, { X86::VADDSDZrr_Intk, X86::VADDSDZrm_Intk, TB_NO_REVERSE }, { X86::VADDSSZrr_Intk, X86::VADDSSZrm_Intk, TB_NO_REVERSE }, { X86::VALIGNDZrrik, X86::VALIGNDZrmik, 0 }, { X86::VALIGNQZrrik, X86::VALIGNQZrmik, 0 }, { X86::VANDNPDZrrk, X86::VANDNPDZrmk, 0 }, { X86::VANDNPSZrrk, X86::VANDNPSZrmk, 0 }, { X86::VANDPDZrrk, X86::VANDPDZrmk, 0 }, { X86::VANDPSZrrk, X86::VANDPSZrmk, 0 }, { X86::VDIVPDZrrk, X86::VDIVPDZrmk, 0 }, { X86::VDIVPSZrrk, X86::VDIVPSZrmk, 0 }, { X86::VDIVSDZrr_Intk, X86::VDIVSDZrm_Intk, TB_NO_REVERSE }, { X86::VDIVSSZrr_Intk, X86::VDIVSSZrm_Intk, TB_NO_REVERSE }, { X86::VINSERTF32x4Zrrk, X86::VINSERTF32x4Zrmk, 0 }, { X86::VINSERTF32x8Zrrk, X86::VINSERTF32x8Zrmk, 0 }, { X86::VINSERTF64x2Zrrk, X86::VINSERTF64x2Zrmk, 0 }, { X86::VINSERTF64x4Zrrk, X86::VINSERTF64x4Zrmk, 0 }, { X86::VINSERTI32x4Zrrk, X86::VINSERTI32x4Zrmk, 0 }, { X86::VINSERTI32x8Zrrk, X86::VINSERTI32x8Zrmk, 0 }, { X86::VINSERTI64x2Zrrk, X86::VINSERTI64x2Zrmk, 0 }, { X86::VINSERTI64x4Zrrk, X86::VINSERTI64x4Zrmk, 0 }, { X86::VMAXCPDZrrk, X86::VMAXCPDZrmk, 0 }, { X86::VMAXCPSZrrk, X86::VMAXCPSZrmk, 0 }, { X86::VMAXPDZrrk, X86::VMAXPDZrmk, 0 }, { X86::VMAXPSZrrk, X86::VMAXPSZrmk, 0 }, { X86::VMAXSDZrr_Intk, X86::VMAXSDZrm_Intk, 0 }, { X86::VMAXSSZrr_Intk, X86::VMAXSSZrm_Intk, 0 }, { X86::VMINCPDZrrk, X86::VMINCPDZrmk, 0 }, { X86::VMINCPSZrrk, X86::VMINCPSZrmk, 0 }, { X86::VMINPDZrrk, X86::VMINPDZrmk, 0 }, { X86::VMINPSZrrk, X86::VMINPSZrmk, 0 }, { X86::VMINSDZrr_Intk, X86::VMINSDZrm_Intk, 0 }, { X86::VMINSSZrr_Intk, X86::VMINSSZrm_Intk, 0 }, { X86::VMULPDZrrk, X86::VMULPDZrmk, 0 }, { X86::VMULPSZrrk, X86::VMULPSZrmk, 0 }, { X86::VMULSDZrr_Intk, X86::VMULSDZrm_Intk, TB_NO_REVERSE }, { X86::VMULSSZrr_Intk, X86::VMULSSZrm_Intk, TB_NO_REVERSE }, { X86::VORPDZrrk, X86::VORPDZrmk, 0 }, { X86::VORPSZrrk, X86::VORPSZrmk, 0 }, { X86::VPACKSSDWZrrk, X86::VPACKSSDWZrmk, 0 }, { X86::VPACKSSWBZrrk, X86::VPACKSSWBZrmk, 0 }, { X86::VPACKUSDWZrrk, X86::VPACKUSDWZrmk, 0 }, { X86::VPACKUSWBZrrk, X86::VPACKUSWBZrmk, 0 }, { X86::VPADDBZrrk, X86::VPADDBZrmk, 0 }, { X86::VPADDDZrrk, X86::VPADDDZrmk, 0 }, { X86::VPADDQZrrk, X86::VPADDQZrmk, 0 }, { X86::VPADDSBZrrk, X86::VPADDSBZrmk, 0 }, { X86::VPADDSWZrrk, X86::VPADDSWZrmk, 0 }, { X86::VPADDUSBZrrk, X86::VPADDUSBZrmk, 0 }, { X86::VPADDUSWZrrk, X86::VPADDUSWZrmk, 0 }, { X86::VPADDWZrrk, X86::VPADDWZrmk, 0 }, { X86::VPALIGNRZrrik, X86::VPALIGNRZrmik, 0 }, { X86::VPANDDZrrk, X86::VPANDDZrmk, 0 }, { X86::VPANDNDZrrk, X86::VPANDNDZrmk, 0 }, { X86::VPANDNQZrrk, X86::VPANDNQZrmk, 0 }, { X86::VPANDQZrrk, X86::VPANDQZrmk, 0 }, { X86::VPAVGBZrrk, X86::VPAVGBZrmk, 0 }, { X86::VPAVGWZrrk, X86::VPAVGWZrmk, 0 }, { X86::VPERMBZrrk, X86::VPERMBZrmk, 0 }, { X86::VPERMDZrrk, X86::VPERMDZrmk, 0 }, { X86::VPERMI2Brrk, X86::VPERMI2Brmk, 0 }, { X86::VPERMI2Drrk, X86::VPERMI2Drmk, 0 }, { X86::VPERMI2PSrrk, X86::VPERMI2PSrmk, 0 }, { X86::VPERMI2PDrrk, X86::VPERMI2PDrmk, 0 }, { X86::VPERMI2Qrrk, X86::VPERMI2Qrmk, 0 }, { X86::VPERMI2Wrrk, X86::VPERMI2Wrmk, 0 }, { X86::VPERMILPDZrrk, X86::VPERMILPDZrmk, 0 }, { X86::VPERMILPSZrrk, X86::VPERMILPSZrmk, 0 }, { X86::VPERMPDZrrk, X86::VPERMPDZrmk, 0 }, { X86::VPERMPSZrrk, X86::VPERMPSZrmk, 0 }, { X86::VPERMQZrrk, X86::VPERMQZrmk, 0 }, { X86::VPERMT2Brrk, X86::VPERMT2Brmk, 0 }, { X86::VPERMT2Drrk, X86::VPERMT2Drmk, 0 }, { X86::VPERMT2PSrrk, X86::VPERMT2PSrmk, 0 }, { X86::VPERMT2PDrrk, X86::VPERMT2PDrmk, 0 }, { X86::VPERMT2Qrrk, X86::VPERMT2Qrmk, 0 }, { X86::VPERMT2Wrrk, X86::VPERMT2Wrmk, 0 }, { X86::VPERMWZrrk, X86::VPERMWZrmk, 0 }, { X86::VPMADDUBSWZrrk, X86::VPMADDUBSWZrmk, 0 }, { X86::VPMADDWDZrrk, X86::VPMADDWDZrmk, 0 }, { X86::VPMAXSBZrrk, X86::VPMAXSBZrmk, 0 }, { X86::VPMAXSDZrrk, X86::VPMAXSDZrmk, 0 }, { X86::VPMAXSQZrrk, X86::VPMAXSQZrmk, 0 }, { X86::VPMAXSWZrrk, X86::VPMAXSWZrmk, 0 }, { X86::VPMAXUBZrrk, X86::VPMAXUBZrmk, 0 }, { X86::VPMAXUDZrrk, X86::VPMAXUDZrmk, 0 }, { X86::VPMAXUQZrrk, X86::VPMAXUQZrmk, 0 }, { X86::VPMAXUWZrrk, X86::VPMAXUWZrmk, 0 }, { X86::VPMINSBZrrk, X86::VPMINSBZrmk, 0 }, { X86::VPMINSDZrrk, X86::VPMINSDZrmk, 0 }, { X86::VPMINSQZrrk, X86::VPMINSQZrmk, 0 }, { X86::VPMINSWZrrk, X86::VPMINSWZrmk, 0 }, { X86::VPMINUBZrrk, X86::VPMINUBZrmk, 0 }, { X86::VPMINUDZrrk, X86::VPMINUDZrmk, 0 }, { X86::VPMINUQZrrk, X86::VPMINUQZrmk, 0 }, { X86::VPMINUWZrrk, X86::VPMINUWZrmk, 0 }, { X86::VPMULDQZrrk, X86::VPMULDQZrmk, 0 }, { X86::VPMULLDZrrk, X86::VPMULLDZrmk, 0 }, { X86::VPMULLQZrrk, X86::VPMULLQZrmk, 0 }, { X86::VPMULLWZrrk, X86::VPMULLWZrmk, 0 }, { X86::VPMULUDQZrrk, X86::VPMULUDQZrmk, 0 }, { X86::VPORDZrrk, X86::VPORDZrmk, 0 }, { X86::VPORQZrrk, X86::VPORQZrmk, 0 }, { X86::VPSHUFBZrrk, X86::VPSHUFBZrmk, 0 }, { X86::VPSLLDZrrk, X86::VPSLLDZrmk, 0 }, { X86::VPSLLQZrrk, X86::VPSLLQZrmk, 0 }, { X86::VPSLLVDZrrk, X86::VPSLLVDZrmk, 0 }, { X86::VPSLLVQZrrk, X86::VPSLLVQZrmk, 0 }, { X86::VPSLLVWZrrk, X86::VPSLLVWZrmk, 0 }, { X86::VPSLLWZrrk, X86::VPSLLWZrmk, 0 }, { X86::VPSRADZrrk, X86::VPSRADZrmk, 0 }, { X86::VPSRAQZrrk, X86::VPSRAQZrmk, 0 }, { X86::VPSRAVDZrrk, X86::VPSRAVDZrmk, 0 }, { X86::VPSRAVQZrrk, X86::VPSRAVQZrmk, 0 }, { X86::VPSRAVWZrrk, X86::VPSRAVWZrmk, 0 }, { X86::VPSRAWZrrk, X86::VPSRAWZrmk, 0 }, { X86::VPSRLDZrrk, X86::VPSRLDZrmk, 0 }, { X86::VPSRLQZrrk, X86::VPSRLQZrmk, 0 }, { X86::VPSRLVDZrrk, X86::VPSRLVDZrmk, 0 }, { X86::VPSRLVQZrrk, X86::VPSRLVQZrmk, 0 }, { X86::VPSRLVWZrrk, X86::VPSRLVWZrmk, 0 }, { X86::VPSRLWZrrk, X86::VPSRLWZrmk, 0 }, { X86::VPSUBBZrrk, X86::VPSUBBZrmk, 0 }, { X86::VPSUBDZrrk, X86::VPSUBDZrmk, 0 }, { X86::VPSUBQZrrk, X86::VPSUBQZrmk, 0 }, { X86::VPSUBSBZrrk, X86::VPSUBSBZrmk, 0 }, { X86::VPSUBSWZrrk, X86::VPSUBSWZrmk, 0 }, { X86::VPSUBUSBZrrk, X86::VPSUBUSBZrmk, 0 }, { X86::VPSUBUSWZrrk, X86::VPSUBUSWZrmk, 0 }, { X86::VPTERNLOGDZrrik, X86::VPTERNLOGDZrmik, 0 }, { X86::VPTERNLOGQZrrik, X86::VPTERNLOGQZrmik, 0 }, { X86::VPUNPCKHBWZrrk, X86::VPUNPCKHBWZrmk, 0 }, { X86::VPUNPCKHDQZrrk, X86::VPUNPCKHDQZrmk, 0 }, { X86::VPUNPCKHQDQZrrk, X86::VPUNPCKHQDQZrmk, 0 }, { X86::VPUNPCKHWDZrrk, X86::VPUNPCKHWDZrmk, 0 }, { X86::VPUNPCKLBWZrrk, X86::VPUNPCKLBWZrmk, 0 }, { X86::VPUNPCKLDQZrrk, X86::VPUNPCKLDQZrmk, 0 }, { X86::VPUNPCKLQDQZrrk, X86::VPUNPCKLQDQZrmk, 0 }, { X86::VPUNPCKLWDZrrk, X86::VPUNPCKLWDZrmk, 0 }, { X86::VPXORDZrrk, X86::VPXORDZrmk, 0 }, { X86::VPXORQZrrk, X86::VPXORQZrmk, 0 }, { X86::VSHUFPDZrrik, X86::VSHUFPDZrmik, 0 }, { X86::VSHUFPSZrrik, X86::VSHUFPSZrmik, 0 }, { X86::VSUBPDZrrk, X86::VSUBPDZrmk, 0 }, { X86::VSUBPSZrrk, X86::VSUBPSZrmk, 0 }, { X86::VSUBSDZrr_Intk, X86::VSUBSDZrm_Intk, TB_NO_REVERSE }, { X86::VSUBSSZrr_Intk, X86::VSUBSSZrm_Intk, TB_NO_REVERSE }, { X86::VUNPCKHPDZrrk, X86::VUNPCKHPDZrmk, 0 }, { X86::VUNPCKHPSZrrk, X86::VUNPCKHPSZrmk, 0 }, { X86::VUNPCKLPDZrrk, X86::VUNPCKLPDZrmk, 0 }, { X86::VUNPCKLPSZrrk, X86::VUNPCKLPSZrmk, 0 }, { X86::VXORPDZrrk, X86::VXORPDZrmk, 0 }, { X86::VXORPSZrrk, X86::VXORPSZrmk, 0 }, // AVX-512{F,VL} foldable masked instructions 256-bit { X86::VADDPDZ256rrk, X86::VADDPDZ256rmk, 0 }, { X86::VADDPSZ256rrk, X86::VADDPSZ256rmk, 0 }, { X86::VALIGNDZ256rrik, X86::VALIGNDZ256rmik, 0 }, { X86::VALIGNQZ256rrik, X86::VALIGNQZ256rmik, 0 }, { X86::VANDNPDZ256rrk, X86::VANDNPDZ256rmk, 0 }, { X86::VANDNPSZ256rrk, X86::VANDNPSZ256rmk, 0 }, { X86::VANDPDZ256rrk, X86::VANDPDZ256rmk, 0 }, { X86::VANDPSZ256rrk, X86::VANDPSZ256rmk, 0 }, { X86::VDIVPDZ256rrk, X86::VDIVPDZ256rmk, 0 }, { X86::VDIVPSZ256rrk, X86::VDIVPSZ256rmk, 0 }, { X86::VINSERTF32x4Z256rrk,X86::VINSERTF32x4Z256rmk, 0 }, { X86::VINSERTF64x2Z256rrk,X86::VINSERTF64x2Z256rmk, 0 }, { X86::VINSERTI32x4Z256rrk,X86::VINSERTI32x4Z256rmk, 0 }, { X86::VINSERTI64x2Z256rrk,X86::VINSERTI64x2Z256rmk, 0 }, { X86::VMAXCPDZ256rrk, X86::VMAXCPDZ256rmk, 0 }, { X86::VMAXCPSZ256rrk, X86::VMAXCPSZ256rmk, 0 }, { X86::VMAXPDZ256rrk, X86::VMAXPDZ256rmk, 0 }, { X86::VMAXPSZ256rrk, X86::VMAXPSZ256rmk, 0 }, { X86::VMINCPDZ256rrk, X86::VMINCPDZ256rmk, 0 }, { X86::VMINCPSZ256rrk, X86::VMINCPSZ256rmk, 0 }, { X86::VMINPDZ256rrk, X86::VMINPDZ256rmk, 0 }, { X86::VMINPSZ256rrk, X86::VMINPSZ256rmk, 0 }, { X86::VMULPDZ256rrk, X86::VMULPDZ256rmk, 0 }, { X86::VMULPSZ256rrk, X86::VMULPSZ256rmk, 0 }, { X86::VORPDZ256rrk, X86::VORPDZ256rmk, 0 }, { X86::VORPSZ256rrk, X86::VORPSZ256rmk, 0 }, { X86::VPACKSSDWZ256rrk, X86::VPACKSSDWZ256rmk, 0 }, { X86::VPACKSSWBZ256rrk, X86::VPACKSSWBZ256rmk, 0 }, { X86::VPACKUSDWZ256rrk, X86::VPACKUSDWZ256rmk, 0 }, { X86::VPACKUSWBZ256rrk, X86::VPACKUSWBZ256rmk, 0 }, { X86::VPADDBZ256rrk, X86::VPADDBZ256rmk, 0 }, { X86::VPADDDZ256rrk, X86::VPADDDZ256rmk, 0 }, { X86::VPADDQZ256rrk, X86::VPADDQZ256rmk, 0 }, { X86::VPADDSBZ256rrk, X86::VPADDSBZ256rmk, 0 }, { X86::VPADDSWZ256rrk, X86::VPADDSWZ256rmk, 0 }, { X86::VPADDUSBZ256rrk, X86::VPADDUSBZ256rmk, 0 }, { X86::VPADDUSWZ256rrk, X86::VPADDUSWZ256rmk, 0 }, { X86::VPADDWZ256rrk, X86::VPADDWZ256rmk, 0 }, { X86::VPALIGNRZ256rrik, X86::VPALIGNRZ256rmik, 0 }, { X86::VPANDDZ256rrk, X86::VPANDDZ256rmk, 0 }, { X86::VPANDNDZ256rrk, X86::VPANDNDZ256rmk, 0 }, { X86::VPANDNQZ256rrk, X86::VPANDNQZ256rmk, 0 }, { X86::VPANDQZ256rrk, X86::VPANDQZ256rmk, 0 }, { X86::VPAVGBZ256rrk, X86::VPAVGBZ256rmk, 0 }, { X86::VPAVGWZ256rrk, X86::VPAVGWZ256rmk, 0 }, { X86::VPERMBZ256rrk, X86::VPERMBZ256rmk, 0 }, { X86::VPERMDZ256rrk, X86::VPERMDZ256rmk, 0 }, { X86::VPERMI2B256rrk, X86::VPERMI2B256rmk, 0 }, { X86::VPERMI2D256rrk, X86::VPERMI2D256rmk, 0 }, { X86::VPERMI2PD256rrk, X86::VPERMI2PD256rmk, 0 }, { X86::VPERMI2PS256rrk, X86::VPERMI2PS256rmk, 0 }, { X86::VPERMI2Q256rrk, X86::VPERMI2Q256rmk, 0 }, { X86::VPERMI2W256rrk, X86::VPERMI2W256rmk, 0 }, { X86::VPERMILPDZ256rrk, X86::VPERMILPDZ256rmk, 0 }, { X86::VPERMILPSZ256rrk, X86::VPERMILPSZ256rmk, 0 }, { X86::VPERMPDZ256rrk, X86::VPERMPDZ256rmk, 0 }, { X86::VPERMPSZ256rrk, X86::VPERMPSZ256rmk, 0 }, { X86::VPERMQZ256rrk, X86::VPERMQZ256rmk, 0 }, { X86::VPERMT2B256rrk, X86::VPERMT2B256rmk, 0 }, { X86::VPERMT2D256rrk, X86::VPERMT2D256rmk, 0 }, { X86::VPERMT2PD256rrk, X86::VPERMT2PD256rmk, 0 }, { X86::VPERMT2PS256rrk, X86::VPERMT2PS256rmk, 0 }, { X86::VPERMT2Q256rrk, X86::VPERMT2Q256rmk, 0 }, { X86::VPERMT2W256rrk, X86::VPERMT2W256rmk, 0 }, { X86::VPERMWZ256rrk, X86::VPERMWZ256rmk, 0 }, { X86::VPMADDUBSWZ256rrk, X86::VPMADDUBSWZ256rmk, 0 }, { X86::VPMADDWDZ256rrk, X86::VPMADDWDZ256rmk, 0 }, { X86::VPMAXSBZ256rrk, X86::VPMAXSBZ256rmk, 0 }, { X86::VPMAXSDZ256rrk, X86::VPMAXSDZ256rmk, 0 }, { X86::VPMAXSQZ256rrk, X86::VPMAXSQZ256rmk, 0 }, { X86::VPMAXSWZ256rrk, X86::VPMAXSWZ256rmk, 0 }, { X86::VPMAXUBZ256rrk, X86::VPMAXUBZ256rmk, 0 }, { X86::VPMAXUDZ256rrk, X86::VPMAXUDZ256rmk, 0 }, { X86::VPMAXUQZ256rrk, X86::VPMAXUQZ256rmk, 0 }, { X86::VPMAXUWZ256rrk, X86::VPMAXUWZ256rmk, 0 }, { X86::VPMINSBZ256rrk, X86::VPMINSBZ256rmk, 0 }, { X86::VPMINSDZ256rrk, X86::VPMINSDZ256rmk, 0 }, { X86::VPMINSQZ256rrk, X86::VPMINSQZ256rmk, 0 }, { X86::VPMINSWZ256rrk, X86::VPMINSWZ256rmk, 0 }, { X86::VPMINUBZ256rrk, X86::VPMINUBZ256rmk, 0 }, { X86::VPMINUDZ256rrk, X86::VPMINUDZ256rmk, 0 }, { X86::VPMINUQZ256rrk, X86::VPMINUQZ256rmk, 0 }, { X86::VPMINUWZ256rrk, X86::VPMINUWZ256rmk, 0 }, { X86::VPMULDQZ256rrk, X86::VPMULDQZ256rmk, 0 }, { X86::VPMULLDZ256rrk, X86::VPMULLDZ256rmk, 0 }, { X86::VPMULLQZ256rrk, X86::VPMULLQZ256rmk, 0 }, { X86::VPMULLWZ256rrk, X86::VPMULLWZ256rmk, 0 }, { X86::VPMULUDQZ256rrk, X86::VPMULUDQZ256rmk, 0 }, { X86::VPORDZ256rrk, X86::VPORDZ256rmk, 0 }, { X86::VPORQZ256rrk, X86::VPORQZ256rmk, 0 }, { X86::VPSHUFBZ256rrk, X86::VPSHUFBZ256rmk, 0 }, { X86::VPSLLDZ256rrk, X86::VPSLLDZ256rmk, 0 }, { X86::VPSLLQZ256rrk, X86::VPSLLQZ256rmk, 0 }, { X86::VPSLLVDZ256rrk, X86::VPSLLVDZ256rmk, 0 }, { X86::VPSLLVQZ256rrk, X86::VPSLLVQZ256rmk, 0 }, { X86::VPSLLVWZ256rrk, X86::VPSLLVWZ256rmk, 0 }, { X86::VPSLLWZ256rrk, X86::VPSLLWZ256rmk, 0 }, { X86::VPSRADZ256rrk, X86::VPSRADZ256rmk, 0 }, { X86::VPSRAQZ256rrk, X86::VPSRAQZ256rmk, 0 }, { X86::VPSRAVDZ256rrk, X86::VPSRAVDZ256rmk, 0 }, { X86::VPSRAVQZ256rrk, X86::VPSRAVQZ256rmk, 0 }, { X86::VPSRAVWZ256rrk, X86::VPSRAVWZ256rmk, 0 }, { X86::VPSRAWZ256rrk, X86::VPSRAWZ256rmk, 0 }, { X86::VPSRLDZ256rrk, X86::VPSRLDZ256rmk, 0 }, { X86::VPSRLQZ256rrk, X86::VPSRLQZ256rmk, 0 }, { X86::VPSRLVDZ256rrk, X86::VPSRLVDZ256rmk, 0 }, { X86::VPSRLVQZ256rrk, X86::VPSRLVQZ256rmk, 0 }, { X86::VPSRLVWZ256rrk, X86::VPSRLVWZ256rmk, 0 }, { X86::VPSRLWZ256rrk, X86::VPSRLWZ256rmk, 0 }, { X86::VPSUBBZ256rrk, X86::VPSUBBZ256rmk, 0 }, { X86::VPSUBDZ256rrk, X86::VPSUBDZ256rmk, 0 }, { X86::VPSUBQZ256rrk, X86::VPSUBQZ256rmk, 0 }, { X86::VPSUBSBZ256rrk, X86::VPSUBSBZ256rmk, 0 }, { X86::VPSUBSWZ256rrk, X86::VPSUBSWZ256rmk, 0 }, { X86::VPSUBUSBZ256rrk, X86::VPSUBUSBZ256rmk, 0 }, { X86::VPSUBUSWZ256rrk, X86::VPSUBUSWZ256rmk, 0 }, { X86::VPSUBWZ256rrk, X86::VPSUBWZ256rmk, 0 }, { X86::VPTERNLOGDZ256rrik, X86::VPTERNLOGDZ256rmik, 0 }, { X86::VPTERNLOGQZ256rrik, X86::VPTERNLOGQZ256rmik, 0 }, { X86::VPUNPCKHBWZ256rrk, X86::VPUNPCKHBWZ256rmk, 0 }, { X86::VPUNPCKHDQZ256rrk, X86::VPUNPCKHDQZ256rmk, 0 }, { X86::VPUNPCKHQDQZ256rrk, X86::VPUNPCKHQDQZ256rmk, 0 }, { X86::VPUNPCKHWDZ256rrk, X86::VPUNPCKHWDZ256rmk, 0 }, { X86::VPUNPCKLBWZ256rrk, X86::VPUNPCKLBWZ256rmk, 0 }, { X86::VPUNPCKLDQZ256rrk, X86::VPUNPCKLDQZ256rmk, 0 }, { X86::VPUNPCKLQDQZ256rrk, X86::VPUNPCKLQDQZ256rmk, 0 }, { X86::VPUNPCKLWDZ256rrk, X86::VPUNPCKLWDZ256rmk, 0 }, { X86::VPXORDZ256rrk, X86::VPXORDZ256rmk, 0 }, { X86::VPXORQZ256rrk, X86::VPXORQZ256rmk, 0 }, { X86::VSHUFPDZ256rrik, X86::VSHUFPDZ256rmik, 0 }, { X86::VSHUFPSZ256rrik, X86::VSHUFPSZ256rmik, 0 }, { X86::VSUBPDZ256rrk, X86::VSUBPDZ256rmk, 0 }, { X86::VSUBPSZ256rrk, X86::VSUBPSZ256rmk, 0 }, { X86::VUNPCKHPDZ256rrk, X86::VUNPCKHPDZ256rmk, 0 }, { X86::VUNPCKHPSZ256rrk, X86::VUNPCKHPSZ256rmk, 0 }, { X86::VUNPCKLPDZ256rrk, X86::VUNPCKLPDZ256rmk, 0 }, { X86::VUNPCKLPSZ256rrk, X86::VUNPCKLPSZ256rmk, 0 }, { X86::VXORPDZ256rrk, X86::VXORPDZ256rmk, 0 }, { X86::VXORPSZ256rrk, X86::VXORPSZ256rmk, 0 }, // AVX-512{F,VL} foldable instructions 128-bit { X86::VADDPDZ128rrk, X86::VADDPDZ128rmk, 0 }, { X86::VADDPSZ128rrk, X86::VADDPSZ128rmk, 0 }, { X86::VALIGNDZ128rrik, X86::VALIGNDZ128rmik, 0 }, { X86::VALIGNQZ128rrik, X86::VALIGNQZ128rmik, 0 }, { X86::VANDNPDZ128rrk, X86::VANDNPDZ128rmk, 0 }, { X86::VANDNPSZ128rrk, X86::VANDNPSZ128rmk, 0 }, { X86::VANDPDZ128rrk, X86::VANDPDZ128rmk, 0 }, { X86::VANDPSZ128rrk, X86::VANDPSZ128rmk, 0 }, { X86::VDIVPDZ128rrk, X86::VDIVPDZ128rmk, 0 }, { X86::VDIVPSZ128rrk, X86::VDIVPSZ128rmk, 0 }, { X86::VMAXCPDZ128rrk, X86::VMAXCPDZ128rmk, 0 }, { X86::VMAXCPSZ128rrk, X86::VMAXCPSZ128rmk, 0 }, { X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 }, { X86::VMAXPSZ128rrk, X86::VMAXPSZ128rmk, 0 }, { X86::VMINCPDZ128rrk, X86::VMINCPDZ128rmk, 0 }, { X86::VMINCPSZ128rrk, X86::VMINCPSZ128rmk, 0 }, { X86::VMINPDZ128rrk, X86::VMINPDZ128rmk, 0 }, { X86::VMINPSZ128rrk, X86::VMINPSZ128rmk, 0 }, { X86::VMULPDZ128rrk, X86::VMULPDZ128rmk, 0 }, { X86::VMULPSZ128rrk, X86::VMULPSZ128rmk, 0 }, { X86::VORPDZ128rrk, X86::VORPDZ128rmk, 0 }, { X86::VORPSZ128rrk, X86::VORPSZ128rmk, 0 }, { X86::VPACKSSDWZ128rrk, X86::VPACKSSDWZ128rmk, 0 }, { X86::VPACKSSWBZ128rrk, X86::VPACKSSWBZ128rmk, 0 }, { X86::VPACKUSDWZ128rrk, X86::VPACKUSDWZ128rmk, 0 }, { X86::VPACKUSWBZ128rrk, X86::VPACKUSWBZ128rmk, 0 }, { X86::VPADDBZ128rrk, X86::VPADDBZ128rmk, 0 }, { X86::VPADDDZ128rrk, X86::VPADDDZ128rmk, 0 }, { X86::VPADDQZ128rrk, X86::VPADDQZ128rmk, 0 }, { X86::VPADDSBZ128rrk, X86::VPADDSBZ128rmk, 0 }, { X86::VPADDSWZ128rrk, X86::VPADDSWZ128rmk, 0 }, { X86::VPADDUSBZ128rrk, X86::VPADDUSBZ128rmk, 0 }, { X86::VPADDUSWZ128rrk, X86::VPADDUSWZ128rmk, 0 }, { X86::VPADDWZ128rrk, X86::VPADDWZ128rmk, 0 }, { X86::VPALIGNRZ128rrik, X86::VPALIGNRZ128rmik, 0 }, { X86::VPANDDZ128rrk, X86::VPANDDZ128rmk, 0 }, { X86::VPANDNDZ128rrk, X86::VPANDNDZ128rmk, 0 }, { X86::VPANDNQZ128rrk, X86::VPANDNQZ128rmk, 0 }, { X86::VPANDQZ128rrk, X86::VPANDQZ128rmk, 0 }, { X86::VPAVGBZ128rrk, X86::VPAVGBZ128rmk, 0 }, { X86::VPAVGWZ128rrk, X86::VPAVGWZ128rmk, 0 }, { X86::VPERMBZ128rrk, X86::VPERMBZ128rmk, 0 }, { X86::VPERMI2B128rrk, X86::VPERMI2B128rmk, 0 }, { X86::VPERMI2D128rrk, X86::VPERMI2D128rmk, 0 }, { X86::VPERMI2PD128rrk, X86::VPERMI2PD128rmk, 0 }, { X86::VPERMI2PS128rrk, X86::VPERMI2PS128rmk, 0 }, { X86::VPERMI2Q128rrk, X86::VPERMI2Q128rmk, 0 }, { X86::VPERMI2W128rrk, X86::VPERMI2W128rmk, 0 }, { X86::VPERMILPDZ128rrk, X86::VPERMILPDZ128rmk, 0 }, { X86::VPERMILPSZ128rrk, X86::VPERMILPSZ128rmk, 0 }, { X86::VPERMT2B128rrk, X86::VPERMT2B128rmk, 0 }, { X86::VPERMT2D128rrk, X86::VPERMT2D128rmk, 0 }, { X86::VPERMT2PD128rrk, X86::VPERMT2PD128rmk, 0 }, { X86::VPERMT2PS128rrk, X86::VPERMT2PS128rmk, 0 }, { X86::VPERMT2Q128rrk, X86::VPERMT2Q128rmk, 0 }, { X86::VPERMT2W128rrk, X86::VPERMT2W128rmk, 0 }, { X86::VPERMWZ128rrk, X86::VPERMWZ128rmk, 0 }, { X86::VPMADDUBSWZ128rrk, X86::VPMADDUBSWZ128rmk, 0 }, { X86::VPMADDWDZ128rrk, X86::VPMADDWDZ128rmk, 0 }, { X86::VPMAXSBZ128rrk, X86::VPMAXSBZ128rmk, 0 }, { X86::VPMAXSDZ128rrk, X86::VPMAXSDZ128rmk, 0 }, { X86::VPMAXSQZ128rrk, X86::VPMAXSQZ128rmk, 0 }, { X86::VPMAXSWZ128rrk, X86::VPMAXSWZ128rmk, 0 }, { X86::VPMAXUBZ128rrk, X86::VPMAXUBZ128rmk, 0 }, { X86::VPMAXUDZ128rrk, X86::VPMAXUDZ128rmk, 0 }, { X86::VPMAXUQZ128rrk, X86::VPMAXUQZ128rmk, 0 }, { X86::VPMAXUWZ128rrk, X86::VPMAXUWZ128rmk, 0 }, { X86::VPMINSBZ128rrk, X86::VPMINSBZ128rmk, 0 }, { X86::VPMINSDZ128rrk, X86::VPMINSDZ128rmk, 0 }, { X86::VPMINSQZ128rrk, X86::VPMINSQZ128rmk, 0 }, { X86::VPMINSWZ128rrk, X86::VPMINSWZ128rmk, 0 }, { X86::VPMINUBZ128rrk, X86::VPMINUBZ128rmk, 0 }, { X86::VPMINUDZ128rrk, X86::VPMINUDZ128rmk, 0 }, { X86::VPMINUQZ128rrk, X86::VPMINUQZ128rmk, 0 }, { X86::VPMINUWZ128rrk, X86::VPMINUWZ128rmk, 0 }, { X86::VPMULDQZ128rrk, X86::VPMULDQZ128rmk, 0 }, { X86::VPMULLDZ128rrk, X86::VPMULLDZ128rmk, 0 }, { X86::VPMULLQZ128rrk, X86::VPMULLQZ128rmk, 0 }, { X86::VPMULLWZ128rrk, X86::VPMULLWZ128rmk, 0 }, { X86::VPMULUDQZ128rrk, X86::VPMULUDQZ128rmk, 0 }, { X86::VPORDZ128rrk, X86::VPORDZ128rmk, 0 }, { X86::VPORQZ128rrk, X86::VPORQZ128rmk, 0 }, { X86::VPSHUFBZ128rrk, X86::VPSHUFBZ128rmk, 0 }, { X86::VPSLLDZ128rrk, X86::VPSLLDZ128rmk, 0 }, { X86::VPSLLQZ128rrk, X86::VPSLLQZ128rmk, 0 }, { X86::VPSLLVDZ128rrk, X86::VPSLLVDZ128rmk, 0 }, { X86::VPSLLVQZ128rrk, X86::VPSLLVQZ128rmk, 0 }, { X86::VPSLLVWZ128rrk, X86::VPSLLVWZ128rmk, 0 }, { X86::VPSLLWZ128rrk, X86::VPSLLWZ128rmk, 0 }, { X86::VPSRADZ128rrk, X86::VPSRADZ128rmk, 0 }, { X86::VPSRAQZ128rrk, X86::VPSRAQZ128rmk, 0 }, { X86::VPSRAVDZ128rrk, X86::VPSRAVDZ128rmk, 0 }, { X86::VPSRAVQZ128rrk, X86::VPSRAVQZ128rmk, 0 }, { X86::VPSRAVWZ128rrk, X86::VPSRAVWZ128rmk, 0 }, { X86::VPSRAWZ128rrk, X86::VPSRAWZ128rmk, 0 }, { X86::VPSRLDZ128rrk, X86::VPSRLDZ128rmk, 0 }, { X86::VPSRLQZ128rrk, X86::VPSRLQZ128rmk, 0 }, { X86::VPSRLVDZ128rrk, X86::VPSRLVDZ128rmk, 0 }, { X86::VPSRLVQZ128rrk, X86::VPSRLVQZ128rmk, 0 }, { X86::VPSRLVWZ128rrk, X86::VPSRLVWZ128rmk, 0 }, { X86::VPSRLWZ128rrk, X86::VPSRLWZ128rmk, 0 }, { X86::VPSUBBZ128rrk, X86::VPSUBBZ128rmk, 0 }, { X86::VPSUBDZ128rrk, X86::VPSUBDZ128rmk, 0 }, { X86::VPSUBQZ128rrk, X86::VPSUBQZ128rmk, 0 }, { X86::VPSUBSBZ128rrk, X86::VPSUBSBZ128rmk, 0 }, { X86::VPSUBSWZ128rrk, X86::VPSUBSWZ128rmk, 0 }, { X86::VPSUBUSBZ128rrk, X86::VPSUBUSBZ128rmk, 0 }, { X86::VPSUBUSWZ128rrk, X86::VPSUBUSWZ128rmk, 0 }, { X86::VPSUBWZ128rrk, X86::VPSUBWZ128rmk, 0 }, { X86::VPTERNLOGDZ128rrik, X86::VPTERNLOGDZ128rmik, 0 }, { X86::VPTERNLOGQZ128rrik, X86::VPTERNLOGQZ128rmik, 0 }, { X86::VPUNPCKHBWZ128rrk, X86::VPUNPCKHBWZ128rmk, 0 }, { X86::VPUNPCKHDQZ128rrk, X86::VPUNPCKHDQZ128rmk, 0 }, { X86::VPUNPCKHQDQZ128rrk, X86::VPUNPCKHQDQZ128rmk, 0 }, { X86::VPUNPCKHWDZ128rrk, X86::VPUNPCKHWDZ128rmk, 0 }, { X86::VPUNPCKLBWZ128rrk, X86::VPUNPCKLBWZ128rmk, 0 }, { X86::VPUNPCKLDQZ128rrk, X86::VPUNPCKLDQZ128rmk, 0 }, { X86::VPUNPCKLQDQZ128rrk, X86::VPUNPCKLQDQZ128rmk, 0 }, { X86::VPUNPCKLWDZ128rrk, X86::VPUNPCKLWDZ128rmk, 0 }, { X86::VPXORDZ128rrk, X86::VPXORDZ128rmk, 0 }, { X86::VPXORQZ128rrk, X86::VPXORQZ128rmk, 0 }, { X86::VSHUFPDZ128rrik, X86::VSHUFPDZ128rmik, 0 }, { X86::VSHUFPSZ128rrik, X86::VSHUFPSZ128rmik, 0 }, { X86::VSUBPDZ128rrk, X86::VSUBPDZ128rmk, 0 }, { X86::VSUBPSZ128rrk, X86::VSUBPSZ128rmk, 0 }, { X86::VUNPCKHPDZ128rrk, X86::VUNPCKHPDZ128rmk, 0 }, { X86::VUNPCKHPSZ128rrk, X86::VUNPCKHPSZ128rmk, 0 }, { X86::VUNPCKLPDZ128rrk, X86::VUNPCKLPDZ128rmk, 0 }, { X86::VUNPCKLPSZ128rrk, X86::VUNPCKLPSZ128rmk, 0 }, { X86::VXORPDZ128rrk, X86::VXORPDZ128rmk, 0 }, { X86::VXORPSZ128rrk, X86::VXORPSZ128rmk, 0 }, // 512-bit three source instructions with zero masking. { X86::VPERMI2Brrkz, X86::VPERMI2Brmkz, 0 }, { X86::VPERMI2Drrkz, X86::VPERMI2Drmkz, 0 }, { X86::VPERMI2PSrrkz, X86::VPERMI2PSrmkz, 0 }, { X86::VPERMI2PDrrkz, X86::VPERMI2PDrmkz, 0 }, { X86::VPERMI2Qrrkz, X86::VPERMI2Qrmkz, 0 }, { X86::VPERMI2Wrrkz, X86::VPERMI2Wrmkz, 0 }, { X86::VPERMT2Brrkz, X86::VPERMT2Brmkz, 0 }, { X86::VPERMT2Drrkz, X86::VPERMT2Drmkz, 0 }, { X86::VPERMT2PSrrkz, X86::VPERMT2PSrmkz, 0 }, { X86::VPERMT2PDrrkz, X86::VPERMT2PDrmkz, 0 }, { X86::VPERMT2Qrrkz, X86::VPERMT2Qrmkz, 0 }, { X86::VPERMT2Wrrkz, X86::VPERMT2Wrmkz, 0 }, { X86::VPTERNLOGDZrrikz, X86::VPTERNLOGDZrmikz, 0 }, { X86::VPTERNLOGQZrrikz, X86::VPTERNLOGQZrmikz, 0 }, // 256-bit three source instructions with zero masking. { X86::VPERMI2B256rrkz, X86::VPERMI2B256rmkz, 0 }, { X86::VPERMI2D256rrkz, X86::VPERMI2D256rmkz, 0 }, { X86::VPERMI2PD256rrkz, X86::VPERMI2PD256rmkz, 0 }, { X86::VPERMI2PS256rrkz, X86::VPERMI2PS256rmkz, 0 }, { X86::VPERMI2Q256rrkz, X86::VPERMI2Q256rmkz, 0 }, { X86::VPERMI2W256rrkz, X86::VPERMI2W256rmkz, 0 }, { X86::VPERMT2B256rrkz, X86::VPERMT2B256rmkz, 0 }, { X86::VPERMT2D256rrkz, X86::VPERMT2D256rmkz, 0 }, { X86::VPERMT2PD256rrkz, X86::VPERMT2PD256rmkz, 0 }, { X86::VPERMT2PS256rrkz, X86::VPERMT2PS256rmkz, 0 }, { X86::VPERMT2Q256rrkz, X86::VPERMT2Q256rmkz, 0 }, { X86::VPERMT2W256rrkz, X86::VPERMT2W256rmkz, 0 }, { X86::VPTERNLOGDZ256rrikz,X86::VPTERNLOGDZ256rmikz, 0 }, { X86::VPTERNLOGQZ256rrikz,X86::VPTERNLOGQZ256rmikz, 0 }, // 128-bit three source instructions with zero masking. { X86::VPERMI2B128rrkz, X86::VPERMI2B128rmkz, 0 }, { X86::VPERMI2D128rrkz, X86::VPERMI2D128rmkz, 0 }, { X86::VPERMI2PD128rrkz, X86::VPERMI2PD128rmkz, 0 }, { X86::VPERMI2PS128rrkz, X86::VPERMI2PS128rmkz, 0 }, { X86::VPERMI2Q128rrkz, X86::VPERMI2Q128rmkz, 0 }, { X86::VPERMI2W128rrkz, X86::VPERMI2W128rmkz, 0 }, { X86::VPERMT2B128rrkz, X86::VPERMT2B128rmkz, 0 }, { X86::VPERMT2D128rrkz, X86::VPERMT2D128rmkz, 0 }, { X86::VPERMT2PD128rrkz, X86::VPERMT2PD128rmkz, 0 }, { X86::VPERMT2PS128rrkz, X86::VPERMT2PS128rmkz, 0 }, { X86::VPERMT2Q128rrkz, X86::VPERMT2Q128rmkz, 0 }, { X86::VPERMT2W128rrkz, X86::VPERMT2W128rmkz, 0 }, { X86::VPTERNLOGDZ128rrikz,X86::VPTERNLOGDZ128rmikz, 0 }, { X86::VPTERNLOGQZ128rrikz,X86::VPTERNLOGQZ128rmikz, 0 }, }; for (X86MemoryFoldTableEntry Entry : MemoryFoldTable4) { AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable, Entry.RegOp, Entry.MemOp, // Index 4, folded load Entry.Flags | TB_INDEX_4 | TB_FOLDED_LOAD); } for (I = X86InstrFMA3Info::rm_begin(); I != E; ++I) { if (I.getGroup()->isKMasked()) { // Intrinsics need to pass TB_NO_REVERSE. if (I.getGroup()->isIntrinsic()) { AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable, I.getRegOpcode(), I.getMemOpcode(), TB_ALIGN_NONE | TB_INDEX_4 | TB_FOLDED_LOAD | TB_NO_REVERSE); } else { AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable, I.getRegOpcode(), I.getMemOpcode(), TB_ALIGN_NONE | TB_INDEX_4 | TB_FOLDED_LOAD); } } } } void X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable, MemOp2RegOpTableType &M2RTable, uint16_t RegOp, uint16_t MemOp, uint16_t Flags) { if ((Flags & TB_NO_FORWARD) == 0) { assert(!R2MTable.count(RegOp) && "Duplicate entry!"); R2MTable[RegOp] = std::make_pair(MemOp, Flags); } if ((Flags & TB_NO_REVERSE) == 0) { assert(!M2RTable.count(MemOp) && "Duplicated entries in unfolding maps?"); M2RTable[MemOp] = std::make_pair(RegOp, Flags); } } bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const { switch (MI.getOpcode()) { default: break; case X86::MOVSX16rr8: case X86::MOVZX16rr8: case X86::MOVSX32rr8: case X86::MOVZX32rr8: case X86::MOVSX64rr8: if (!Subtarget.is64Bit()) // It's not always legal to reference the low 8-bit of the larger // register in 32-bit mode. return false; case X86::MOVSX32rr16: case X86::MOVZX32rr16: case X86::MOVSX64rr16: case X86::MOVSX64rr32: { if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) // Be conservative. return false; SrcReg = MI.getOperand(1).getReg(); DstReg = MI.getOperand(0).getReg(); switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::MOVSX16rr8: case X86::MOVZX16rr8: case X86::MOVSX32rr8: case X86::MOVZX32rr8: case X86::MOVSX64rr8: SubIdx = X86::sub_8bit; break; case X86::MOVSX32rr16: case X86::MOVZX32rr16: case X86::MOVSX64rr16: SubIdx = X86::sub_16bit; break; case X86::MOVSX64rr32: SubIdx = X86::sub_32bit; break; } return true; } } return false; } int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { const MachineFunction *MF = MI.getParent()->getParent(); const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); if (isFrameInstr(MI)) { unsigned StackAlign = TFI->getStackAlignment(); int SPAdj = alignTo(getFrameSize(MI), StackAlign); SPAdj -= getFrameAdjustment(MI); if (!isFrameSetup(MI)) SPAdj = -SPAdj; return SPAdj; } // To know whether a call adjusts the stack, we need information // that is bound to the following ADJCALLSTACKUP pseudo. // Look for the next ADJCALLSTACKUP that follows the call. if (MI.isCall()) { const MachineBasicBlock *MBB = MI.getParent(); auto I = ++MachineBasicBlock::const_iterator(MI); for (auto E = MBB->end(); I != E; ++I) { if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall()) break; } // If we could not find a frame destroy opcode, then it has already // been simplified, so we don't care. if (I->getOpcode() != getCallFrameDestroyOpcode()) return 0; return -(I->getOperand(1).getImm()); } // Currently handle only PUSHes we can reasonably expect to see // in call sequences switch (MI.getOpcode()) { default: return 0; case X86::PUSH32i8: case X86::PUSH32r: case X86::PUSH32rmm: case X86::PUSH32rmr: case X86::PUSHi32: return 4; case X86::PUSH64i8: case X86::PUSH64r: case X86::PUSH64rmm: case X86::PUSH64rmr: case X86::PUSH64i32: return 8; } } /// Return true and the FrameIndex if the specified /// operand and follow operands form a reference to the stack frame. bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, int &FrameIndex) const { if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && MI.getOperand(Op + X86::AddrScaleAmt).isImm() && MI.getOperand(Op + X86::AddrIndexReg).isReg() && MI.getOperand(Op + X86::AddrDisp).isImm() && MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); return true; } return false; } static bool isFrameLoadOpcode(int Opcode) { switch (Opcode) { default: return false; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp64m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVUPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVUPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVUPSYrm: case X86::VMOVAPSYrm: case X86::VMOVUPDYrm: case X86::VMOVAPDYrm: case X86::VMOVDQUYrm: case X86::VMOVDQAYrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::VMOVSSZrm: case X86::VMOVSDZrm: case X86::VMOVAPSZrm: case X86::VMOVAPSZ128rm: case X86::VMOVAPSZ256rm: case X86::VMOVAPSZ128rm_NOVLX: case X86::VMOVAPSZ256rm_NOVLX: case X86::VMOVUPSZrm: case X86::VMOVUPSZ128rm: case X86::VMOVUPSZ256rm: case X86::VMOVUPSZ128rm_NOVLX: case X86::VMOVUPSZ256rm_NOVLX: case X86::VMOVAPDZrm: case X86::VMOVAPDZ128rm: case X86::VMOVAPDZ256rm: case X86::VMOVUPDZrm: case X86::VMOVUPDZ128rm: case X86::VMOVUPDZ256rm: case X86::VMOVDQA32Zrm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQU32Zrm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQA64Zrm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQU64Zrm: case X86::VMOVDQU64Z128rm: case X86::VMOVDQU64Z256rm: case X86::VMOVDQU8Zrm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU16Zrm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQU16Z256rm: case X86::KMOVBkm: case X86::KMOVWkm: case X86::KMOVDkm: case X86::KMOVQkm: return true; } } static bool isFrameStoreOpcode(int Opcode) { switch (Opcode) { default: break; case X86::MOV8mr: case X86::MOV16mr: case X86::MOV32mr: case X86::MOV64mr: case X86::ST_FpP64m: case X86::MOVSSmr: case X86::MOVSDmr: case X86::MOVAPSmr: case X86::MOVUPSmr: case X86::MOVAPDmr: case X86::MOVUPDmr: case X86::MOVDQAmr: case X86::MOVDQUmr: case X86::VMOVSSmr: case X86::VMOVSDmr: case X86::VMOVAPSmr: case X86::VMOVUPSmr: case X86::VMOVAPDmr: case X86::VMOVUPDmr: case X86::VMOVDQAmr: case X86::VMOVDQUmr: case X86::VMOVUPSYmr: case X86::VMOVAPSYmr: case X86::VMOVUPDYmr: case X86::VMOVAPDYmr: case X86::VMOVDQUYmr: case X86::VMOVDQAYmr: case X86::VMOVSSZmr: case X86::VMOVSDZmr: case X86::VMOVUPSZmr: case X86::VMOVUPSZ128mr: case X86::VMOVUPSZ256mr: case X86::VMOVUPSZ128mr_NOVLX: case X86::VMOVUPSZ256mr_NOVLX: case X86::VMOVAPSZmr: case X86::VMOVAPSZ128mr: case X86::VMOVAPSZ256mr: case X86::VMOVAPSZ128mr_NOVLX: case X86::VMOVAPSZ256mr_NOVLX: case X86::VMOVUPDZmr: case X86::VMOVUPDZ128mr: case X86::VMOVUPDZ256mr: case X86::VMOVAPDZmr: case X86::VMOVAPDZ128mr: case X86::VMOVAPDZ256mr: case X86::VMOVDQA32Zmr: case X86::VMOVDQA32Z128mr: case X86::VMOVDQA32Z256mr: case X86::VMOVDQU32Zmr: case X86::VMOVDQU32Z128mr: case X86::VMOVDQU32Z256mr: case X86::VMOVDQA64Zmr: case X86::VMOVDQA64Z128mr: case X86::VMOVDQA64Z256mr: case X86::VMOVDQU64Zmr: case X86::VMOVDQU64Z128mr: case X86::VMOVDQU64Z256mr: case X86::VMOVDQU8Zmr: case X86::VMOVDQU8Z128mr: case X86::VMOVDQU8Z256mr: case X86::VMOVDQU16Zmr: case X86::VMOVDQU16Z128mr: case X86::VMOVDQU16Z256mr: case X86::MMX_MOVD64mr: case X86::MMX_MOVQ64mr: case X86::MMX_MOVNTQmr: case X86::KMOVBmk: case X86::KMOVWmk: case X86::KMOVDmk: case X86::KMOVQmk: return true; } return false; } unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (isFrameLoadOpcode(MI.getOpcode())) if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) return MI.getOperand(0).getReg(); return 0; } unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const { if (isFrameLoadOpcode(MI.getOpcode())) { unsigned Reg; if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) return Reg; // Check for post-frame index elimination operations const MachineMemOperand *Dummy; return hasLoadFromStackSlot(MI, Dummy, FrameIndex); } return 0; } unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (isFrameStoreOpcode(MI.getOpcode())) if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && isFrameOperand(MI, 0, FrameIndex)) return MI.getOperand(X86::AddrNumOperands).getReg(); return 0; } unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const { if (isFrameStoreOpcode(MI.getOpcode())) { unsigned Reg; if ((Reg = isStoreToStackSlot(MI, FrameIndex))) return Reg; // Check for post-frame index elimination operations const MachineMemOperand *Dummy; return hasStoreToStackSlot(MI, Dummy, FrameIndex); } return 0; } /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { // Don't waste compile time scanning use-def chains of physregs. if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) return false; bool isPICBase = false; for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), E = MRI.def_instr_end(); I != E; ++I) { MachineInstr *DefMI = &*I; if (DefMI->getOpcode() != X86::MOVPC32r) return false; assert(!isPICBase && "More than one PIC base?"); isPICBase = true; } return isPICBase; } bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, AliasAnalysis *AA) const { switch (MI.getOpcode()) { default: break; case X86::MOV8rm: case X86::MOV8rm_NOREX: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp64m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVUPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVUPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVUPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: // AVX-512 case X86::VMOVSSZrm: case X86::VMOVSDZrm: case X86::VMOVAPDZ128rm: case X86::VMOVAPDZ256rm: case X86::VMOVAPDZrm: case X86::VMOVAPSZ128rm: case X86::VMOVAPSZ256rm: case X86::VMOVAPSZ128rm_NOVLX: case X86::VMOVAPSZ256rm_NOVLX: case X86::VMOVAPSZrm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQA32Zrm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQU16Z256rm: case X86::VMOVDQU16Zrm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQU32Zrm: case X86::VMOVDQU64Z128rm: case X86::VMOVDQU64Z256rm: case X86::VMOVDQU64Zrm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU8Zrm: case X86::VMOVUPDZ128rm: case X86::VMOVUPDZ256rm: case X86::VMOVUPDZrm: case X86::VMOVUPSZ128rm: case X86::VMOVUPSZ256rm: case X86::VMOVUPSZ128rm_NOVLX: case X86::VMOVUPSZ256rm_NOVLX: case X86::VMOVUPSZrm: { // Loads from constant pools are trivially rematerializable. if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && MI.getOperand(1 + X86::AddrScaleAmt).isImm() && MI.getOperand(1 + X86::AddrIndexReg).isReg() && MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && MI.isDereferenceableInvariantLoad(AA)) { unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); if (BaseReg == 0 || BaseReg == X86::RIP) return true; // Allow re-materialization of PIC load. if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal()) return false; const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); return regIsPICBase(BaseReg, MRI); } return false; } case X86::LEA32r: case X86::LEA64r: { if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && MI.getOperand(1 + X86::AddrIndexReg).isReg() && MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && !MI.getOperand(1 + X86::AddrDisp).isReg()) { // lea fi#, lea GV, etc. are all rematerializable. if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) return true; unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); if (BaseReg == 0) return true; // Allow re-materialization of lea PICBase + x. const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); return regIsPICBase(BaseReg, MRI); } return false; } } // All other instructions marked M_REMATERIALIZABLE are always trivially // rematerializable. return true; } bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { MachineBasicBlock::iterator E = MBB.end(); // For compile time consideration, if we are not able to determine the // safety after visiting 4 instructions in each direction, we will assume // it's not safe. MachineBasicBlock::iterator Iter = I; for (unsigned i = 0; Iter != E && i < 4; ++i) { bool SeenDef = false; for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { MachineOperand &MO = Iter->getOperand(j); if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) SeenDef = true; if (!MO.isReg()) continue; if (MO.getReg() == X86::EFLAGS) { if (MO.isUse()) return false; SeenDef = true; } } if (SeenDef) // This instruction defines EFLAGS, no need to look any further. return true; ++Iter; // Skip over DBG_VALUE. while (Iter != E && Iter->isDebugValue()) ++Iter; } // It is safe to clobber EFLAGS at the end of a block of no successor has it // live in. if (Iter == E) { for (MachineBasicBlock *S : MBB.successors()) if (S->isLiveIn(X86::EFLAGS)) return false; return true; } MachineBasicBlock::iterator B = MBB.begin(); Iter = I; for (unsigned i = 0; i < 4; ++i) { // If we make it to the beginning of the block, it's safe to clobber // EFLAGS iff EFLAGS is not live-in. if (Iter == B) return !MBB.isLiveIn(X86::EFLAGS); --Iter; // Skip over DBG_VALUE. while (Iter != B && Iter->isDebugValue()) --Iter; bool SawKill = false; for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { MachineOperand &MO = Iter->getOperand(j); // A register mask may clobber EFLAGS, but we should still look for a // live EFLAGS def. if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) SawKill = true; if (MO.isReg() && MO.getReg() == X86::EFLAGS) { if (MO.isDef()) return MO.isDead(); if (MO.isKill()) SawKill = true; } } if (SawKill) // This instruction kills EFLAGS and doesn't redefine it, so // there's no need to look further. return true; } // Conservative answer. return false; } void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const { bool ClobbersEFLAGS = false; for (const MachineOperand &MO : Orig.operands()) { if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { ClobbersEFLAGS = true; break; } } if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) { // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side // effects. int Value; switch (Orig.getOpcode()) { case X86::MOV32r0: Value = 0; break; case X86::MOV32r1: Value = 1; break; case X86::MOV32r_1: Value = -1; break; default: llvm_unreachable("Unexpected instruction!"); } const DebugLoc &DL = Orig.getDebugLoc(); BuildMI(MBB, I, DL, get(X86::MOV32ri)) .add(Orig.getOperand(0)) .addImm(Value); } else { MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); MBB.insert(I, MI); } MachineInstr &NewMI = *std::prev(I); NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); } /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS && !MO.isDead()) { return true; } } return false; } /// Check whether the shift count for a machine operand is non-zero. inline static unsigned getTruncatedShiftCount(MachineInstr &MI, unsigned ShiftAmtOperandIdx) { // The shift count is six bits with the REX.W prefix and five bits without. unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); return Imm & ShiftCountMask; } /// Check whether the given shift count is appropriate /// can be represented by a LEA instruction. inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { // Left shift instructions can be transformed into load-effective-address // instructions if we can encode them appropriately. // A LEA instruction utilizes a SIB byte to encode its scale factor. // The SIB.scale field is two bits wide which means that we can encode any // shift amount less than 4. return ShAmt < 4 && ShAmt > 0; } bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, unsigned Opc, bool AllowSP, unsigned &NewSrc, bool &isKill, bool &isUndef, MachineOperand &ImplicitOp, LiveVariables *LV) const { MachineFunction &MF = *MI.getParent()->getParent(); const TargetRegisterClass *RC; if (AllowSP) { RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; } else { RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; } unsigned SrcReg = Src.getReg(); // For both LEA64 and LEA32 the register already has essentially the right // type (32-bit or 64-bit) we may just need to forbid SP. if (Opc != X86::LEA64_32r) { NewSrc = SrcReg; isKill = Src.isKill(); isUndef = Src.isUndef(); if (TargetRegisterInfo::isVirtualRegister(NewSrc) && !MF.getRegInfo().constrainRegClass(NewSrc, RC)) return false; return true; } // This is for an LEA64_32r and incoming registers are 32-bit. One way or // another we need to add 64-bit registers to the final MI. if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) { ImplicitOp = Src; ImplicitOp.setImplicit(); NewSrc = getX86SubSuperRegister(Src.getReg(), 64); isKill = Src.isKill(); isUndef = Src.isUndef(); } else { // Virtual register of the wrong class, we have to create a temporary 64-bit // vreg to feed into the LEA. NewSrc = MF.getRegInfo().createVirtualRegister(RC); MachineInstr *Copy = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) .add(Src); // Which is obviously going to be dead after we're done with it. isKill = true; isUndef = false; if (LV) LV->replaceKillInstruction(SrcReg, MI, *Copy); } // We've set all the parameters without issue. return true; } /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit /// LEA to form 3-address code by promoting to a 32-bit superregister and then /// truncating back down to a 16-bit subregister. MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA( unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { MachineBasicBlock::iterator MBBI = MI.getIterator(); unsigned Dest = MI.getOperand(0).getReg(); unsigned Src = MI.getOperand(1).getReg(); bool isDead = MI.getOperand(0).isDead(); bool isKill = MI.getOperand(1).isKill(); MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); unsigned Opc, leaInReg; if (Subtarget.is64Bit()) { Opc = X86::LEA64_32r; leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); } else { Opc = X86::LEA32r; leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); } // Build and insert into an implicit UNDEF value. This is OK because // well be shifting and then extracting the lower 16-bits. // This has the potential to cause partial register stall. e.g. // movw (%rbp,%rcx,2), %dx // leal -65(%rdx), %esi // But testing has shown this *does* help performance in 64-bit mode (at // least on modern x86 machines). BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); MachineInstr *InsMI = BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(leaInReg, RegState::Define, X86::sub_16bit) .addReg(Src, getKillRegState(isKill)); MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opc), leaOutReg); switch (MIOpc) { default: llvm_unreachable("Unreachable!"); case X86::SHL16ri: { unsigned ShAmt = MI.getOperand(2).getImm(); MIB.addReg(0).addImm(1ULL << ShAmt) .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); break; } case X86::INC16r: addRegOffset(MIB, leaInReg, true, 1); break; case X86::DEC16r: addRegOffset(MIB, leaInReg, true, -1); break; case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD16ri_DB: case X86::ADD16ri8_DB: addRegOffset(MIB, leaInReg, true, MI.getOperand(2).getImm()); break; case X86::ADD16rr: case X86::ADD16rr_DB: { unsigned Src2 = MI.getOperand(2).getReg(); bool isKill2 = MI.getOperand(2).isKill(); unsigned leaInReg2 = 0; MachineInstr *InsMI2 = nullptr; if (Src == Src2) { // ADD16rr %reg1028, %reg1028 // just a single insert_subreg. addRegReg(MIB, leaInReg, true, leaInReg, false); } else { if (Subtarget.is64Bit()) leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); else leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); // Build and insert into an implicit UNDEF value. This is OK because // well be shifting and then extracting the lower 16-bits. BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(leaInReg2, RegState::Define, X86::sub_16bit) .addReg(Src2, getKillRegState(isKill2)); addRegReg(MIB, leaInReg, true, leaInReg2, true); } if (LV && isKill2 && InsMI2) LV->replaceKillInstruction(Src2, MI, *InsMI2); break; } } MachineInstr *NewMI = MIB; MachineInstr *ExtMI = BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)) .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); if (LV) { // Update live variables LV->getVarInfo(leaInReg).Kills.push_back(NewMI); LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); if (isKill) LV->replaceKillInstruction(Src, MI, *InsMI); if (isDead) LV->replaceKillInstruction(Dest, MI, *ExtMI); } return ExtMI; } /// This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into a true /// three-address instruction on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the new instruction. /// MachineInstr * X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { // The following opcodes also sets the condition code register(s). Only // convert them to equivalent lea if the condition code register def's // are dead! if (hasLiveCondCodeDef(MI)) return nullptr; MachineFunction &MF = *MI.getParent()->getParent(); // All instructions input are two-addr instructions. Get the known operands. const MachineOperand &Dest = MI.getOperand(0); const MachineOperand &Src = MI.getOperand(1); MachineInstr *NewMI = nullptr; // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When // we have better subtarget support, enable the 16-bit LEA generation here. // 16-bit LEA is also slow on Core2. bool DisableLEA16 = true; bool is64Bit = Subtarget.is64Bit(); unsigned MIOpc = MI.getOpcode(); switch (MIOpc) { default: return nullptr; case X86::SHL64ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; // LEA can't handle RSP. if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && !MF.getRegInfo().constrainRegClass(Src.getReg(), &X86::GR64_NOSPRegClass)) return nullptr; NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) .add(Dest) .addReg(0) .addImm(1ULL << ShAmt) .add(Src) .addImm(0) .addReg(0); break; } case X86::SHL32ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; // LEA can't handle ESP. bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp, LV)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(0) .addImm(1ULL << ShAmt) .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) .addImm(0) .addReg(0); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = MIB; break; } case X86::SHL16ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)) .add(Dest) .addReg(0) .addImm(1ULL << ShAmt) .add(Src) .addImm(0) .addReg(0); break; } case X86::INC64r: case X86::INC32r: { assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r : (is64Bit ? X86::LEA64_32r : X86::LEA32r); bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp, LV)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = addOffset(MIB, 1); break; } case X86::INC16r: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); NewMI = addOffset( BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), 1); break; case X86::DEC64r: case X86::DEC32r: { assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r : (is64Bit ? X86::LEA64_32r : X86::LEA32r); bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp, LV)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = addOffset(MIB, -1); break; } case X86::DEC16r: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); NewMI = addOffset( BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), -1); break; case X86::ADD64rr: case X86::ADD64rr_DB: case X86::ADD32rr: case X86::ADD32rr_DB: { assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc; if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) Opc = X86::LEA64r; else Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, SrcReg, isKill, isUndef, ImplicitOp, LV)) return nullptr; const MachineOperand &Src2 = MI.getOperand(2); bool isKill2, isUndef2; unsigned SrcReg2; MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, SrcReg2, isKill2, isUndef2, ImplicitOp2, LV)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); if (ImplicitOp2.getReg() != 0) MIB.add(ImplicitOp2); NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); // Preserve undefness of the operands. NewMI->getOperand(1).setIsUndef(isUndef); NewMI->getOperand(3).setIsUndef(isUndef2); if (LV && Src2.isKill()) LV->replaceKillInstruction(SrcReg2, MI, *NewMI); break; } case X86::ADD16rr: case X86::ADD16rr_DB: { if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Src2 = MI.getOperand(2).getReg(); bool isKill2 = MI.getOperand(2).isKill(); NewMI = addRegReg(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest), Src.getReg(), Src.isKill(), Src2, isKill2); // Preserve undefness of the operands. bool isUndef = MI.getOperand(1).isUndef(); bool isUndef2 = MI.getOperand(2).isUndef(); NewMI->getOperand(1).setIsUndef(isUndef); NewMI->getOperand(3).setIsUndef(isUndef2); if (LV && isKill2) LV->replaceKillInstruction(Src2, MI, *NewMI); break; } case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD64ri32_DB: case X86::ADD64ri8_DB: assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); NewMI = addOffset( BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), MI.getOperand(2)); break; case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD32ri_DB: case X86::ADD32ri8_DB: { assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, SrcReg, isKill, isUndef, ImplicitOp, LV)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = addOffset(MIB, MI.getOperand(2)); break; } case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD16ri_DB: case X86::ADD16ri8_DB: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); NewMI = addOffset( BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), MI.getOperand(2)); break; case X86::VMOVDQU8Z128rmk: case X86::VMOVDQU8Z256rmk: case X86::VMOVDQU8Zrmk: case X86::VMOVDQU16Z128rmk: case X86::VMOVDQU16Z256rmk: case X86::VMOVDQU16Zrmk: case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk: case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk: case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk: case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk: case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk: case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk: case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk: case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk: case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk: case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk: case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk: case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: { unsigned Opc; switch (MIOpc) { default: llvm_unreachable("Unreachable!"); case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break; case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break; case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break; case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break; case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break; case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break; case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break; case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break; case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break; case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break; case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break; case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break; case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break; case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break; } NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .add(MI.getOperand(2)) .add(Src) .add(MI.getOperand(3)) .add(MI.getOperand(4)) .add(MI.getOperand(5)) .add(MI.getOperand(6)) .add(MI.getOperand(7)); break; } case X86::VMOVDQU8Z128rrk: case X86::VMOVDQU8Z256rrk: case X86::VMOVDQU8Zrrk: case X86::VMOVDQU16Z128rrk: case X86::VMOVDQU16Z256rrk: case X86::VMOVDQU16Zrrk: case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk: case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk: case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk: case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk: case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk: case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk: case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk: case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk: case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk: case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk: case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk: case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: { unsigned Opc; switch (MIOpc) { default: llvm_unreachable("Unreachable!"); case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break; case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break; case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break; case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break; case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break; case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break; case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break; case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break; case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break; case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break; case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break; case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break; case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break; case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break; } NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .add(MI.getOperand(2)) .add(Src) .add(MI.getOperand(3)); break; } } if (!NewMI) return nullptr; if (LV) { // Update live variables if (Src.isKill()) LV->replaceKillInstruction(Src.getReg(), MI, *NewMI); if (Dest.isDead()) LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI); } MFI->insert(MI.getIterator(), NewMI); // Insert the new inst return NewMI; } /// This determines which of three possible cases of a three source commute /// the source indexes correspond to taking into account any mask operands. /// All prevents commuting a passthru operand. Returns -1 if the commute isn't /// possible. /// Case 0 - Possible to commute the first and second operands. /// Case 1 - Possible to commute the first and third operands. /// Case 2 - Possible to commute the second and third operands. static int getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, unsigned SrcOpIdx2) { // Put the lowest index to SrcOpIdx1 to simplify the checks below. if (SrcOpIdx1 > SrcOpIdx2) std::swap(SrcOpIdx1, SrcOpIdx2); unsigned Op1 = 1, Op2 = 2, Op3 = 3; if (X86II::isKMasked(TSFlags)) { // The k-mask operand cannot be commuted. if (SrcOpIdx1 == 2) return -1; // For k-zero-masked operations it is Ok to commute the first vector // operand. // For regular k-masked operations a conservative choice is done as the // elements of the first vector operand, for which the corresponding bit // in the k-mask operand is set to 0, are copied to the result of the // instruction. // TODO/FIXME: The commute still may be legal if it is known that the // k-mask operand is set to either all ones or all zeroes. // It is also Ok to commute the 1st operand if all users of MI use only // the elements enabled by the k-mask operand. For example, // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] // : v1[i]; // VMOVAPSZmrk , k, v4; // this is the ONLY user of v4 -> // // Ok, to commute v1 in FMADD213PSZrk. if (X86II::isKMergeMasked(TSFlags) && SrcOpIdx1 == Op1) return -1; Op2++; Op3++; } if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) return 0; if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) return 1; if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) return 2; return -1; } unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, const X86InstrFMA3Group &FMA3Group) const { unsigned Opc = MI.getOpcode(); // Put the lowest index to SrcOpIdx1 to simplify the checks below. if (SrcOpIdx1 > SrcOpIdx2) std::swap(SrcOpIdx1, SrcOpIdx2); // TODO: Commuting the 1st operand of FMA*_Int requires some additional // analysis. The commute optimization is legal only if all users of FMA*_Int // use only the lowest element of the FMA*_Int instruction. Such analysis are // not implemented yet. So, just return 0 in that case. // When such analysis are available this place will be the right place for // calling it. if (FMA3Group.isIntrinsic() && SrcOpIdx1 == 1) return 0; // Determine which case this commute is or if it can't be done. int Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2); if (Case < 0) return 0; // Define the FMA forms mapping array that helps to map input FMA form // to output FMA form to preserve the operation semantics after // commuting the operands. const unsigned Form132Index = 0; const unsigned Form213Index = 1; const unsigned Form231Index = 2; static const unsigned FormMapping[][3] = { // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; // FMA132 A, C, b; ==> FMA231 C, A, b; // FMA213 B, A, c; ==> FMA213 A, B, c; // FMA231 C, A, b; ==> FMA132 A, C, b; { Form231Index, Form213Index, Form132Index }, // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; // FMA132 A, c, B; ==> FMA132 B, c, A; // FMA213 B, a, C; ==> FMA231 C, a, B; // FMA231 C, a, B; ==> FMA213 B, a, C; { Form132Index, Form231Index, Form213Index }, // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; // FMA132 a, C, B; ==> FMA213 a, B, C; // FMA213 b, A, C; ==> FMA132 b, C, A; // FMA231 c, A, B; ==> FMA231 c, B, A; { Form213Index, Form132Index, Form231Index } }; unsigned FMAForms[3]; if (FMA3Group.isRegOpcodeFromGroup(Opc)) { FMAForms[0] = FMA3Group.getReg132Opcode(); FMAForms[1] = FMA3Group.getReg213Opcode(); FMAForms[2] = FMA3Group.getReg231Opcode(); } else { FMAForms[0] = FMA3Group.getMem132Opcode(); FMAForms[1] = FMA3Group.getMem213Opcode(); FMAForms[2] = FMA3Group.getMem231Opcode(); } unsigned FormIndex; for (FormIndex = 0; FormIndex < 3; FormIndex++) if (Opc == FMAForms[FormIndex]) break; // Everything is ready, just adjust the FMA opcode and return it. FormIndex = FormMapping[Case][FormIndex]; return FMAForms[FormIndex]; } static bool commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2) { uint64_t TSFlags = MI.getDesc().TSFlags; // Determine which case this commute is or if it can't be done. int Case = getThreeSrcCommuteCase(TSFlags, SrcOpIdx1, SrcOpIdx2); if (Case < 0) return false; // For each case we need to swap two pairs of bits in the final immediate. static const uint8_t SwapMasks[3][4] = { { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5. { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6. { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6. }; uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm(); // Clear out the bits we are swapping. uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | SwapMasks[Case][2] | SwapMasks[Case][3]); // If the immediate had a bit of the pair set, then set the opposite bit. if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1]; if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0]; if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3]; if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2]; MI.getOperand(MI.getNumOperands()-1).setImm(NewImm); return true; } // Returns true if this is a VPERMI2 or VPERMT2 instrution that can be // commuted. static bool isCommutableVPERMV3Instruction(unsigned Opcode) { #define VPERM_CASES(Suffix) \ case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \ case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \ case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \ case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \ case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \ case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \ case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \ case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \ case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \ case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \ case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \ case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz: #define VPERM_CASES_BROADCAST(Suffix) \ VPERM_CASES(Suffix) \ case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \ case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \ case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \ case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \ case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \ case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz: switch (Opcode) { default: return false; VPERM_CASES(B) VPERM_CASES_BROADCAST(D) VPERM_CASES_BROADCAST(PD) VPERM_CASES_BROADCAST(PS) VPERM_CASES_BROADCAST(Q) VPERM_CASES(W) return true; } #undef VPERM_CASES_BROADCAST #undef VPERM_CASES } // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching // from the I opcod to the T opcode and vice versa. static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { #define VPERM_CASES(Orig, New) \ case X86::Orig##128rr: return X86::New##128rr; \ case X86::Orig##128rrkz: return X86::New##128rrkz; \ case X86::Orig##128rm: return X86::New##128rm; \ case X86::Orig##128rmkz: return X86::New##128rmkz; \ case X86::Orig##256rr: return X86::New##256rr; \ case X86::Orig##256rrkz: return X86::New##256rrkz; \ case X86::Orig##256rm: return X86::New##256rm; \ case X86::Orig##256rmkz: return X86::New##256rmkz; \ case X86::Orig##rr: return X86::New##rr; \ case X86::Orig##rrkz: return X86::New##rrkz; \ case X86::Orig##rm: return X86::New##rm; \ case X86::Orig##rmkz: return X86::New##rmkz; #define VPERM_CASES_BROADCAST(Orig, New) \ VPERM_CASES(Orig, New) \ case X86::Orig##128rmb: return X86::New##128rmb; \ case X86::Orig##128rmbkz: return X86::New##128rmbkz; \ case X86::Orig##256rmb: return X86::New##256rmb; \ case X86::Orig##256rmbkz: return X86::New##256rmbkz; \ case X86::Orig##rmb: return X86::New##rmb; \ case X86::Orig##rmbkz: return X86::New##rmbkz; switch (Opcode) { VPERM_CASES(VPERMI2B, VPERMT2B) VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) VPERM_CASES(VPERMI2W, VPERMT2W) VPERM_CASES(VPERMT2B, VPERMI2B) VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) VPERM_CASES(VPERMT2W, VPERMI2W) } llvm_unreachable("Unreachable!"); #undef VPERM_CASES_BROADCAST #undef VPERM_CASES } MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const { auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { if (NewMI) return *MI.getParent()->getParent()->CloneMachineInstr(&MI); return MI; }; switch (MI.getOpcode()) { case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) unsigned Opc; unsigned Size; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; } unsigned Amt = MI.getOperand(3).getImm(); auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); WorkingMI.getOperand(3).setImm(Size - Amt); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::PFSUBrr: case X86::PFSUBRrr: { // PFSUB x, y: x = x - y // PFSUBR x, y: x = y - x unsigned Opc = (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr); auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); break; } case X86::BLENDPDrri: case X86::BLENDPSrri: case X86::PBLENDWrri: case X86::VBLENDPDrri: case X86::VBLENDPSrri: case X86::VBLENDPDYrri: case X86::VBLENDPSYrri: case X86::VPBLENDDrri: case X86::VPBLENDWrri: case X86::VPBLENDDYrri: case X86::VPBLENDWYrri:{ unsigned Mask; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::BLENDPDrri: Mask = 0x03; break; case X86::BLENDPSrri: Mask = 0x0F; break; case X86::PBLENDWrri: Mask = 0xFF; break; case X86::VBLENDPDrri: Mask = 0x03; break; case X86::VBLENDPSrri: Mask = 0x0F; break; case X86::VBLENDPDYrri: Mask = 0x0F; break; case X86::VBLENDPSYrri: Mask = 0xFF; break; case X86::VPBLENDDrri: Mask = 0x0F; break; case X86::VPBLENDWrri: Mask = 0xFF; break; case X86::VPBLENDDYrri: Mask = 0xFF; break; case X86::VPBLENDWYrri: Mask = 0xFF; break; } // Only the least significant bits of Imm are used. unsigned Imm = MI.getOperand(3).getImm() & Mask; auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm(Mask ^ Imm); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::MOVSDrr: case X86::MOVSSrr: case X86::VMOVSDrr: case X86::VMOVSSrr:{ // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. if (!Subtarget.hasSSE41()) return nullptr; unsigned Mask, Opc; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break; case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break; case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break; case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break; } // MOVSD/MOVSS's 2nd operand is a FR64/FR32 reg class - we need to copy // this over to a VR128 class like the 1st operand to use a BLENDPD/BLENDPS. auto &MRI = MI.getParent()->getParent()->getRegInfo(); auto VR128RC = MRI.getRegClass(MI.getOperand(1).getReg()); unsigned VR128 = MRI.createVirtualRegister(VR128RC); BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY), VR128) .addReg(MI.getOperand(2).getReg()); auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); WorkingMI.getOperand(2).setReg(VR128); WorkingMI.addOperand(MachineOperand::CreateImm(Mask)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::PCLMULQDQrr: case X86::VPCLMULQDQrr:{ // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] unsigned Imm = MI.getOperand(3).getImm(); unsigned Src1Hi = Imm & 0x01; unsigned Src2Hi = Imm & 0x10; auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::CMPSDrr: case X86::CMPSSrr: case X86::CMPPDrri: case X86::CMPPSrri: case X86::VCMPSDrr: case X86::VCMPSSrr: case X86::VCMPPDrri: case X86::VCMPPSrri: case X86::VCMPPDYrri: case X86::VCMPPSYrri: case X86::VCMPSDZrr: case X86::VCMPSSZrr: case X86::VCMPPDZrri: case X86::VCMPPSZrri: case X86::VCMPPDZ128rri: case X86::VCMPPSZ128rri: case X86::VCMPPDZ256rri: case X86::VCMPPSZ256rri: { // Float comparison can be safely commuted for // Ordered/Unordered/Equal/NotEqual tests unsigned Imm = MI.getOperand(3).getImm() & 0x7; switch (Imm) { case 0x00: // EQUAL case 0x03: // UNORDERED case 0x04: // NOT EQUAL case 0x07: // ORDERED return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); default: return nullptr; } } case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri: case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri: case X86::VPCMPBZrri: case X86::VPCMPUBZrri: case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri: case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri: case X86::VPCMPDZrri: case X86::VPCMPUDZrri: case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri: case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri: case X86::VPCMPQZrri: case X86::VPCMPUQZrri: case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri: case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri: case X86::VPCMPWZrri: case X86::VPCMPUWZrri: { // Flip comparison mode immediate (if necessary). unsigned Imm = MI.getOperand(3).getImm() & 0x7; switch (Imm) { default: llvm_unreachable("Unreachable!"); case 0x01: Imm = 0x06; break; // LT -> NLE case 0x02: Imm = 0x05; break; // LE -> NLT case 0x05: Imm = 0x02; break; // NLT -> LE case 0x06: Imm = 0x01; break; // NLE -> LT case 0x00: // EQ case 0x03: // FALSE case 0x04: // NE case 0x07: // TRUE break; } auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm(Imm); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::VPCOMBri: case X86::VPCOMUBri: case X86::VPCOMDri: case X86::VPCOMUDri: case X86::VPCOMQri: case X86::VPCOMUQri: case X86::VPCOMWri: case X86::VPCOMUWri: { // Flip comparison mode immediate (if necessary). unsigned Imm = MI.getOperand(3).getImm() & 0x7; switch (Imm) { default: llvm_unreachable("Unreachable!"); case 0x00: Imm = 0x02; break; // LT -> GT case 0x01: Imm = 0x03; break; // LE -> GE case 0x02: Imm = 0x00; break; // GT -> LT case 0x03: Imm = 0x01; break; // GE -> LE case 0x04: // EQ case 0x05: // NE case 0x06: // FALSE case 0x07: // TRUE break; } auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm(Imm); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::VPERM2F128rr: case X86::VPERM2I128rr: { // Flip permute source immediate. // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. unsigned Imm = MI.getOperand(3).getImm() & 0xFF; auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm(Imm ^ 0x22); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::MOVHLPSrr: case X86::UNPCKHPDrr: { if (!Subtarget.hasSSE2()) return nullptr; unsigned Opc = MI.getOpcode(); switch (Opc) { default: llvm_unreachable("Unreachable!"); case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break; case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break; } auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr: case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr: case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr: case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr: case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr: case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr: case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr: case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr: case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: { unsigned Opc; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; } auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: case X86::VPTERNLOGDZrrik: case X86::VPTERNLOGDZ128rrik: case X86::VPTERNLOGDZ256rrik: case X86::VPTERNLOGQZrrik: case X86::VPTERNLOGQZ128rrik: case X86::VPTERNLOGQZ256rrik: case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: case X86::VPTERNLOGDZ128rmbi: case X86::VPTERNLOGDZ256rmbi: case X86::VPTERNLOGDZrmbi: case X86::VPTERNLOGQZ128rmbi: case X86::VPTERNLOGQZ256rmbi: case X86::VPTERNLOGQZrmbi: case X86::VPTERNLOGDZ128rmbikz: case X86::VPTERNLOGDZ256rmbikz: case X86::VPTERNLOGDZrmbikz: case X86::VPTERNLOGQZ128rmbikz: case X86::VPTERNLOGQZ256rmbikz: case X86::VPTERNLOGQZrmbikz: { auto &WorkingMI = cloneIfNew(MI); if (!commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2)) return nullptr; return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } default: { if (isCommutableVPERMV3Instruction(MI.getOpcode())) { unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode()); auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } const X86InstrFMA3Group *FMA3Group = X86InstrFMA3Info::getFMA3Group(MI.getOpcode()); if (FMA3Group) { unsigned Opc = getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group); if (Opc == 0) return nullptr; auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); } } } bool X86InstrInfo::findFMA3CommutedOpIndices( const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2, const X86InstrFMA3Group &FMA3Group) const { if (!findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2)) return false; // Check if we can adjust the opcode to preserve the semantics when // commute the register operands. return getFMA3OpcodeToCommuteOperands(MI, SrcOpIdx1, SrcOpIdx2, FMA3Group) != 0; } bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const { uint64_t TSFlags = MI.getDesc().TSFlags; unsigned FirstCommutableVecOp = 1; unsigned LastCommutableVecOp = 3; unsigned KMaskOp = 0; if (X86II::isKMasked(TSFlags)) { // The k-mask operand has index = 2 for masked and zero-masked operations. KMaskOp = 2; // The operand with index = 1 is used as a source for those elements for // which the corresponding bit in the k-mask is set to 0. if (X86II::isKMergeMasked(TSFlags)) FirstCommutableVecOp = 3; LastCommutableVecOp++; } if (isMem(MI, LastCommutableVecOp)) LastCommutableVecOp--; // Only the first RegOpsNum operands are commutable. // Also, the value 'CommuteAnyOperandIndex' is valid here as it means // that the operand is not specified/fixed. if (SrcOpIdx1 != CommuteAnyOperandIndex && (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || SrcOpIdx1 == KMaskOp)) return false; if (SrcOpIdx2 != CommuteAnyOperandIndex && (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || SrcOpIdx2 == KMaskOp)) return false; // Look for two different register operands assumed to be commutable // regardless of the FMA opcode. The FMA opcode is adjusted later. if (SrcOpIdx1 == CommuteAnyOperandIndex || SrcOpIdx2 == CommuteAnyOperandIndex) { unsigned CommutableOpIdx1 = SrcOpIdx1; unsigned CommutableOpIdx2 = SrcOpIdx2; // At least one of operands to be commuted is not specified and // this method is free to choose appropriate commutable operands. if (SrcOpIdx1 == SrcOpIdx2) // Both of operands are not fixed. By default set one of commutable // operands to the last register operand of the instruction. CommutableOpIdx2 = LastCommutableVecOp; else if (SrcOpIdx2 == CommuteAnyOperandIndex) // Only one of operands is not fixed. CommutableOpIdx2 = SrcOpIdx1; // CommutableOpIdx2 is well defined now. Let's choose another commutable // operand and assign its index to CommutableOpIdx1. unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); for (CommutableOpIdx1 = LastCommutableVecOp; CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { // Just ignore and skip the k-mask operand. if (CommutableOpIdx1 == KMaskOp) continue; // The commuted operands must have different registers. // Otherwise, the commute transformation does not change anything and // is useless then. if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) break; } // No appropriate commutable operands were found. if (CommutableOpIdx1 < FirstCommutableVecOp) return false; // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 // to return those values. if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, CommutableOpIdx2)) return false; } return true; } bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const { const MCInstrDesc &Desc = MI.getDesc(); if (!Desc.isCommutable()) return false; switch (MI.getOpcode()) { case X86::CMPSDrr: case X86::CMPSSrr: case X86::CMPPDrri: case X86::CMPPSrri: case X86::VCMPSDrr: case X86::VCMPSSrr: case X86::VCMPPDrri: case X86::VCMPPSrri: case X86::VCMPPDYrri: case X86::VCMPPSYrri: case X86::VCMPSDZrr: case X86::VCMPSSZrr: case X86::VCMPPDZrri: case X86::VCMPPSZrri: case X86::VCMPPDZ128rri: case X86::VCMPPSZ128rri: case X86::VCMPPDZ256rri: case X86::VCMPPSZ256rri: { // Float comparison can be safely commuted for // Ordered/Unordered/Equal/NotEqual tests unsigned Imm = MI.getOperand(3).getImm() & 0x7; switch (Imm) { case 0x00: // EQUAL case 0x03: // UNORDERED case 0x04: // NOT EQUAL case 0x07: // ORDERED // The indices of the commutable operands are 1 and 2. // Assign them to the returned operand indices here. return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2); } return false; } case X86::MOVSDrr: case X86::MOVSSrr: case X86::VMOVSDrr: case X86::VMOVSSrr: { if (Subtarget.hasSSE41()) return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); return false; } case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: case X86::VPTERNLOGDZrrik: case X86::VPTERNLOGDZ128rrik: case X86::VPTERNLOGDZ256rrik: case X86::VPTERNLOGQZrrik: case X86::VPTERNLOGQZ128rrik: case X86::VPTERNLOGQZ256rrik: case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: case X86::VPTERNLOGDZ128rmbi: case X86::VPTERNLOGDZ256rmbi: case X86::VPTERNLOGDZrmbi: case X86::VPTERNLOGQZ128rmbi: case X86::VPTERNLOGQZ256rmbi: case X86::VPTERNLOGQZrmbi: case X86::VPTERNLOGDZ128rmbikz: case X86::VPTERNLOGDZ256rmbikz: case X86::VPTERNLOGDZrmbikz: case X86::VPTERNLOGQZ128rmbikz: case X86::VPTERNLOGQZ256rmbikz: case X86::VPTERNLOGQZrmbikz: return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); default: const X86InstrFMA3Group *FMA3Group = X86InstrFMA3Info::getFMA3Group(MI.getOpcode()); if (FMA3Group) return findFMA3CommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, *FMA3Group); // Handled masked instructions since we need to skip over the mask input // and the preserved input. if (Desc.TSFlags & X86II::EVEX_K) { // First assume that the first input is the mask operand and skip past it. unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; // Check if the first input is tied. If there isn't one then we only // need to skip the mask operand which we did above. if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), MCOI::TIED_TO) != -1)) { // If this is zero masking instruction with a tied operand, we need to // move the first index back to the first input since this must // be a 3 input instruction and we want the first two non-mask inputs. // Otherwise this is a 2 input instruction with a preserved input and // mask, so we need to move the indices to skip one more input. if (Desc.TSFlags & X86II::EVEX_Z) --CommutableOpIdx1; else { ++CommutableOpIdx1; ++CommutableOpIdx2; } } if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, CommutableOpIdx2)) return false; if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) // No idea. return false; return true; } return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); } return false; } static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) { switch (BrOpc) { default: return X86::COND_INVALID; case X86::JE_1: return X86::COND_E; case X86::JNE_1: return X86::COND_NE; case X86::JL_1: return X86::COND_L; case X86::JLE_1: return X86::COND_LE; case X86::JG_1: return X86::COND_G; case X86::JGE_1: return X86::COND_GE; case X86::JB_1: return X86::COND_B; case X86::JBE_1: return X86::COND_BE; case X86::JA_1: return X86::COND_A; case X86::JAE_1: return X86::COND_AE; case X86::JS_1: return X86::COND_S; case X86::JNS_1: return X86::COND_NS; case X86::JP_1: return X86::COND_P; case X86::JNP_1: return X86::COND_NP; case X86::JO_1: return X86::COND_O; case X86::JNO_1: return X86::COND_NO; } } /// Return condition code of a SET opcode. static X86::CondCode getCondFromSETOpc(unsigned Opc) { switch (Opc) { default: return X86::COND_INVALID; case X86::SETAr: case X86::SETAm: return X86::COND_A; case X86::SETAEr: case X86::SETAEm: return X86::COND_AE; case X86::SETBr: case X86::SETBm: return X86::COND_B; case X86::SETBEr: case X86::SETBEm: return X86::COND_BE; case X86::SETEr: case X86::SETEm: return X86::COND_E; case X86::SETGr: case X86::SETGm: return X86::COND_G; case X86::SETGEr: case X86::SETGEm: return X86::COND_GE; case X86::SETLr: case X86::SETLm: return X86::COND_L; case X86::SETLEr: case X86::SETLEm: return X86::COND_LE; case X86::SETNEr: case X86::SETNEm: return X86::COND_NE; case X86::SETNOr: case X86::SETNOm: return X86::COND_NO; case X86::SETNPr: case X86::SETNPm: return X86::COND_NP; case X86::SETNSr: case X86::SETNSm: return X86::COND_NS; case X86::SETOr: case X86::SETOm: return X86::COND_O; case X86::SETPr: case X86::SETPm: return X86::COND_P; case X86::SETSr: case X86::SETSm: return X86::COND_S; } } /// Return condition code of a CMov opcode. X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) { switch (Opc) { default: return X86::COND_INVALID; case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm: case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr: return X86::COND_A; case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm: case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr: return X86::COND_AE; case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm: case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr: return X86::COND_B; case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm: case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr: return X86::COND_BE; case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm: case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr: return X86::COND_E; case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm: case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr: return X86::COND_G; case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm: case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr: return X86::COND_GE; case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm: case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr: return X86::COND_L; case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm: case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr: return X86::COND_LE; case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm: case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr: return X86::COND_NE; case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm: case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr: return X86::COND_NO; case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm: case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr: return X86::COND_NP; case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm: case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr: return X86::COND_NS; case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm: case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr: return X86::COND_O; case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm: case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr: return X86::COND_P; case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm: case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr: return X86::COND_S; } } unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { switch (CC) { default: llvm_unreachable("Illegal condition code!"); case X86::COND_E: return X86::JE_1; case X86::COND_NE: return X86::JNE_1; case X86::COND_L: return X86::JL_1; case X86::COND_LE: return X86::JLE_1; case X86::COND_G: return X86::JG_1; case X86::COND_GE: return X86::JGE_1; case X86::COND_B: return X86::JB_1; case X86::COND_BE: return X86::JBE_1; case X86::COND_A: return X86::JA_1; case X86::COND_AE: return X86::JAE_1; case X86::COND_S: return X86::JS_1; case X86::COND_NS: return X86::JNS_1; case X86::COND_P: return X86::JP_1; case X86::COND_NP: return X86::JNP_1; case X86::COND_O: return X86::JO_1; case X86::COND_NO: return X86::JNO_1; } } /// Return the inverse of the specified condition, /// e.g. turning COND_E to COND_NE. X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { switch (CC) { default: llvm_unreachable("Illegal condition code!"); case X86::COND_E: return X86::COND_NE; case X86::COND_NE: return X86::COND_E; case X86::COND_L: return X86::COND_GE; case X86::COND_LE: return X86::COND_G; case X86::COND_G: return X86::COND_LE; case X86::COND_GE: return X86::COND_L; case X86::COND_B: return X86::COND_AE; case X86::COND_BE: return X86::COND_A; case X86::COND_A: return X86::COND_BE; case X86::COND_AE: return X86::COND_B; case X86::COND_S: return X86::COND_NS; case X86::COND_NS: return X86::COND_S; case X86::COND_P: return X86::COND_NP; case X86::COND_NP: return X86::COND_P; case X86::COND_O: return X86::COND_NO; case X86::COND_NO: return X86::COND_O; case X86::COND_NE_OR_P: return X86::COND_E_AND_NP; case X86::COND_E_AND_NP: return X86::COND_NE_OR_P; } } /// Assuming the flags are set by MI(a,b), return the condition code if we /// modify the instructions such that flags are set by MI(b,a). static X86::CondCode getSwappedCondition(X86::CondCode CC) { switch (CC) { default: return X86::COND_INVALID; case X86::COND_E: return X86::COND_E; case X86::COND_NE: return X86::COND_NE; case X86::COND_L: return X86::COND_G; case X86::COND_LE: return X86::COND_GE; case X86::COND_G: return X86::COND_L; case X86::COND_GE: return X86::COND_LE; case X86::COND_B: return X86::COND_A; case X86::COND_BE: return X86::COND_AE; case X86::COND_A: return X86::COND_B; case X86::COND_AE: return X86::COND_BE; } } /// Return a set opcode for the given condition and /// whether it has memory operand. unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) { static const uint16_t Opc[16][2] = { { X86::SETAr, X86::SETAm }, { X86::SETAEr, X86::SETAEm }, { X86::SETBr, X86::SETBm }, { X86::SETBEr, X86::SETBEm }, { X86::SETEr, X86::SETEm }, { X86::SETGr, X86::SETGm }, { X86::SETGEr, X86::SETGEm }, { X86::SETLr, X86::SETLm }, { X86::SETLEr, X86::SETLEm }, { X86::SETNEr, X86::SETNEm }, { X86::SETNOr, X86::SETNOm }, { X86::SETNPr, X86::SETNPm }, { X86::SETNSr, X86::SETNSm }, { X86::SETOr, X86::SETOm }, { X86::SETPr, X86::SETPm }, { X86::SETSr, X86::SETSm } }; assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes"); return Opc[CC][HasMemoryOperand ? 1 : 0]; } /// Return a cmov opcode for the given condition, /// register size in bytes, and operand type. unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes, bool HasMemoryOperand) { static const uint16_t Opc[32][3] = { { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr }, { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr }, { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr }, { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr }, { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr }, { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr }, { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr }, { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr }, { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr }, { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr }, { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr }, { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr }, { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr }, { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr }, { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr }, { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr }, { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm }, { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm }, { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm }, { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm }, { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm }, { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm }, { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm }, { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm }, { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm }, { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm }, { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm }, { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm }, { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm }, { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm }, { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm }, { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm } }; assert(CC < 16 && "Can only handle standard cond codes"); unsigned Idx = HasMemoryOperand ? 16+CC : CC; switch(RegBytes) { default: llvm_unreachable("Illegal register size!"); case 2: return Opc[Idx][0]; case 4: return Opc[Idx][1]; case 8: return Opc[Idx][2]; } } bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { if (!MI.isTerminator()) return false; // Conditional branch is a special case. if (MI.isBranch() && !MI.isBarrier()) return true; if (!MI.isPredicable()) return true; return !isPredicated(MI); } bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { switch (MI.getOpcode()) { case X86::TCRETURNdi: case X86::TCRETURNri: case X86::TCRETURNmi: case X86::TCRETURNdi64: case X86::TCRETURNri64: case X86::TCRETURNmi64: return true; default: return false; } } bool X86InstrInfo::canMakeTailCallConditional( SmallVectorImpl &BranchCond, const MachineInstr &TailCall) const { if (TailCall.getOpcode() != X86::TCRETURNdi && TailCall.getOpcode() != X86::TCRETURNdi64) { // Only direct calls can be done with a conditional branch. return false; } const MachineFunction *MF = TailCall.getParent()->getParent(); if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { // Conditional tail calls confuse the Win64 unwinder. return false; } assert(BranchCond.size() == 1); if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { // Can't make a conditional tail call with this condition. return false; } const X86MachineFunctionInfo *X86FI = MF->getInfo(); if (X86FI->getTCReturnAddrDelta() != 0 || TailCall.getOperand(1).getImm() != 0) { // A conditional tail call cannot do any stack adjustment. return false; } return true; } void X86InstrInfo::replaceBranchWithTailCall( MachineBasicBlock &MBB, SmallVectorImpl &BranchCond, const MachineInstr &TailCall) const { assert(canMakeTailCallConditional(BranchCond, TailCall)); MachineBasicBlock::iterator I = MBB.end(); while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; if (!I->isBranch()) assert(0 && "Can't find the branch to replace!"); X86::CondCode CC = getCondFromBranchOpc(I->getOpcode()); assert(BranchCond.size() == 1); if (CC != BranchCond[0].getImm()) continue; break; } unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc : X86::TCRETURNdi64cc; auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); MIB->addOperand(TailCall.getOperand(0)); // Destination. MIB.addImm(0); // Stack offset (not used). MIB->addOperand(BranchCond[0]); // Condition. MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters. // Add implicit uses and defs of all live regs potentially clobbered by the // call. This way they still appear live across the call. LivePhysRegs LiveRegs(&getRegisterInfo()); LiveRegs.addLiveOuts(MBB); SmallVector, 8> Clobbers; LiveRegs.stepForward(*MIB, Clobbers); for (const auto &C : Clobbers) { MIB.addReg(C.first, RegState::Implicit); MIB.addReg(C.first, RegState::Implicit | RegState::Define); } I->eraseFromParent(); } // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may // not be a fallthrough MBB now due to layout changes). Return nullptr if the // fallthrough MBB cannot be identified. static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, MachineBasicBlock *TBB) { // Look for non-EHPad successors other than TBB. If we find exactly one, it // is the fallthrough MBB. If we find zero, then TBB is both the target MBB // and fallthrough MBB. If we find more than one, we cannot identify the // fallthrough MBB and should return nullptr. MachineBasicBlock *FallthroughBB = nullptr; for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB)) continue; // Return a nullptr if we found more than one fallthrough successor. if (FallthroughBB && FallthroughBB != TBB) return nullptr; FallthroughBB = *SI; } return FallthroughBB; } bool X86InstrInfo::AnalyzeBranchImpl( MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, SmallVectorImpl &CondBranches, bool AllowModify) const { // Start from the bottom of the block and work up, examining the // terminator instructions. MachineBasicBlock::iterator I = MBB.end(); MachineBasicBlock::iterator UnCondBrIter = MBB.end(); while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; // Working from the bottom, when we see a non-terminator instruction, we're // done. if (!isUnpredicatedTerminator(*I)) break; // A terminator that isn't a branch can't easily be handled by this // analysis. if (!I->isBranch()) return true; // Handle unconditional branches. if (I->getOpcode() == X86::JMP_1) { UnCondBrIter = I; if (!AllowModify) { TBB = I->getOperand(0).getMBB(); continue; } // If the block has any instructions after a JMP, delete them. while (std::next(I) != MBB.end()) std::next(I)->eraseFromParent(); Cond.clear(); FBB = nullptr; // Delete the JMP if it's equivalent to a fall-through. if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { TBB = nullptr; I->eraseFromParent(); I = MBB.end(); UnCondBrIter = MBB.end(); continue; } // TBB is used to indicate the unconditional destination. TBB = I->getOperand(0).getMBB(); continue; } // Handle conditional branches. X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode()); if (BranchCode == X86::COND_INVALID) return true; // Can't handle indirect branch. // Working from the bottom, handle the first conditional branch. if (Cond.empty()) { MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); if (AllowModify && UnCondBrIter != MBB.end() && MBB.isLayoutSuccessor(TargetBB)) { // If we can modify the code and it ends in something like: // // jCC L1 // jmp L2 // L1: // ... // L2: // // Then we can change this to: // // jnCC L2 // L1: // ... // L2: // // Which is a bit more efficient. // We conditionally jump to the fall-through block. BranchCode = GetOppositeBranchCondition(BranchCode); unsigned JNCC = GetCondBranchFromCond(BranchCode); MachineBasicBlock::iterator OldInst = I; BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) .addMBB(UnCondBrIter->getOperand(0).getMBB()); BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1)) .addMBB(TargetBB); OldInst->eraseFromParent(); UnCondBrIter->eraseFromParent(); // Restart the analysis. UnCondBrIter = MBB.end(); I = MBB.end(); continue; } FBB = TBB; TBB = I->getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(BranchCode)); CondBranches.push_back(&*I); continue; } // Handle subsequent conditional branches. Only handle the case where all // conditional branches branch to the same destination and their condition // opcodes fit one of the special multi-branch idioms. assert(Cond.size() == 1); assert(TBB); // If the conditions are the same, we can leave them alone. X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); auto NewTBB = I->getOperand(0).getMBB(); if (OldBranchCode == BranchCode && TBB == NewTBB) continue; // If they differ, see if they fit one of the known patterns. Theoretically, // we could handle more patterns here, but we shouldn't expect to see them // if instruction selection has done a reasonable job. if (TBB == NewTBB && ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { BranchCode = X86::COND_NE_OR_P; } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) return true; // X86::COND_E_AND_NP usually has two different branch destinations. // // JP B1 // JE B2 // JMP B1 // B1: // B2: // // Here this condition branches to B2 only if NP && E. It has another // equivalent form: // // JNE B1 // JNP B2 // JMP B1 // B1: // B2: // // Similarly it branches to B2 only if E && NP. That is why this condition // is named with COND_E_AND_NP. BranchCode = X86::COND_E_AND_NP; } else return true; // Update the MachineOperand. Cond[0].setImm(BranchCode); CondBranches.push_back(&*I); } return false; } bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { SmallVector CondBranches; return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); } bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, MachineBranchPredicate &MBP, bool AllowModify) const { using namespace std::placeholders; SmallVector Cond; SmallVector CondBranches; if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, AllowModify)) return true; if (Cond.size() != 1) return true; assert(MBP.TrueDest && "expected!"); if (!MBP.FalseDest) MBP.FalseDest = MBB.getNextNode(); const TargetRegisterInfo *TRI = &getRegisterInfo(); MachineInstr *ConditionDef = nullptr; bool SingleUseCondition = true; for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) { if (I->modifiesRegister(X86::EFLAGS, TRI)) { ConditionDef = &*I; break; } if (I->readsRegister(X86::EFLAGS, TRI)) SingleUseCondition = false; } if (!ConditionDef) return true; if (SingleUseCondition) { for (auto *Succ : MBB.successors()) if (Succ->isLiveIn(X86::EFLAGS)) SingleUseCondition = false; } MBP.ConditionDef = ConditionDef; MBP.SingleUseCondition = SingleUseCondition; // Currently we only recognize the simple pattern: // // test %reg, %reg // je %label // const unsigned TestOpcode = Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; if (ConditionDef->getOpcode() == TestOpcode && ConditionDef->getNumOperands() == 3 && ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { MBP.LHS = ConditionDef->getOperand(0); MBP.RHS = MachineOperand::CreateImm(0); MBP.Predicate = Cond[0].getImm() == X86::COND_NE ? MachineBranchPredicate::PRED_NE : MachineBranchPredicate::PRED_EQ; return false; } return true; } unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, int *BytesRemoved) const { assert(!BytesRemoved && "code size not handled"); MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; if (I->getOpcode() != X86::JMP_1 && getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) break; // Remove the branch. I->eraseFromParent(); I = MBB.end(); ++Count; } return Count; } unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL, int *BytesAdded) const { // Shouldn't be a fall through. assert(TBB && "insertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 1 || Cond.size() == 0) && "X86 branch conditions have one component!"); assert(!BytesAdded && "code size not handled"); if (Cond.empty()) { // Unconditional branch? assert(!FBB && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); return 1; } // If FBB is null, it is implied to be a fall-through block. bool FallThru = FBB == nullptr; // Conditional branch. unsigned Count = 0; X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); switch (CC) { case X86::COND_NE_OR_P: // Synthesize NE_OR_P with two branches. BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB); ++Count; BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB); ++Count; break; case X86::COND_E_AND_NP: // Use the next block of MBB as FBB if it is null. if (FBB == nullptr) { FBB = getFallThroughMBB(&MBB, TBB); assert(FBB && "MBB cannot be the last block in function when the false " "body is a fall-through."); } // Synthesize COND_E_AND_NP with two branches. BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(FBB); ++Count; BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB); ++Count; break; default: { unsigned Opc = GetCondBranchFromCond(CC); BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); ++Count; } } if (!FallThru) { // Two-way Conditional branch. Insert the second branch. BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); ++Count; } return Count; } bool X86InstrInfo:: canInsertSelect(const MachineBasicBlock &MBB, ArrayRef Cond, unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const { // Not all subtargets have cmov instructions. if (!Subtarget.hasCMov()) return false; if (Cond.size() != 1) return false; // We cannot do the composite conditions, at least not in SSA form. if ((X86::CondCode)Cond[0].getImm() > X86::COND_S) return false; // Check register classes. const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RC = RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); if (!RC) return false; // We have cmov instructions for 16, 32, and 64 bit general purpose registers. if (X86::GR16RegClass.hasSubClassEq(RC) || X86::GR32RegClass.hasSubClassEq(RC) || X86::GR64RegClass.hasSubClassEq(RC)) { // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy // Bridge. Probably Ivy Bridge as well. CondCycles = 2; TrueCycles = 2; FalseCycles = 2; return true; } // Can't do vectors. return false; } void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, unsigned DstReg, ArrayRef Cond, unsigned TrueReg, unsigned FalseReg) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); assert(Cond.size() == 1 && "Invalid Cond array"); unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(), MRI.getRegClass(DstReg)->getSize(), false /*HasMemoryOperand*/); BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg); } /// Test if the given register is a physical h register. static bool isHReg(unsigned Reg) { return X86::GR8_ABCD_HRegClass.contains(Reg); } // Try and copy between VR128/VR64 and GR64 registers. static unsigned CopyToFromAsymmetricReg(unsigned &DestReg, unsigned &SrcReg, const X86Subtarget &Subtarget) { bool HasAVX = Subtarget.hasAVX(); bool HasAVX512 = Subtarget.hasAVX512(); // SrcReg(MaskReg) -> DestReg(GR64) // SrcReg(MaskReg) -> DestReg(GR32) // All KMASK RegClasses hold the same k registers, can be tested against anyone. if (X86::VK16RegClass.contains(SrcReg)) { if (X86::GR64RegClass.contains(DestReg)) { assert(Subtarget.hasBWI()); return X86::KMOVQrk; } if (X86::GR32RegClass.contains(DestReg)) return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk; } // SrcReg(GR64) -> DestReg(MaskReg) // SrcReg(GR32) -> DestReg(MaskReg) // All KMASK RegClasses hold the same k registers, can be tested against anyone. if (X86::VK16RegClass.contains(DestReg)) { if (X86::GR64RegClass.contains(SrcReg)) { assert(Subtarget.hasBWI()); return X86::KMOVQkr; } if (X86::GR32RegClass.contains(SrcReg)) return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr; } // SrcReg(VR128) -> DestReg(GR64) // SrcReg(VR64) -> DestReg(GR64) // SrcReg(GR64) -> DestReg(VR128) // SrcReg(GR64) -> DestReg(VR64) if (X86::GR64RegClass.contains(DestReg)) { if (X86::VR128XRegClass.contains(SrcReg)) // Copy from a VR128 register to a GR64 register. return HasAVX512 ? X86::VMOVPQIto64Zrr : HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr; if (X86::VR64RegClass.contains(SrcReg)) // Copy from a VR64 register to a GR64 register. return X86::MMX_MOVD64from64rr; } else if (X86::GR64RegClass.contains(SrcReg)) { // Copy from a GR64 register to a VR128 register. if (X86::VR128XRegClass.contains(DestReg)) return HasAVX512 ? X86::VMOV64toPQIZrr : HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr; // Copy from a GR64 register to a VR64 register. if (X86::VR64RegClass.contains(DestReg)) return X86::MMX_MOVD64to64rr; } // SrcReg(FR32) -> DestReg(GR32) // SrcReg(GR32) -> DestReg(FR32) if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg)) // Copy from a FR32 register to a GR32 register. return HasAVX512 ? X86::VMOVSS2DIZrr : HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr; if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) // Copy from a GR32 register to a FR32 register. return HasAVX512 ? X86::VMOVDI2SSZrr : HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr; return 0; } void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // First deal with the normal symmetric copies. bool HasAVX = Subtarget.hasAVX(); bool HasVLX = Subtarget.hasVLX(); unsigned Opc = 0; if (X86::GR64RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV64rr; else if (X86::GR32RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV32rr; else if (X86::GR16RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV16rr; else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { // Copying to or from a physical H register on x86-64 requires a NOREX // move. Otherwise use a normal move. if ((isHReg(DestReg) || isHReg(SrcReg)) && Subtarget.is64Bit()) { Opc = X86::MOV8rr_NOREX; // Both operands must be encodable without an REX prefix. assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && "8-bit H register can not be copied outside GR8_NOREX"); } else Opc = X86::MOV8rr; } else if (X86::VR64RegClass.contains(DestReg, SrcReg)) Opc = X86::MMX_MOVQ64rr; else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { if (HasVLX) Opc = X86::VMOVAPSZ128rr; else if (X86::VR128RegClass.contains(DestReg, SrcReg)) Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; else { // If this an extended register and we don't have VLX we need to use a // 512-bit move. Opc = X86::VMOVAPSZrr; const TargetRegisterInfo *TRI = &getRegisterInfo(); DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, &X86::VR512RegClass); SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); } } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { if (HasVLX) Opc = X86::VMOVAPSZ256rr; else if (X86::VR256RegClass.contains(DestReg, SrcReg)) Opc = X86::VMOVAPSYrr; else { // If this an extended register and we don't have VLX we need to use a // 512-bit move. Opc = X86::VMOVAPSZrr; const TargetRegisterInfo *TRI = &getRegisterInfo(); DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, &X86::VR512RegClass); SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); } } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) Opc = X86::VMOVAPSZrr; // All KMASK RegClasses hold the same k registers, can be tested against anyone. else if (X86::VK16RegClass.contains(DestReg, SrcReg)) Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk; if (!Opc) Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); if (Opc) { BuildMI(MBB, MI, DL, get(Opc), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } bool FromEFLAGS = SrcReg == X86::EFLAGS; bool ToEFLAGS = DestReg == X86::EFLAGS; int Reg = FromEFLAGS ? DestReg : SrcReg; bool is32 = X86::GR32RegClass.contains(Reg); bool is64 = X86::GR64RegClass.contains(Reg); if ((FromEFLAGS || ToEFLAGS) && (is32 || is64)) { int Mov = is64 ? X86::MOV64rr : X86::MOV32rr; int Push = is64 ? X86::PUSH64r : X86::PUSH32r; int PushF = is64 ? X86::PUSHF64 : X86::PUSHF32; int Pop = is64 ? X86::POP64r : X86::POP32r; int PopF = is64 ? X86::POPF64 : X86::POPF32; int AX = is64 ? X86::RAX : X86::EAX; if (!Subtarget.hasLAHFSAHF()) { assert(Subtarget.is64Bit() && "Not having LAHF/SAHF only happens on 64-bit."); // Moving EFLAGS to / from another register requires a push and a pop. // Notice that we have to adjust the stack if we don't want to clobber the // first frame index. See X86FrameLowering.cpp - usesTheStack. if (FromEFLAGS) { BuildMI(MBB, MI, DL, get(PushF)); BuildMI(MBB, MI, DL, get(Pop), DestReg); } if (ToEFLAGS) { BuildMI(MBB, MI, DL, get(Push)) .addReg(SrcReg, getKillRegState(KillSrc)); BuildMI(MBB, MI, DL, get(PopF)); } return; } // The flags need to be saved, but saving EFLAGS with PUSHF/POPF is // inefficient. Instead: // - Save the overflow flag OF into AL using SETO, and restore it using a // signed 8-bit addition of AL and INT8_MAX. // - Save/restore the bottom 8 EFLAGS bits (CF, PF, AF, ZF, SF) to/from AH // using LAHF/SAHF. // - When RAX/EAX is live and isn't the destination register, make sure it // isn't clobbered by PUSH/POP'ing it before and after saving/restoring // the flags. // This approach is ~2.25x faster than using PUSHF/POPF. // // This is still somewhat inefficient because we don't know which flags are // actually live inside EFLAGS. Were we able to do a single SETcc instead of // SETO+LAHF / ADDB+SAHF the code could be 1.02x faster. // // PUSHF/POPF is also potentially incorrect because it affects other flags // such as TF/IF/DF, which LLVM doesn't model. // // Notice that we have to adjust the stack if we don't want to clobber the // first frame index. // See X86ISelLowering.cpp - X86::hasCopyImplyingStackAdjustment. const TargetRegisterInfo *TRI = &getRegisterInfo(); MachineBasicBlock::LivenessQueryResult LQR = MBB.computeRegisterLiveness(TRI, AX, MI); // We do not want to save and restore AX if we do not have to. // Moreover, if we do so whereas AX is dead, we would need to set // an undef flag on the use of AX, otherwise the verifier will // complain that we read an undef value. // We do not want to change the behavior of the machine verifier // as this is usually wrong to read an undef value. if (MachineBasicBlock::LQR_Unknown == LQR) { LivePhysRegs LPR(TRI); LPR.addLiveOuts(MBB); MachineBasicBlock::iterator I = MBB.end(); while (I != MI) { --I; LPR.stepBackward(*I); } // AX contains the top most register in the aliasing hierarchy. // It may not be live, but one of its aliases may be. for (MCRegAliasIterator AI(AX, TRI, true); AI.isValid() && LQR != MachineBasicBlock::LQR_Live; ++AI) LQR = LPR.contains(*AI) ? MachineBasicBlock::LQR_Live : MachineBasicBlock::LQR_Dead; } bool AXDead = (Reg == AX) || (MachineBasicBlock::LQR_Dead == LQR); if (!AXDead) BuildMI(MBB, MI, DL, get(Push)).addReg(AX, getKillRegState(true)); if (FromEFLAGS) { BuildMI(MBB, MI, DL, get(X86::SETOr), X86::AL); BuildMI(MBB, MI, DL, get(X86::LAHF)); BuildMI(MBB, MI, DL, get(Mov), Reg).addReg(AX); } if (ToEFLAGS) { BuildMI(MBB, MI, DL, get(Mov), AX).addReg(Reg, getKillRegState(KillSrc)); BuildMI(MBB, MI, DL, get(X86::ADD8ri), X86::AL) .addReg(X86::AL) .addImm(INT8_MAX); BuildMI(MBB, MI, DL, get(X86::SAHF)); } if (!AXDead) BuildMI(MBB, MI, DL, get(Pop), AX); return; } DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " << RI.getName(DestReg) << '\n'); llvm_unreachable("Cannot emit physreg copy instruction"); } static unsigned getLoadStoreRegOpcode(unsigned Reg, const TargetRegisterClass *RC, bool isStackAligned, const X86Subtarget &STI, bool load) { bool HasAVX = STI.hasAVX(); bool HasAVX512 = STI.hasAVX512(); bool HasVLX = STI.hasVLX(); switch (RC->getSize()) { default: llvm_unreachable("Unknown spill size"); case 1: assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); if (STI.is64Bit()) // Copying to or from a physical H register on x86-64 requires a NOREX // move. Otherwise use a normal move. if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; return load ? X86::MOV8rm : X86::MOV8mr; case 2: if (X86::VK16RegClass.hasSubClassEq(RC)) return load ? X86::KMOVWkm : X86::KMOVWmk; assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); return load ? X86::MOV16rm : X86::MOV16mr; case 4: if (X86::GR32RegClass.hasSubClassEq(RC)) return load ? X86::MOV32rm : X86::MOV32mr; if (X86::FR32XRegClass.hasSubClassEq(RC)) return load ? (HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : (HasAVX512 ? X86::VMOVSSZmr : HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); if (X86::RFP32RegClass.hasSubClassEq(RC)) return load ? X86::LD_Fp32m : X86::ST_Fp32m; if (X86::VK32RegClass.hasSubClassEq(RC)) return load ? X86::KMOVDkm : X86::KMOVDmk; llvm_unreachable("Unknown 4-byte regclass"); case 8: if (X86::GR64RegClass.hasSubClassEq(RC)) return load ? X86::MOV64rm : X86::MOV64mr; if (X86::FR64XRegClass.hasSubClassEq(RC)) return load ? (HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : (HasAVX512 ? X86::VMOVSDZmr : HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); if (X86::VR64RegClass.hasSubClassEq(RC)) return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; if (X86::RFP64RegClass.hasSubClassEq(RC)) return load ? X86::LD_Fp64m : X86::ST_Fp64m; if (X86::VK64RegClass.hasSubClassEq(RC)) return load ? X86::KMOVQkm : X86::KMOVQmk; llvm_unreachable("Unknown 8-byte regclass"); case 10: assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); return load ? X86::LD_Fp80m : X86::ST_FpP80m; case 16: { assert(X86::VR128XRegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass"); // If stack is realigned we can use aligned stores. if (isStackAligned) return load ? (HasVLX ? X86::VMOVAPSZ128rm : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX : HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm): (HasVLX ? X86::VMOVAPSZ128mr : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX : HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); else return load ? (HasVLX ? X86::VMOVUPSZ128rm : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX : HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm): (HasVLX ? X86::VMOVUPSZ128mr : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX : HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); } case 32: assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); // If stack is realigned we can use aligned stores. if (isStackAligned) return load ? (HasVLX ? X86::VMOVAPSZ256rm : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX : X86::VMOVAPSYrm) : (HasVLX ? X86::VMOVAPSZ256mr : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX : X86::VMOVAPSYmr); else return load ? (HasVLX ? X86::VMOVUPSZ256rm : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX : X86::VMOVUPSYrm) : (HasVLX ? X86::VMOVUPSZ256mr : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX : X86::VMOVUPSYmr); case 64: assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); if (isStackAligned) return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; else return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; } } bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg, int64_t &Offset, const TargetRegisterInfo *TRI) const { const MCInstrDesc &Desc = MemOp.getDesc(); int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); if (MemRefBegin < 0) return false; MemRefBegin += X86II::getOperandBias(Desc); MachineOperand &BaseMO = MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); if (!BaseMO.isReg()) // Can be an MO_FrameIndex return false; BaseReg = BaseMO.getReg(); if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) return false; if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != X86::NoRegister) return false; const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); // Displacement can be symbolic if (!DispMO.isImm()) return false; Offset = DispMO.getImm(); return true; } static unsigned getStoreRegOpcode(unsigned SrcReg, const TargetRegisterClass *RC, bool isStackAligned, const X86Subtarget &STI) { return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false); } static unsigned getLoadRegOpcode(unsigned DestReg, const TargetRegisterClass *RC, bool isStackAligned, const X86Subtarget &STI) { return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true); } void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { const MachineFunction &MF = *MBB.getParent(); assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= RC->getSize() && "Stack slot too small for store"); unsigned Alignment = std::max(RC->getSize(), 16); bool isAligned = (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || RI.canRealignStack(MF); unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); DebugLoc DL = MBB.findDebugLoc(MI); addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) .addReg(SrcReg, getKillRegState(isKill)); } void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, MachineInstr::mmo_iterator MMOBegin, MachineInstr::mmo_iterator MMOEnd, SmallVectorImpl &NewMIs) const { unsigned Alignment = std::max(RC->getSize(), 16); bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= Alignment; unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.add(Addr[i]); MIB.addReg(SrcReg, getKillRegState(isKill)); (*MIB).setMemRefs(MMOBegin, MMOEnd); NewMIs.push_back(MIB); } void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { const MachineFunction &MF = *MBB.getParent(); unsigned Alignment = std::max(RC->getSize(), 16); bool isAligned = (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || RI.canRealignStack(MF); unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); DebugLoc DL = MBB.findDebugLoc(MI); addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); } void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, MachineInstr::mmo_iterator MMOBegin, MachineInstr::mmo_iterator MMOEnd, SmallVectorImpl &NewMIs) const { unsigned Alignment = std::max(RC->getSize(), 16); bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= Alignment; unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.add(Addr[i]); (*MIB).setMemRefs(MMOBegin, MMOEnd); NewMIs.push_back(MIB); } bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, unsigned &SrcReg2, int &CmpMask, int &CmpValue) const { switch (MI.getOpcode()) { default: break; case X86::CMP64ri32: case X86::CMP64ri8: case X86::CMP32ri: case X86::CMP32ri8: case X86::CMP16ri: case X86::CMP16ri8: case X86::CMP8ri: SrcReg = MI.getOperand(0).getReg(); SrcReg2 = 0; if (MI.getOperand(1).isImm()) { CmpMask = ~0; CmpValue = MI.getOperand(1).getImm(); } else { CmpMask = CmpValue = 0; } return true; // A SUB can be used to perform comparison. case X86::SUB64rm: case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: SrcReg = MI.getOperand(1).getReg(); SrcReg2 = 0; CmpMask = 0; CmpValue = 0; return true; case X86::SUB64rr: case X86::SUB32rr: case X86::SUB16rr: case X86::SUB8rr: SrcReg = MI.getOperand(1).getReg(); SrcReg2 = MI.getOperand(2).getReg(); CmpMask = 0; CmpValue = 0; return true; case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB8ri: SrcReg = MI.getOperand(1).getReg(); SrcReg2 = 0; if (MI.getOperand(2).isImm()) { CmpMask = ~0; CmpValue = MI.getOperand(2).getImm(); } else { CmpMask = CmpValue = 0; } return true; case X86::CMP64rr: case X86::CMP32rr: case X86::CMP16rr: case X86::CMP8rr: SrcReg = MI.getOperand(0).getReg(); SrcReg2 = MI.getOperand(1).getReg(); CmpMask = 0; CmpValue = 0; return true; case X86::TEST8rr: case X86::TEST16rr: case X86::TEST32rr: case X86::TEST64rr: SrcReg = MI.getOperand(0).getReg(); if (MI.getOperand(1).getReg() != SrcReg) return false; // Compare against zero. SrcReg2 = 0; CmpMask = ~0; CmpValue = 0; return true; } return false; } /// Check whether the first instruction, whose only /// purpose is to update flags, can be made redundant. /// CMPrr can be made redundant by SUBrr if the operands are the same. /// This function can be extended later on. /// SrcReg, SrcRegs: register operands for FlagI. /// ImmValue: immediate for FlagI if it takes an immediate. inline static bool isRedundantFlagInstr(MachineInstr &FlagI, unsigned SrcReg, unsigned SrcReg2, int ImmMask, int ImmValue, MachineInstr &OI) { if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) || (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) || (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) || (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) && ((OI.getOperand(1).getReg() == SrcReg && OI.getOperand(2).getReg() == SrcReg2) || (OI.getOperand(1).getReg() == SrcReg2 && OI.getOperand(2).getReg() == SrcReg))) return true; if (ImmMask != 0 && ((FlagI.getOpcode() == X86::CMP64ri32 && OI.getOpcode() == X86::SUB64ri32) || (FlagI.getOpcode() == X86::CMP64ri8 && OI.getOpcode() == X86::SUB64ri8) || (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) || (FlagI.getOpcode() == X86::CMP32ri8 && OI.getOpcode() == X86::SUB32ri8) || (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) || (FlagI.getOpcode() == X86::CMP16ri8 && OI.getOpcode() == X86::SUB16ri8) || (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) && OI.getOperand(1).getReg() == SrcReg && OI.getOperand(2).getImm() == ImmValue) return true; return false; } /// Check whether the definition can be converted /// to remove a comparison against zero. inline static bool isDefConvertible(MachineInstr &MI) { switch (MI.getOpcode()) { default: return false; // The shift instructions only modify ZF if their shift count is non-zero. // N.B.: The processor truncates the shift count depending on the encoding. case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: return getTruncatedShiftCount(MI, 2) != 0; // Some left shift instructions can be turned into LEA instructions but only // if their flags aren't used. Avoid transforming such instructions. case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (isTruncatedShiftCountForLEA(ShAmt)) return false; return ShAmt != 0; } case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: return getTruncatedShiftCount(MI, 3) != 0; case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1: case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1: case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1: case X86::ADC32ri: case X86::ADC32ri8: case X86::ADC32rr: case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC64rr: case X86::SBB32ri: case X86::SBB32ri8: case X86::SBB32rr: case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB64rr: case X86::ANDN32rr: case X86::ANDN32rm: case X86::ANDN64rr: case X86::ANDN64rm: case X86::BEXTR32rr: case X86::BEXTR64rr: case X86::BEXTR32rm: case X86::BEXTR64rm: case X86::BLSI32rr: case X86::BLSI32rm: case X86::BLSI64rr: case X86::BLSI64rm: case X86::BLSMSK32rr:case X86::BLSMSK32rm: case X86::BLSMSK64rr:case X86::BLSMSK64rm: case X86::BLSR32rr: case X86::BLSR32rm: case X86::BLSR64rr: case X86::BLSR64rm: case X86::BZHI32rr: case X86::BZHI32rm: case X86::BZHI64rr: case X86::BZHI64rm: case X86::LZCNT16rr: case X86::LZCNT16rm: case X86::LZCNT32rr: case X86::LZCNT32rm: case X86::LZCNT64rr: case X86::LZCNT64rm: case X86::POPCNT16rr:case X86::POPCNT16rm: case X86::POPCNT32rr:case X86::POPCNT32rm: case X86::POPCNT64rr:case X86::POPCNT64rm: case X86::TZCNT16rr: case X86::TZCNT16rm: case X86::TZCNT32rr: case X86::TZCNT32rm: case X86::TZCNT64rr: case X86::TZCNT64rm: return true; } } /// Check whether the use can be converted to remove a comparison against zero. static X86::CondCode isUseDefConvertible(MachineInstr &MI) { switch (MI.getOpcode()) { default: return X86::COND_INVALID; case X86::LZCNT16rr: case X86::LZCNT16rm: case X86::LZCNT32rr: case X86::LZCNT32rm: case X86::LZCNT64rr: case X86::LZCNT64rm: return X86::COND_B; case X86::POPCNT16rr:case X86::POPCNT16rm: case X86::POPCNT32rr:case X86::POPCNT32rm: case X86::POPCNT64rr:case X86::POPCNT64rm: return X86::COND_E; case X86::TZCNT16rr: case X86::TZCNT16rm: case X86::TZCNT32rr: case X86::TZCNT32rm: case X86::TZCNT64rr: case X86::TZCNT64rm: return X86::COND_B; } } /// Check if there exists an earlier instruction that /// operates on the same source operands and sets flags in the same way as /// Compare; remove Compare if possible. bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, int CmpValue, const MachineRegisterInfo *MRI) const { // Check whether we can replace SUB with CMP. unsigned NewOpcode = 0; switch (CmpInstr.getOpcode()) { default: break; case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB8ri: case X86::SUB64rm: case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: case X86::SUB64rr: case X86::SUB32rr: case X86::SUB16rr: case X86::SUB8rr: { if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) return false; // There is no use of the destination register, we can replace SUB with CMP. switch (CmpInstr.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; } CmpInstr.setDesc(get(NewOpcode)); CmpInstr.RemoveOperand(0); // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) return false; } } // Get the unique definition of SrcReg. MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); if (!MI) return false; // CmpInstr is the first instruction of the BB. MachineBasicBlock::iterator I = CmpInstr, Def = MI; // If we are comparing against zero, check whether we can use MI to update // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); if (IsCmpZero && MI->getParent() != CmpInstr.getParent()) return false; // If we have a use of the source register between the def and our compare // instruction we can eliminate the compare iff the use sets EFLAGS in the // right way. bool ShouldUpdateCC = false; X86::CondCode NewCC = X86::COND_INVALID; if (IsCmpZero && !isDefConvertible(*MI)) { // Scan forward from the use until we hit the use we're looking for or the // compare instruction. for (MachineBasicBlock::iterator J = MI;; ++J) { // Do we have a convertible instruction? NewCC = isUseDefConvertible(*J); if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && J->getOperand(1).getReg() == SrcReg) { assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); ShouldUpdateCC = true; // Update CC later on. // This is not a def of SrcReg, but still a def of EFLAGS. Keep going // with the new def. Def = J; MI = &*Def; break; } if (J == I) return false; } } // We are searching for an earlier instruction that can make CmpInstr // redundant and that instruction will be saved in Sub. MachineInstr *Sub = nullptr; const TargetRegisterInfo *TRI = &getRegisterInfo(); // We iterate backward, starting from the instruction before CmpInstr and // stop when reaching the definition of a source register or done with the BB. // RI points to the instruction before CmpInstr. // If the definition is in this basic block, RE points to the definition; // otherwise, RE is the rend of the basic block. MachineBasicBlock::reverse_iterator RI = ++I.getReverse(), RE = CmpInstr.getParent() == MI->getParent() ? Def.getReverse() /* points to MI */ : CmpInstr.getParent()->rend(); MachineInstr *Movr0Inst = nullptr; for (; RI != RE; ++RI) { MachineInstr &Instr = *RI; // Check whether CmpInstr can be made redundant by the current instruction. if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue, Instr)) { Sub = &Instr; break; } if (Instr.modifiesRegister(X86::EFLAGS, TRI) || Instr.readsRegister(X86::EFLAGS, TRI)) { // This instruction modifies or uses EFLAGS. // MOV32r0 etc. are implemented with xor which clobbers condition code. // They are safe to move up, if the definition to EFLAGS is dead and // earlier instructions do not read or write EFLAGS. if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 && Instr.registerDefIsDead(X86::EFLAGS, TRI)) { Movr0Inst = &Instr; continue; } // We can't remove CmpInstr. return false; } } // Return false if no candidates exist. if (!IsCmpZero && !Sub) return false; bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && Sub->getOperand(2).getReg() == SrcReg); // Scan forward from the instruction after CmpInstr for uses of EFLAGS. // It is safe to remove CmpInstr if EFLAGS is redefined or killed. // If we are done with the basic block, we need to check whether EFLAGS is // live-out. bool IsSafe = false; SmallVector, 4> OpsToUpdate; MachineBasicBlock::iterator E = CmpInstr.getParent()->end(); for (++I; I != E; ++I) { const MachineInstr &Instr = *I; bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); // We should check the usage if this instruction uses and updates EFLAGS. if (!UseEFLAGS && ModifyEFLAGS) { // It is safe to remove CmpInstr if EFLAGS is updated again. IsSafe = true; break; } if (!UseEFLAGS && !ModifyEFLAGS) continue; // EFLAGS is used by this instruction. X86::CondCode OldCC = X86::COND_INVALID; bool OpcIsSET = false; if (IsCmpZero || IsSwapped) { // We decode the condition code from opcode. if (Instr.isBranch()) OldCC = getCondFromBranchOpc(Instr.getOpcode()); else { OldCC = getCondFromSETOpc(Instr.getOpcode()); if (OldCC != X86::COND_INVALID) OpcIsSET = true; else OldCC = X86::getCondFromCMovOpc(Instr.getOpcode()); } if (OldCC == X86::COND_INVALID) return false; } if (IsCmpZero) { switch (OldCC) { default: break; case X86::COND_A: case X86::COND_AE: case X86::COND_B: case X86::COND_BE: case X86::COND_G: case X86::COND_GE: case X86::COND_L: case X86::COND_LE: case X86::COND_O: case X86::COND_NO: // CF and OF are used, we can't perform this optimization. return false; } // If we're updating the condition code check if we have to reverse the // condition. if (ShouldUpdateCC) switch (OldCC) { default: return false; case X86::COND_E: break; case X86::COND_NE: NewCC = GetOppositeBranchCondition(NewCC); break; } } else if (IsSwapped) { // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. // We swap the condition code and synthesize the new opcode. NewCC = getSwappedCondition(OldCC); if (NewCC == X86::COND_INVALID) return false; } if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) { // Synthesize the new opcode. bool HasMemoryOperand = Instr.hasOneMemOperand(); unsigned NewOpc; if (Instr.isBranch()) NewOpc = GetCondBranchFromCond(NewCC); else if(OpcIsSET) NewOpc = getSETFromCond(NewCC, HasMemoryOperand); else { unsigned DstReg = Instr.getOperand(0).getReg(); NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(), HasMemoryOperand); } // Push the MachineInstr to OpsToUpdate. // If it is safe to remove CmpInstr, the condition code of these // instructions will be modified. OpsToUpdate.push_back(std::make_pair(&*I, NewOpc)); } if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { // It is safe to remove CmpInstr if EFLAGS is updated again or killed. IsSafe = true; break; } } // If EFLAGS is not killed nor re-defined, we should check whether it is // live-out. If it is live-out, do not optimize. if ((IsCmpZero || IsSwapped) && !IsSafe) { MachineBasicBlock *MBB = CmpInstr.getParent(); for (MachineBasicBlock *Successor : MBB->successors()) if (Successor->isLiveIn(X86::EFLAGS)) return false; } // The instruction to be updated is either Sub or MI. Sub = IsCmpZero ? MI : Sub; // Move Movr0Inst to the appropriate place before Sub. if (Movr0Inst) { // Look backwards until we find a def that doesn't use the current EFLAGS. Def = Sub; MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(), InsertE = Sub->getParent()->rend(); for (; InsertI != InsertE; ++InsertI) { MachineInstr *Instr = &*InsertI; if (!Instr->readsRegister(X86::EFLAGS, TRI) && Instr->modifiesRegister(X86::EFLAGS, TRI)) { Sub->getParent()->remove(Movr0Inst); Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), Movr0Inst); break; } } if (InsertI == InsertE) return false; } // Make sure Sub instruction defines EFLAGS and mark the def live. unsigned i = 0, e = Sub->getNumOperands(); for (; i != e; ++i) { MachineOperand &MO = Sub->getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { MO.setIsDead(false); break; } } assert(i != e && "Unable to locate a def EFLAGS operand"); CmpInstr.eraseFromParent(); // Modify the condition code of instructions in OpsToUpdate. for (auto &Op : OpsToUpdate) Op.first->setDesc(get(Op.second)); return true; } /// Try to remove the load by folding it to a register /// operand at the use. We fold the load instructions if load defines a virtual /// register, the virtual register is used once in the same BB, and the /// instructions in-between do not load or store, and have no side effects. MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, const MachineRegisterInfo *MRI, unsigned &FoldAsLoadDefReg, MachineInstr *&DefMI) const { // Check whether we can move DefMI here. DefMI = MRI->getVRegDef(FoldAsLoadDefReg); assert(DefMI); bool SawStore = false; if (!DefMI->isSafeToMove(nullptr, SawStore)) return nullptr; // Collect information about virtual register operands of MI. SmallVector SrcOperandIds; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg != FoldAsLoadDefReg) continue; // Do not fold if we have a subreg use or a def. if (MO.getSubReg() || MO.isDef()) return nullptr; SrcOperandIds.push_back(i); } if (SrcOperandIds.empty()) return nullptr; // Check whether we can fold the def into SrcOperandId. if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { FoldAsLoadDefReg = 0; return FoldMI; } return nullptr; } /// Expand a single-def pseudo instruction to a two-addr /// instruction with two undef reads of the register being defined. /// This is used for mapping: /// %xmm4 = V_SET0 /// to: /// %xmm4 = PXORrr %xmm4, %xmm4 /// static bool Expand2AddrUndef(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); unsigned Reg = MIB->getOperand(0).getReg(); MIB->setDesc(Desc); // MachineInstr::addOperand() will insert explicit operands before any // implicit operands. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); // But we don't trust that. assert(MIB->getOperand(1).getReg() == Reg && MIB->getOperand(2).getReg() == Reg && "Misplaced operand"); return true; } /// Expand a single-def pseudo instruction to a two-addr /// instruction with two %k0 reads. /// This is used for mapping: /// %k4 = K_SET1 /// to: /// %k4 = KXNORrr %k0, %k0 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, unsigned Reg) { assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); MIB->setDesc(Desc); MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); return true; } static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, bool MinusOne) { MachineBasicBlock &MBB = *MIB->getParent(); DebugLoc DL = MIB->getDebugLoc(); unsigned Reg = MIB->getOperand(0).getReg(); // Insert the XOR. BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); // Turn the pseudo into an INC or DEC. MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); MIB.addReg(Reg); return true; } static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, const X86Subtarget &Subtarget) { MachineBasicBlock &MBB = *MIB->getParent(); DebugLoc DL = MIB->getDebugLoc(); int64_t Imm = MIB->getOperand(1).getImm(); assert(Imm != 0 && "Using push/pop for 0 is not efficient."); MachineBasicBlock::iterator I = MIB.getInstr(); int StackAdjustment; if (Subtarget.is64Bit()) { assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode() == X86::MOV32ImmSExti8); // Can't use push/pop lowering if the function might write to the red zone. X86MachineFunctionInfo *X86FI = MBB.getParent()->getInfo(); if (X86FI->getUsesRedZone()) { MIB->setDesc(TII.get(MIB->getOpcode() == X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri)); return true; } // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and // widen the register if necessary. StackAdjustment = 8; BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm); MIB->setDesc(TII.get(X86::POP64r)); MIB->getOperand(0) .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64)); } else { assert(MIB->getOpcode() == X86::MOV32ImmSExti8); StackAdjustment = 4; BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm); MIB->setDesc(TII.get(X86::POP32r)); } // Build CFI if necessary. MachineFunction &MF = *MBB.getParent(); const X86FrameLowering *TFL = Subtarget.getFrameLowering(); bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); bool NeedsDwarfCFI = !IsWin64Prologue && (MF.getMMI().hasDebugInfo() || MF.getFunction()->needsUnwindTableEntry()); bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; if (EmitCFI) { TFL->BuildCFI(MBB, I, DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); TFL->BuildCFI(MBB, std::next(I), DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); } return true; } // LoadStackGuard has so far only been implemented for 64-bit MachO. Different // code sequence is needed for other targets. static void expandLoadStackGuard(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { MachineBasicBlock &MBB = *MIB->getParent(); DebugLoc DL = MIB->getDebugLoc(); unsigned Reg = MIB->getOperand(0).getReg(); const GlobalValue *GV = cast((*MIB->memoperands_begin())->getValue()); auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant; MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8); MachineBasicBlock::iterator I = MIB.getInstr(); BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) .addMemOperand(MMO); MIB->setDebugLoc(DL); MIB->setDesc(TII.get(X86::MOV64rm)); MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); } // This is used to handle spills for 128/256-bit registers when we have AVX512, // but not VLX. If it uses an extended register we need to use an instruction // that loads the lower 128/256-bit, but is available with only AVX512F. static bool expandNOVLXLoad(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &LoadDesc, const MCInstrDesc &BroadcastDesc, unsigned SubIdx) { unsigned DestReg = MIB->getOperand(0).getReg(); // Check if DestReg is XMM16-31 or YMM16-31. if (TRI->getEncodingValue(DestReg) < 16) { // We can use a normal VEX encoded load. MIB->setDesc(LoadDesc); } else { // Use a 128/256-bit VBROADCAST instruction. MIB->setDesc(BroadcastDesc); // Change the destination to a 512-bit register. DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); MIB->getOperand(0).setReg(DestReg); } return true; } // This is used to handle spills for 128/256-bit registers when we have AVX512, // but not VLX. If it uses an extended register we need to use an instruction // that stores the lower 128/256-bit, but is available with only AVX512F. static bool expandNOVLXStore(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &StoreDesc, const MCInstrDesc &ExtractDesc, unsigned SubIdx) { unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg(); // Check if DestReg is XMM16-31 or YMM16-31. if (TRI->getEncodingValue(SrcReg) < 16) { // We can use a normal VEX encoded store. MIB->setDesc(StoreDesc); } else { // Use a VEXTRACTF instruction. MIB->setDesc(ExtractDesc); // Change the destination to a 512-bit register. SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); MIB.addImm(0x0); // Append immediate to extract from the lower bits. } return true; } bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { bool HasAVX = Subtarget.hasAVX(); MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); switch (MI.getOpcode()) { case X86::MOV32r0: return Expand2AddrUndef(MIB, get(X86::XOR32rr)); case X86::MOV32r1: return expandMOV32r1(MIB, *this, /*MinusOne=*/ false); case X86::MOV32r_1: return expandMOV32r1(MIB, *this, /*MinusOne=*/ true); case X86::MOV32ImmSExti8: case X86::MOV64ImmSExti8: return ExpandMOVImmSExti8(MIB, *this, Subtarget); case X86::SETB_C8r: return Expand2AddrUndef(MIB, get(X86::SBB8rr)); case X86::SETB_C16r: return Expand2AddrUndef(MIB, get(X86::SBB16rr)); case X86::SETB_C32r: return Expand2AddrUndef(MIB, get(X86::SBB32rr)); case X86::SETB_C64r: return Expand2AddrUndef(MIB, get(X86::SBB64rr)); case X86::V_SET0: case X86::FsFLD0SS: case X86::FsFLD0SD: return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); case X86::AVX_SET0: assert(HasAVX && "AVX not supported"); return Expand2AddrUndef(MIB, get(X86::VXORPSYrr)); case X86::AVX512_128_SET0: case X86::AVX512_FsFLD0SS: case X86::AVX512_FsFLD0SD: { bool HasVLX = Subtarget.hasVLX(); unsigned SrcReg = MIB->getOperand(0).getReg(); const TargetRegisterInfo *TRI = &getRegisterInfo(); if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) return Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); // Extended register without VLX. Use a larger XOR. SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); MIB->getOperand(0).setReg(SrcReg); return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); } case X86::AVX512_256_SET0: { bool HasVLX = Subtarget.hasVLX(); unsigned SrcReg = MIB->getOperand(0).getReg(); const TargetRegisterInfo *TRI = &getRegisterInfo(); if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) return Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ256rr : X86::VXORPSYrr)); // Extended register without VLX. Use a larger XOR. SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); MIB->getOperand(0).setReg(SrcReg); return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); } case X86::AVX512_512_SET0: return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); case X86::V_SETALLONES: return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); case X86::AVX2_SETALLONES: return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); case X86::AVX512_512_SETALLONES: { unsigned Reg = MIB->getOperand(0).getReg(); MIB->setDesc(get(X86::VPTERNLOGDZrri)); // VPTERNLOGD needs 3 register inputs and an immediate. // 0xff will return 1s for any input. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef).addImm(0xff); return true; } case X86::AVX512_512_SEXT_MASK_32: case X86::AVX512_512_SEXT_MASK_64: { unsigned Reg = MIB->getOperand(0).getReg(); unsigned MaskReg = MIB->getOperand(1).getReg(); unsigned MaskState = getRegState(MIB->getOperand(1)); unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ? X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz; MI.RemoveOperand(1); MIB->setDesc(get(Opc)); // VPTERNLOG needs 3 register inputs and an immediate. // 0xff will return 1s for any input. MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState) .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff); return true; } case X86::VMOVAPSZ128rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), get(X86::VBROADCASTF32X4rm), X86::sub_xmm); case X86::VMOVUPSZ128rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), get(X86::VBROADCASTF32X4rm), X86::sub_xmm); case X86::VMOVAPSZ256rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), get(X86::VBROADCASTF64X4rm), X86::sub_ymm); case X86::VMOVUPSZ256rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), get(X86::VBROADCASTF64X4rm), X86::sub_ymm); case X86::VMOVAPSZ128mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); case X86::VMOVUPSZ128mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); case X86::VMOVAPSZ256mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); case X86::VMOVUPSZ256mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); case X86::TEST8ri_NOREX: MI.setDesc(get(X86::TEST8ri)); return true; case X86::MOV32ri64: MI.setDesc(get(X86::MOV32ri)); return true; // KNL does not recognize dependency-breaking idioms for mask registers, // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. // Using %k0 as the undef input register is a performance heuristic based // on the assumption that %k0 is used less frequently than the other mask // registers, since it is not usable as a write mask. // FIXME: A more advanced approach would be to choose the best input mask // register based on context. case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0); case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0); case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0); case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0); case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0); case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0); case TargetOpcode::LOAD_STACK_GUARD: expandLoadStackGuard(MIB, *this); return true; } return false; } static void addOperands(MachineInstrBuilder &MIB, ArrayRef MOs, int PtrOffset = 0) { unsigned NumAddrOps = MOs.size(); if (NumAddrOps < 4) { // FrameIndex only - add an immediate offset (whether its zero or not). for (unsigned i = 0; i != NumAddrOps; ++i) MIB.add(MOs[i]); addOffset(MIB, PtrOffset); } else { // General Memory Addressing - we need to add any offset to an existing // offset. assert(MOs.size() == 5 && "Unexpected memory operand list length"); for (unsigned i = 0; i != NumAddrOps; ++i) { const MachineOperand &MO = MOs[i]; if (i == 3 && PtrOffset != 0) { MIB.addDisp(MO, PtrOffset); } else { MIB.add(MO); } } } } static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII) { // Create the base instruction with the memory operand as the first part. // Omit the implicit operands, something BuildMI can't do. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, NewMI); addOperands(MIB, MOs); // Loop over the rest of the ri operands, converting them over. unsigned NumOps = MI.getDesc().getNumOperands() - 2; for (unsigned i = 0; i != NumOps; ++i) { MachineOperand &MO = MI.getOperand(i + 2); MIB.add(MO); } for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); MIB.add(MO); } MachineBasicBlock *MBB = InsertPt->getParent(); MBB->insert(InsertPt, NewMI); return MIB; } static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, unsigned OpNo, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII, int PtrOffset = 0) { // Omit the implicit operands, something BuildMI can't do. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, NewMI); for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (i == OpNo) { assert(MO.isReg() && "Expected to fold into reg operand!"); addOperands(MIB, MOs, PtrOffset); } else { MIB.add(MO); } } MachineBasicBlock *MBB = InsertPt->getParent(); MBB->insert(InsertPt, NewMI); return MIB; } static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI) { MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), TII.get(Opcode)); addOperands(MIB, MOs); return MIB.addImm(0); } MachineInstr *X86InstrInfo::foldMemoryOperandCustom( MachineFunction &MF, MachineInstr &MI, unsigned OpNum, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, unsigned Size, unsigned Align) const { switch (MI.getOpcode()) { case X86::INSERTPSrr: case X86::VINSERTPSrr: case X86::VINSERTPSZrr: // Attempt to convert the load of inserted vector into a fold load // of a single float. if (OpNum == 2) { unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); unsigned ZMask = Imm & 15; unsigned DstIdx = (Imm >> 4) & 3; unsigned SrcIdx = (Imm >> 6) & 3; unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize(); if (Size <= RCSize && 4 <= Align) { int PtrOffset = SrcIdx * 4; unsigned NewImm = (DstIdx << 4) | ZMask; unsigned NewOpCode = (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm : (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm : X86::INSERTPSrm; MachineInstr *NewMI = FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); return NewMI; } } break; case X86::MOVHLPSrr: case X86::VMOVHLPSrr: case X86::VMOVHLPSZrr: // Move the upper 64-bits of the second operand to the lower 64-bits. // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. if (OpNum == 2) { unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize(); if (Size <= RCSize && 8 <= Align) { unsigned NewOpCode = (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm : (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm : X86::MOVLPSrm; MachineInstr *NewMI = FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); return NewMI; } } break; }; return nullptr; } MachineInstr *X86InstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, unsigned OpNum, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, unsigned Size, unsigned Align, bool AllowCommute) const { const DenseMap > *OpcodeTablePtr = nullptr; bool isCallRegIndirect = Subtarget.callRegIndirect(); bool isTwoAddrFold = false; // For CPUs that favor the register form of a call or push, // do not fold loads into calls or pushes, unless optimizing for size // aggressively. if (isCallRegIndirect && !MF.getFunction()->optForMinSize() && (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r || MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r || MI.getOpcode() == X86::PUSH64r)) return nullptr; unsigned NumOps = MI.getDesc().getNumOperands(); bool isTwoAddr = NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; // FIXME: AsmPrinter doesn't know how to handle // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. if (MI.getOpcode() == X86::ADD32ri && MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) return nullptr; MachineInstr *NewMI = nullptr; // Attempt to fold any custom cases we have. if (MachineInstr *CustomMI = foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align)) return CustomMI; // Folding a memory location into the two-address part of a two-address // instruction is different than folding it other places. It requires // replacing the *two* registers with the memory location. if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { OpcodeTablePtr = &RegOp2MemOpTable2Addr; isTwoAddrFold = true; } else if (OpNum == 0) { if (MI.getOpcode() == X86::MOV32r0) { NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); if (NewMI) return NewMI; } OpcodeTablePtr = &RegOp2MemOpTable0; } else if (OpNum == 1) { OpcodeTablePtr = &RegOp2MemOpTable1; } else if (OpNum == 2) { OpcodeTablePtr = &RegOp2MemOpTable2; } else if (OpNum == 3) { OpcodeTablePtr = &RegOp2MemOpTable3; } else if (OpNum == 4) { OpcodeTablePtr = &RegOp2MemOpTable4; } // If table selected... if (OpcodeTablePtr) { // Find the Opcode to fuse auto I = OpcodeTablePtr->find(MI.getOpcode()); if (I != OpcodeTablePtr->end()) { unsigned Opcode = I->second.first; unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; if (Align < MinAlign) return nullptr; bool NarrowToMOV32rm = false; if (Size) { unsigned RCSize = getRegClass(MI.getDesc(), OpNum, &RI, MF)->getSize(); if (Size < RCSize) { // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) return nullptr; // If this is a 64-bit load, but the spill slot is 32, then we can do // a 32-bit load which is implicitly zero-extended. This likely is // due to live interval analysis remat'ing a load from stack slot. if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) return nullptr; Opcode = X86::MOV32rm; NarrowToMOV32rm = true; } } if (isTwoAddrFold) NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); else NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); if (NarrowToMOV32rm) { // If this is the special case where we use a MOV32rm to load a 32-bit // value and zero-extend the top bits. Change the destination register // to a 32-bit one. unsigned DstReg = NewMI->getOperand(0).getReg(); if (TargetRegisterInfo::isPhysicalRegister(DstReg)) NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); else NewMI->getOperand(0).setSubReg(X86::sub_32bit); } return NewMI; } } // If the instruction and target operand are commutable, commute the // instruction and try again. if (AllowCommute) { unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { bool HasDef = MI.getDesc().getNumDefs(); unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0; unsigned Reg1 = MI.getOperand(CommuteOpIdx1).getReg(); unsigned Reg2 = MI.getOperand(CommuteOpIdx2).getReg(); bool Tied1 = 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); bool Tied2 = 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); // If either of the commutable operands are tied to the destination // then we can not commute + fold. if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2)) return nullptr; MachineInstr *CommutedMI = commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); if (!CommutedMI) { // Unable to commute. return nullptr; } if (CommutedMI != &MI) { // New instruction. We can't fold from this. CommutedMI->eraseFromParent(); return nullptr; } // Attempt to fold with the commuted version of the instruction. NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size, Align, /*AllowCommute=*/false); if (NewMI) return NewMI; // Folding failed again - undo the commute before returning. MachineInstr *UncommutedMI = commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); if (!UncommutedMI) { // Unable to commute. return nullptr; } if (UncommutedMI != &MI) { // New instruction. It doesn't need to be kept. UncommutedMI->eraseFromParent(); return nullptr; } // Return here to prevent duplicate fuse failure report. return nullptr; } } // No fusion if (PrintFailedFusing && !MI.isCopy()) dbgs() << "We failed to fuse operand " << OpNum << " in " << MI; return nullptr; } /// Return true for all instructions that only update /// the first 32 or 64-bits of the destination register and leave the rest /// unmodified. This can be used to avoid folding loads if the instructions /// only update part of the destination register, and the non-updated part is /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these /// instructions breaks the partial register dependency and it can improve /// performance. e.g.: /// /// movss (%rdi), %xmm0 /// cvtss2sd %xmm0, %xmm0 /// /// Instead of /// cvtss2sd (%rdi), %xmm0 /// /// FIXME: This should be turned into a TSFlags. /// static bool hasPartialRegUpdate(unsigned Opcode) { switch (Opcode) { case X86::CVTSI2SSrr: case X86::CVTSI2SSrm: case X86::CVTSI2SS64rr: case X86::CVTSI2SS64rm: case X86::CVTSI2SDrr: case X86::CVTSI2SDrm: case X86::CVTSI2SD64rr: case X86::CVTSI2SD64rm: case X86::CVTSD2SSrr: case X86::CVTSD2SSrm: case X86::CVTSS2SDrr: case X86::CVTSS2SDrm: case X86::MOVHPDrm: case X86::MOVHPSrm: case X86::MOVLPDrm: case X86::MOVLPSrm: case X86::RCPSSr: case X86::RCPSSm: case X86::RCPSSr_Int: case X86::RCPSSm_Int: case X86::ROUNDSDr: case X86::ROUNDSDm: case X86::ROUNDSSr: case X86::ROUNDSSm: case X86::RSQRTSSr: case X86::RSQRTSSm: case X86::RSQRTSSr_Int: case X86::RSQRTSSm_Int: case X86::SQRTSSr: case X86::SQRTSSm: case X86::SQRTSSr_Int: case X86::SQRTSSm_Int: case X86::SQRTSDr: case X86::SQRTSDm: case X86::SQRTSDr_Int: case X86::SQRTSDm_Int: return true; } return false; } /// Inform the ExecutionDepsFix pass how many idle /// instructions we would like before a partial register update. unsigned X86InstrInfo::getPartialRegUpdateClearance( const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode())) return 0; // If MI is marked as reading Reg, the partial register update is wanted. const MachineOperand &MO = MI.getOperand(0); unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { if (MO.readsReg() || MI.readsVirtualRegister(Reg)) return 0; } else { if (MI.readsRegister(Reg, TRI)) return 0; } // If any instructions in the clearance range are reading Reg, insert a // dependency breaking instruction, which is inexpensive and is likely to // be hidden in other instruction's cycles. return PartialRegUpdateClearance; } // Return true for any instruction the copies the high bits of the first source // operand into the unused high bits of the destination operand. static bool hasUndefRegUpdate(unsigned Opcode) { switch (Opcode) { case X86::VCVTSI2SSrr: case X86::VCVTSI2SSrm: case X86::Int_VCVTSI2SSrr: case X86::Int_VCVTSI2SSrm: case X86::VCVTSI2SS64rr: case X86::VCVTSI2SS64rm: case X86::Int_VCVTSI2SS64rr: case X86::Int_VCVTSI2SS64rm: case X86::VCVTSI2SDrr: case X86::VCVTSI2SDrm: case X86::Int_VCVTSI2SDrr: case X86::Int_VCVTSI2SDrm: case X86::VCVTSI2SD64rr: case X86::VCVTSI2SD64rm: case X86::Int_VCVTSI2SD64rr: case X86::Int_VCVTSI2SD64rm: case X86::VCVTSD2SSrr: case X86::VCVTSD2SSrm: case X86::Int_VCVTSD2SSrr: case X86::Int_VCVTSD2SSrm: case X86::VCVTSS2SDrr: case X86::VCVTSS2SDrm: case X86::Int_VCVTSS2SDrr: case X86::Int_VCVTSS2SDrm: case X86::VRCPSSr: case X86::VRCPSSr_Int: case X86::VRCPSSm: case X86::VRCPSSm_Int: case X86::VROUNDSDr: case X86::VROUNDSDm: case X86::VROUNDSDr_Int: case X86::VROUNDSDm_Int: case X86::VROUNDSSr: case X86::VROUNDSSm: case X86::VROUNDSSr_Int: case X86::VROUNDSSm_Int: case X86::VRSQRTSSr: case X86::VRSQRTSSr_Int: case X86::VRSQRTSSm: case X86::VRSQRTSSm_Int: case X86::VSQRTSSr: case X86::VSQRTSSr_Int: case X86::VSQRTSSm: case X86::VSQRTSSm_Int: case X86::VSQRTSDr: case X86::VSQRTSDr_Int: case X86::VSQRTSDm: case X86::VSQRTSDm_Int: // AVX-512 case X86::VCVTSI2SSZrr: case X86::VCVTSI2SSZrm: case X86::VCVTSI2SSZrr_Int: case X86::VCVTSI2SSZrrb_Int: case X86::VCVTSI2SSZrm_Int: case X86::VCVTSI642SSZrr: case X86::VCVTSI642SSZrm: case X86::VCVTSI642SSZrr_Int: case X86::VCVTSI642SSZrrb_Int: case X86::VCVTSI642SSZrm_Int: case X86::VCVTSI2SDZrr: case X86::VCVTSI2SDZrm: case X86::VCVTSI2SDZrr_Int: case X86::VCVTSI2SDZrrb_Int: case X86::VCVTSI2SDZrm_Int: case X86::VCVTSI642SDZrr: case X86::VCVTSI642SDZrm: case X86::VCVTSI642SDZrr_Int: case X86::VCVTSI642SDZrrb_Int: case X86::VCVTSI642SDZrm_Int: case X86::VCVTUSI2SSZrr: case X86::VCVTUSI2SSZrm: case X86::VCVTUSI2SSZrr_Int: case X86::VCVTUSI2SSZrrb_Int: case X86::VCVTUSI2SSZrm_Int: case X86::VCVTUSI642SSZrr: case X86::VCVTUSI642SSZrm: case X86::VCVTUSI642SSZrr_Int: case X86::VCVTUSI642SSZrrb_Int: case X86::VCVTUSI642SSZrm_Int: case X86::VCVTUSI2SDZrr: case X86::VCVTUSI2SDZrm: case X86::VCVTUSI2SDZrr_Int: case X86::VCVTUSI2SDZrm_Int: case X86::VCVTUSI642SDZrr: case X86::VCVTUSI642SDZrm: case X86::VCVTUSI642SDZrr_Int: case X86::VCVTUSI642SDZrrb_Int: case X86::VCVTUSI642SDZrm_Int: case X86::VCVTSD2SSZrr: case X86::VCVTSD2SSZrr_Int: case X86::VCVTSD2SSZrrb_Int: case X86::VCVTSD2SSZrm: case X86::VCVTSD2SSZrm_Int: case X86::VCVTSS2SDZrr: case X86::VCVTSS2SDZrr_Int: case X86::VCVTSS2SDZrrb_Int: case X86::VCVTSS2SDZrm: case X86::VCVTSS2SDZrm_Int: case X86::VRNDSCALESDr: case X86::VRNDSCALESDrb: case X86::VRNDSCALESDm: case X86::VRNDSCALESSr: case X86::VRNDSCALESSrb: case X86::VRNDSCALESSm: case X86::VRCP14SSrr: case X86::VRCP14SSrm: case X86::VRSQRT14SSrr: case X86::VRSQRT14SSrm: case X86::VSQRTSSZr: case X86::VSQRTSSZr_Int: case X86::VSQRTSSZrb_Int: case X86::VSQRTSSZm: case X86::VSQRTSSZm_Int: case X86::VSQRTSDZr: case X86::VSQRTSDZr_Int: case X86::VSQRTSDZrb_Int: case X86::VSQRTSDZm: case X86::VSQRTSDZm_Int: return true; } return false; } /// Inform the ExecutionDepsFix pass how many idle instructions we would like /// before certain undef register reads. /// /// This catches the VCVTSI2SD family of instructions: /// /// vcvtsi2sdq %rax, %xmm0, %xmm14 /// /// We should to be careful *not* to catch VXOR idioms which are presumably /// handled specially in the pipeline: /// /// vxorps %xmm1, %xmm1, %xmm1 /// /// Like getPartialRegUpdateClearance, this makes a strong assumption that the /// high bits that are passed-through are not live. unsigned X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, const TargetRegisterInfo *TRI) const { if (!hasUndefRegUpdate(MI.getOpcode())) return 0; // Set the OpNum parameter to the first source operand. OpNum = 1; const MachineOperand &MO = MI.getOperand(OpNum); if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { return UndefRegClearance; } return 0; } void X86InstrInfo::breakPartialRegDependency( MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { unsigned Reg = MI.getOperand(OpNum).getReg(); // If MI kills this register, the false dependence is already broken. if (MI.killsRegister(Reg, TRI)) return; if (X86::VR128RegClass.contains(Reg)) { // These instructions are all floating point domain, so xorps is the best // choice. unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); MI.addRegisterKilled(Reg, TRI, true); } else if (X86::VR256RegClass.contains(Reg)) { // Use vxorps to clear the full ymm register. // It wants to read and write the xmm sub-register. unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) .addReg(XReg, RegState::Undef) .addReg(XReg, RegState::Undef) .addReg(Reg, RegState::ImplicitDefine); MI.addRegisterKilled(Reg, TRI, true); } } MachineInstr * X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS) const { // Check switch flag if (NoFusing) return nullptr; // Unless optimizing for size, don't fold to avoid partial // register update stalls if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI.getOpcode())) return nullptr; // Don't fold subreg spills, or reloads that use a high subreg. for (auto Op : Ops) { MachineOperand &MO = MI.getOperand(Op); auto SubReg = MO.getSubReg(); if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) return nullptr; } const MachineFrameInfo &MFI = MF.getFrameInfo(); unsigned Size = MFI.getObjectSize(FrameIndex); unsigned Alignment = MFI.getObjectAlignment(FrameIndex); // If the function stack isn't realigned we don't want to fold instructions // that need increased alignment. if (!RI.needsStackRealignment(MF)) Alignment = std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment()); if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { unsigned NewOpc = 0; unsigned RCSize = 0; switch (MI.getOpcode()) { default: return nullptr; case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; } // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. if (Size < RCSize) return nullptr; // Change to CMPXXri r, 0 first. MI.setDesc(get(NewOpc)); MI.getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) return nullptr; return foldMemoryOperandImpl(MF, MI, Ops[0], MachineOperand::CreateFI(FrameIndex), InsertPt, Size, Alignment, /*AllowCommute=*/true); } /// Check if \p LoadMI is a partial register load that we can't fold into \p MI /// because the latter uses contents that wouldn't be defined in the folded /// version. For instance, this transformation isn't legal: /// movss (%rdi), %xmm0 /// addps %xmm0, %xmm0 /// -> /// addps (%rdi), %xmm0 /// /// But this one is: /// movss (%rdi), %xmm0 /// addss %xmm0, %xmm0 /// -> /// addss (%rdi), %xmm0 /// static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, const MachineInstr &UserMI, const MachineFunction &MF) { unsigned Opc = LoadMI.getOpcode(); unsigned UserOpc = UserMI.getOpcode(); unsigned RegSize = MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize(); if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm) && RegSize > 4) { // These instructions only load 32 bits, we can't fold them if the // destination register is wider than 32 bits (4 bytes), and its user // instruction isn't scalar (SS). switch (UserOpc) { case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int: case X86::Int_CMPSSrr: case X86::Int_VCMPSSrr: case X86::VCMPSSZrr_Int: case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int: case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int: case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int: case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int: case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int: case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz: case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz: case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz: case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz: case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz: case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int: case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int: case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int: case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int: case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int: case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int: case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int: case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int: case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int: case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int: case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int: case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int: case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int: case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int: case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk: case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk: case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk: case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk: case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk: case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk: case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz: case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz: case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz: case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz: case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz: case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz: return false; default: return true; } } if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm) && RegSize > 8) { // These instructions only load 64 bits, we can't fold them if the // destination register is wider than 64 bits (8 bytes), and its user // instruction isn't scalar (SD). switch (UserOpc) { case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int: case X86::Int_CMPSDrr: case X86::Int_VCMPSDrr: case X86::VCMPSDZrr_Int: case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int: case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int: case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int: case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int: case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int: case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz: case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz: case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz: case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz: case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz: case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int: case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int: case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int: case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int: case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int: case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int: case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int: case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int: case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int: case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int: case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int: case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int: case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int: case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int: case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk: case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk: case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk: case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk: case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk: case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk: case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz: case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz: case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz: case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz: case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz: case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz: return false; default: return true; } } return false; } MachineInstr *X86InstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, LiveIntervals *LIS) const { // TODO: Support the case where LoadMI loads a wide register, but MI // only uses a subreg. for (auto Op : Ops) { if (MI.getOperand(Op).getSubReg()) return nullptr; } // If loading from a FrameIndex, fold directly from the FrameIndex. unsigned NumOps = LoadMI.getDesc().getNumOperands(); int FrameIndex; if (isLoadFromStackSlot(LoadMI, FrameIndex)) { if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) return nullptr; return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); } // Check switch flag if (NoFusing) return nullptr; // Avoid partial register update stalls unless optimizing for size. if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI.getOpcode())) return nullptr; // Determine the alignment of the load. unsigned Alignment = 0; if (LoadMI.hasOneMemOperand()) Alignment = (*LoadMI.memoperands_begin())->getAlignment(); else switch (LoadMI.getOpcode()) { case X86::AVX512_512_SET0: case X86::AVX512_512_SETALLONES: Alignment = 64; break; case X86::AVX2_SETALLONES: case X86::AVX_SET0: case X86::AVX512_256_SET0: Alignment = 32; break; case X86::V_SET0: case X86::V_SETALLONES: case X86::AVX512_128_SET0: Alignment = 16; break; case X86::FsFLD0SD: case X86::AVX512_FsFLD0SD: Alignment = 8; break; case X86::FsFLD0SS: case X86::AVX512_FsFLD0SS: Alignment = 4; break; default: return nullptr; } if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { unsigned NewOpc = 0; switch (MI.getOpcode()) { default: return nullptr; case X86::TEST8rr: NewOpc = X86::CMP8ri; break; case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; } // Change to CMPXXri r, 0 first. MI.setDesc(get(NewOpc)); MI.getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) return nullptr; // Make sure the subregisters match. // Otherwise we risk changing the size of the load. if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) return nullptr; SmallVector MOs; switch (LoadMI.getOpcode()) { case X86::V_SET0: case X86::V_SETALLONES: case X86::AVX2_SETALLONES: case X86::AVX_SET0: case X86::AVX512_128_SET0: case X86::AVX512_256_SET0: case X86::AVX512_512_SET0: case X86::AVX512_512_SETALLONES: case X86::FsFLD0SD: case X86::AVX512_FsFLD0SD: case X86::FsFLD0SS: case X86::AVX512_FsFLD0SS: { // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. // Create a constant-pool entry and operands to load from it. // Medium and large mode can't fold loads this way. if (MF.getTarget().getCodeModel() != CodeModel::Small && MF.getTarget().getCodeModel() != CodeModel::Kernel) return nullptr; // x86-32 PIC requires a PIC base register for constant pools. unsigned PICBase = 0; if (MF.getTarget().isPositionIndependent()) { if (Subtarget.is64Bit()) PICBase = X86::RIP; else // FIXME: PICBase = getGlobalBaseReg(&MF); // This doesn't work for several reasons. // 1. GlobalBaseReg may have been spilled. // 2. It may not be live at MI. return nullptr; } // Create a constant-pool entry. MachineConstantPool &MCP = *MF.getConstantPool(); Type *Ty; unsigned Opc = LoadMI.getOpcode(); if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS) Ty = Type::getFloatTy(MF.getFunction()->getContext()); else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD) Ty = Type::getDoubleTy(MF.getFunction()->getContext()); else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES) Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()),16); else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 || Opc == X86::AVX512_256_SET0) Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8); else Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES || Opc == X86::AVX512_512_SETALLONES); const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : Constant::getNullValue(Ty); unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); // Create operands to load from the constant pool entry. MOs.push_back(MachineOperand::CreateReg(PICBase, false)); MOs.push_back(MachineOperand::CreateImm(1)); MOs.push_back(MachineOperand::CreateReg(0, false)); MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); MOs.push_back(MachineOperand::CreateReg(0, false)); break; } default: { if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) return nullptr; // Folding a normal load. Just copy the load's address operands. MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, LoadMI.operands_begin() + NumOps); break; } } return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/0, Alignment, /*AllowCommute=*/true); } bool X86InstrInfo::unfoldMemoryOperand( MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl &NewMIs) const { auto I = MemOp2RegOpTable.find(MI.getOpcode()); if (I == MemOp2RegOpTable.end()) return false; unsigned Opc = I->second.first; unsigned Index = I->second.second & TB_INDEX_MASK; bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; bool FoldedStore = I->second.second & TB_FOLDED_STORE; if (UnfoldLoad && !FoldedLoad) return false; UnfoldLoad &= FoldedLoad; if (UnfoldStore && !FoldedStore) return false; UnfoldStore &= FoldedStore; const MCInstrDesc &MCID = get(Opc); const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); // TODO: Check if 32-byte or greater accesses are slow too? if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Without memoperands, loadRegFromAddr and storeRegToStackSlot will // conservatively assume the address is unaligned. That's bad for // performance. return false; SmallVector AddrOps; SmallVector BeforeOps; SmallVector AfterOps; SmallVector ImpOps; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &Op = MI.getOperand(i); if (i >= Index && i < Index + X86::AddrNumOperands) AddrOps.push_back(Op); else if (Op.isReg() && Op.isImplicit()) ImpOps.push_back(Op); else if (i < Index) BeforeOps.push_back(Op); else if (i > Index) AfterOps.push_back(Op); } // Emit the load instruction. if (UnfoldLoad) { std::pair MMOs = MF.extractLoadMemRefs(MI.memoperands_begin(), MI.memoperands_end()); loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); if (UnfoldStore) { // Address operands cannot be marked isKill. for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { MachineOperand &MO = NewMIs[0]->getOperand(i); if (MO.isReg()) MO.setIsKill(false); } } } // Emit the data processing instruction. MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, DataMI); if (FoldedStore) MIB.addReg(Reg, RegState::Define); for (MachineOperand &BeforeOp : BeforeOps) MIB.add(BeforeOp); if (FoldedLoad) MIB.addReg(Reg); for (MachineOperand &AfterOp : AfterOps) MIB.add(AfterOp); for (MachineOperand &ImpOp : ImpOps) { MIB.addReg(ImpOp.getReg(), getDefRegState(ImpOp.isDef()) | RegState::Implicit | getKillRegState(ImpOp.isKill()) | getDeadRegState(ImpOp.isDead()) | getUndefRegState(ImpOp.isUndef())); } // Change CMP32ri r, 0 back to TEST32rr r, r, etc. switch (DataMI->getOpcode()) { default: break; case X86::CMP64ri32: case X86::CMP64ri8: case X86::CMP32ri: case X86::CMP32ri8: case X86::CMP16ri: case X86::CMP16ri8: case X86::CMP8ri: { MachineOperand &MO0 = DataMI->getOperand(0); MachineOperand &MO1 = DataMI->getOperand(1); if (MO1.getImm() == 0) { unsigned NewOpc; switch (DataMI->getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::CMP64ri8: case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; case X86::CMP32ri8: case X86::CMP32ri: NewOpc = X86::TEST32rr; break; case X86::CMP16ri8: case X86::CMP16ri: NewOpc = X86::TEST16rr; break; case X86::CMP8ri: NewOpc = X86::TEST8rr; break; } DataMI->setDesc(get(NewOpc)); MO1.ChangeToRegister(MO0.getReg(), false); } } } NewMIs.push_back(DataMI); // Emit the store instruction. if (UnfoldStore) { const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); std::pair MMOs = MF.extractStoreMemRefs(MI.memoperands_begin(), MI.memoperands_end()); storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); } return true; } bool X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl &NewNodes) const { if (!N->isMachineOpcode()) return false; auto I = MemOp2RegOpTable.find(N->getMachineOpcode()); if (I == MemOp2RegOpTable.end()) return false; unsigned Opc = I->second.first; unsigned Index = I->second.second & TB_INDEX_MASK; bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; bool FoldedStore = I->second.second & TB_FOLDED_STORE; const MCInstrDesc &MCID = get(Opc); MachineFunction &MF = DAG.getMachineFunction(); const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); unsigned NumDefs = MCID.NumDefs; std::vector AddrOps; std::vector BeforeOps; std::vector AfterOps; SDLoc dl(N); unsigned NumOps = N->getNumOperands(); for (unsigned i = 0; i != NumOps-1; ++i) { SDValue Op = N->getOperand(i); if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) AddrOps.push_back(Op); else if (i < Index-NumDefs) BeforeOps.push_back(Op); else if (i > Index-NumDefs) AfterOps.push_back(Op); } SDValue Chain = N->getOperand(NumOps-1); AddrOps.push_back(Chain); // Emit the load instruction. SDNode *Load = nullptr; if (FoldedLoad) { EVT VT = *RC->vt_begin(); std::pair MMOs = MF.extractLoadMemRefs(cast(N)->memoperands_begin(), cast(N)->memoperands_end()); if (!(*MMOs.first) && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Do not introduce a slow unaligned load. return false; // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte // memory access is slow above. unsigned Alignment = std::max(RC->getSize(), 16); bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= Alignment; Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl, VT, MVT::Other, AddrOps); NewNodes.push_back(Load); // Preserve memory reference information. cast(Load)->setMemRefs(MMOs.first, MMOs.second); } // Emit the data processing instruction. std::vector VTs; const TargetRegisterClass *DstRC = nullptr; if (MCID.getNumDefs() > 0) { DstRC = getRegClass(MCID, 0, &RI, MF); VTs.push_back(*DstRC->vt_begin()); } for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { EVT VT = N->getValueType(i); if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) VTs.push_back(VT); } if (Load) BeforeOps.push_back(SDValue(Load, 0)); BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end()); SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); NewNodes.push_back(NewNode); // Emit the store instruction. if (FoldedStore) { AddrOps.pop_back(); AddrOps.push_back(SDValue(NewNode, 0)); AddrOps.push_back(Chain); std::pair MMOs = MF.extractStoreMemRefs(cast(N)->memoperands_begin(), cast(N)->memoperands_end()); if (!(*MMOs.first) && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Do not introduce a slow unaligned store. return false; // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte // memory access is slow above. unsigned Alignment = std::max(RC->getSize(), 16); bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= Alignment; SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), dl, MVT::Other, AddrOps); NewNodes.push_back(Store); // Preserve memory reference information. cast(Store)->setMemRefs(MMOs.first, MMOs.second); } return true; } unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex) const { auto I = MemOp2RegOpTable.find(Opc); if (I == MemOp2RegOpTable.end()) return 0; bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; bool FoldedStore = I->second.second & TB_FOLDED_STORE; if (UnfoldLoad && !FoldedLoad) return 0; if (UnfoldStore && !FoldedStore) return 0; if (LoadRegIndex) *LoadRegIndex = I->second.second & TB_INDEX_MASK; return I->second.first; } bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const { if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) return false; unsigned Opc1 = Load1->getMachineOpcode(); unsigned Opc2 = Load2->getMachineOpcode(); switch (Opc1) { default: return false; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVUPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: // AVX load instructions case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVUPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVUPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: // AVX512 load instructions case X86::VMOVSSZrm: case X86::VMOVSDZrm: case X86::VMOVAPSZ128rm: case X86::VMOVUPSZ128rm: case X86::VMOVAPSZ128rm_NOVLX: case X86::VMOVUPSZ128rm_NOVLX: case X86::VMOVAPDZ128rm: case X86::VMOVUPDZ128rm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQU64Z128rm: case X86::VMOVAPSZ256rm: case X86::VMOVUPSZ256rm: case X86::VMOVAPSZ256rm_NOVLX: case X86::VMOVUPSZ256rm_NOVLX: case X86::VMOVAPDZ256rm: case X86::VMOVUPDZ256rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU16Z256rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQU64Z256rm: case X86::VMOVAPSZrm: case X86::VMOVUPSZrm: case X86::VMOVAPDZrm: case X86::VMOVUPDZrm: case X86::VMOVDQU8Zrm: case X86::VMOVDQU16Zrm: case X86::VMOVDQA32Zrm: case X86::VMOVDQU32Zrm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU64Zrm: case X86::KMOVBkm: case X86::KMOVWkm: case X86::KMOVDkm: case X86::KMOVQkm: break; } switch (Opc2) { default: return false; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVUPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: // AVX load instructions case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVUPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVUPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: // AVX512 load instructions case X86::VMOVSSZrm: case X86::VMOVSDZrm: case X86::VMOVAPSZ128rm: case X86::VMOVUPSZ128rm: case X86::VMOVAPSZ128rm_NOVLX: case X86::VMOVUPSZ128rm_NOVLX: case X86::VMOVAPDZ128rm: case X86::VMOVUPDZ128rm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQU64Z128rm: case X86::VMOVAPSZ256rm: case X86::VMOVUPSZ256rm: case X86::VMOVAPSZ256rm_NOVLX: case X86::VMOVUPSZ256rm_NOVLX: case X86::VMOVAPDZ256rm: case X86::VMOVUPDZ256rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU16Z256rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQU64Z256rm: case X86::VMOVAPSZrm: case X86::VMOVUPSZrm: case X86::VMOVAPDZrm: case X86::VMOVUPDZrm: case X86::VMOVDQU8Zrm: case X86::VMOVDQU16Zrm: case X86::VMOVDQA32Zrm: case X86::VMOVDQU32Zrm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU64Zrm: case X86::KMOVBkm: case X86::KMOVWkm: case X86::KMOVDkm: case X86::KMOVQkm: break; } // Lambda to check if both the loads have the same value for an operand index. auto HasSameOp = [&](int I) { return Load1->getOperand(I) == Load2->getOperand(I); }; // All operands except the displacement should match. if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) return false; // Chain Operand must be the same. if (!HasSameOp(5)) return false; // Now let's examine if the displacements are constants. auto Disp1 = dyn_cast(Load1->getOperand(X86::AddrDisp)); auto Disp2 = dyn_cast(Load2->getOperand(X86::AddrDisp)); if (!Disp1 || !Disp2) return false; Offset1 = Disp1->getSExtValue(); Offset2 = Disp2->getSExtValue(); return true; } bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const { assert(Offset2 > Offset1); if ((Offset2 - Offset1) / 8 > 64) return false; unsigned Opc1 = Load1->getMachineOpcode(); unsigned Opc2 = Load2->getMachineOpcode(); if (Opc1 != Opc2) return false; // FIXME: overly conservative? switch (Opc1) { default: break; case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: return false; } EVT VT = Load1->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: // XMM registers. In 64-bit mode we can be a bit more aggressive since we // have 16 of them to play with. if (Subtarget.is64Bit()) { if (NumLoads >= 3) return false; } else if (NumLoads) { return false; } break; case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: case MVT::f32: case MVT::f64: if (NumLoads) return false; break; } return true; } bool X86InstrInfo:: reverseBranchCondition(SmallVectorImpl &Cond) const { assert(Cond.size() == 1 && "Invalid X86 branch condition!"); X86::CondCode CC = static_cast(Cond[0].getImm()); Cond[0].setImm(GetOppositeBranchCondition(CC)); return false; } bool X86InstrInfo:: isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { // FIXME: Return false for x87 stack register classes for now. We can't // allow any loads of these registers before FpGet_ST0_80. return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); } /// Return a virtual register initialized with the /// the global base register value. Output instructions required to /// initialize the register in the function entry block, if necessary. /// /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. /// unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { assert(!Subtarget.is64Bit() && "X86-64 PIC uses RIP relative addressing"); X86MachineFunctionInfo *X86FI = MF->getInfo(); unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); if (GlobalBaseReg != 0) return GlobalBaseReg; // Create the register. The code to initialize it is inserted // later, by the CGBR pass (below). MachineRegisterInfo &RegInfo = MF->getRegInfo(); GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); X86FI->setGlobalBaseReg(GlobalBaseReg); return GlobalBaseReg; } // These are the replaceable SSE instructions. Some of these have Int variants // that we don't include here. We don't want to replace instructions selected // by intrinsics. static const uint16_t ReplaceableInstrs[][3] = { //PackedSingle PackedDouble PackedInt { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr }, { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr }, { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr }, { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm }, { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm }, { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, // AVX 128-bit support { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr }, { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr }, { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr }, { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm }, { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm }, { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, // AVX 256-bit support { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }, // AVX512 support { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr }, { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr }, { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr }, { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr }, { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr }, { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr }, { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm }, { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm }, { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r }, { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m }, { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r }, { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m }, { X86::VBROADCASTSSZr, X86::VBROADCASTSSZr, X86::VPBROADCASTDZr }, { X86::VBROADCASTSSZm, X86::VBROADCASTSSZm, X86::VPBROADCASTDZm }, { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r }, { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m }, { X86::VBROADCASTSDZr, X86::VBROADCASTSDZr, X86::VPBROADCASTQZr }, { X86::VBROADCASTSDZm, X86::VBROADCASTSDZm, X86::VPBROADCASTQZm }, }; static const uint16_t ReplaceableInstrsAVX2[][3] = { //PackedSingle PackedDouble PackedInt { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }, { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}, { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 }, }; static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = { //PackedSingle PackedDouble PackedInt { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, }; static const uint16_t ReplaceableInstrsAVX512[][4] = { // Two integer columns for 64-bit and 32-bit elements. //PackedSingle PackedDouble PackedInt PackedInt { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr }, { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm }, { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr }, { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr }, { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm }, { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr }, { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm }, { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr }, { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr }, { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm }, { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr }, { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm }, { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr }, { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr }, { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm }, }; static const uint16_t ReplaceableInstrsAVX512DQ[][4] = { // Two integer columns for 64-bit and 32-bit elements. //PackedSingle PackedDouble PackedInt PackedInt { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm }, { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr }, { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm }, { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr }, { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm }, { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr }, { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm }, { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr }, { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm }, { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr }, { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm }, { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr }, }; static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = { // Two integer columns for 64-bit and 32-bit elements. //PackedSingle PackedDouble //PackedInt PackedInt { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk, X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk }, { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz, X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz }, { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk, X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk }, { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz, X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz }, { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk, X86::VPANDQZ128rmk, X86::VPANDDZ128rmk }, { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz, X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz }, { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk, X86::VPANDQZ128rrk, X86::VPANDDZ128rrk }, { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz, X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz }, { X86::VORPSZ128rmk, X86::VORPDZ128rmk, X86::VPORQZ128rmk, X86::VPORDZ128rmk }, { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz, X86::VPORQZ128rmkz, X86::VPORDZ128rmkz }, { X86::VORPSZ128rrk, X86::VORPDZ128rrk, X86::VPORQZ128rrk, X86::VPORDZ128rrk }, { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz, X86::VPORQZ128rrkz, X86::VPORDZ128rrkz }, { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk, X86::VPXORQZ128rmk, X86::VPXORDZ128rmk }, { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz, X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz }, { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk, X86::VPXORQZ128rrk, X86::VPXORDZ128rrk }, { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz, X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz }, { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk, X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk }, { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz, X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz }, { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk, X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk }, { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz, X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz }, { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk, X86::VPANDQZ256rmk, X86::VPANDDZ256rmk }, { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz, X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz }, { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk, X86::VPANDQZ256rrk, X86::VPANDDZ256rrk }, { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz, X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz }, { X86::VORPSZ256rmk, X86::VORPDZ256rmk, X86::VPORQZ256rmk, X86::VPORDZ256rmk }, { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz, X86::VPORQZ256rmkz, X86::VPORDZ256rmkz }, { X86::VORPSZ256rrk, X86::VORPDZ256rrk, X86::VPORQZ256rrk, X86::VPORDZ256rrk }, { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz, X86::VPORQZ256rrkz, X86::VPORDZ256rrkz }, { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk, X86::VPXORQZ256rmk, X86::VPXORDZ256rmk }, { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz, X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz }, { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk, X86::VPXORQZ256rrk, X86::VPXORDZ256rrk }, { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz, X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz }, { X86::VANDNPSZrmk, X86::VANDNPDZrmk, X86::VPANDNQZrmk, X86::VPANDNDZrmk }, { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz, X86::VPANDNQZrmkz, X86::VPANDNDZrmkz }, { X86::VANDNPSZrrk, X86::VANDNPDZrrk, X86::VPANDNQZrrk, X86::VPANDNDZrrk }, { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz, X86::VPANDNQZrrkz, X86::VPANDNDZrrkz }, { X86::VANDPSZrmk, X86::VANDPDZrmk, X86::VPANDQZrmk, X86::VPANDDZrmk }, { X86::VANDPSZrmkz, X86::VANDPDZrmkz, X86::VPANDQZrmkz, X86::VPANDDZrmkz }, { X86::VANDPSZrrk, X86::VANDPDZrrk, X86::VPANDQZrrk, X86::VPANDDZrrk }, { X86::VANDPSZrrkz, X86::VANDPDZrrkz, X86::VPANDQZrrkz, X86::VPANDDZrrkz }, { X86::VORPSZrmk, X86::VORPDZrmk, X86::VPORQZrmk, X86::VPORDZrmk }, { X86::VORPSZrmkz, X86::VORPDZrmkz, X86::VPORQZrmkz, X86::VPORDZrmkz }, { X86::VORPSZrrk, X86::VORPDZrrk, X86::VPORQZrrk, X86::VPORDZrrk }, { X86::VORPSZrrkz, X86::VORPDZrrkz, X86::VPORQZrrkz, X86::VPORDZrrkz }, { X86::VXORPSZrmk, X86::VXORPDZrmk, X86::VPXORQZrmk, X86::VPXORDZrmk }, { X86::VXORPSZrmkz, X86::VXORPDZrmkz, X86::VPXORQZrmkz, X86::VPXORDZrmkz }, { X86::VXORPSZrrk, X86::VXORPDZrrk, X86::VPXORQZrrk, X86::VPXORDZrrk }, { X86::VXORPSZrrkz, X86::VXORPDZrrkz, X86::VPXORQZrrkz, X86::VPXORDZrrkz }, // Broadcast loads can be handled the same as masked operations to avoid // changing element size. { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb, X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb }, { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb, X86::VPANDQZ128rmb, X86::VPANDDZ128rmb }, { X86::VORPSZ128rmb, X86::VORPDZ128rmb, X86::VPORQZ128rmb, X86::VPORDZ128rmb }, { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb, X86::VPXORQZ128rmb, X86::VPXORDZ128rmb }, { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb, X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb }, { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb, X86::VPANDQZ256rmb, X86::VPANDDZ256rmb }, { X86::VORPSZ256rmb, X86::VORPDZ256rmb, X86::VPORQZ256rmb, X86::VPORDZ256rmb }, { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb, X86::VPXORQZ256rmb, X86::VPXORDZ256rmb }, { X86::VANDNPSZrmb, X86::VANDNPDZrmb, X86::VPANDNQZrmb, X86::VPANDNDZrmb }, { X86::VANDPSZrmb, X86::VANDPDZrmb, X86::VPANDQZrmb, X86::VPANDDZrmb }, { X86::VANDPSZrmb, X86::VANDPDZrmb, X86::VPANDQZrmb, X86::VPANDDZrmb }, { X86::VORPSZrmb, X86::VORPDZrmb, X86::VPORQZrmb, X86::VPORDZrmb }, { X86::VXORPSZrmb, X86::VXORPDZrmb, X86::VPXORQZrmb, X86::VPXORDZrmb }, { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk, X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk }, { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk, X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk }, { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk, X86::VPORQZ128rmbk, X86::VPORDZ128rmbk }, { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk, X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk }, { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk, X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk }, { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk, X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk }, { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk, X86::VPORQZ256rmbk, X86::VPORDZ256rmbk }, { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk, X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk }, { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk, X86::VPANDNQZrmbk, X86::VPANDNDZrmbk }, { X86::VANDPSZrmbk, X86::VANDPDZrmbk, X86::VPANDQZrmbk, X86::VPANDDZrmbk }, { X86::VANDPSZrmbk, X86::VANDPDZrmbk, X86::VPANDQZrmbk, X86::VPANDDZrmbk }, { X86::VORPSZrmbk, X86::VORPDZrmbk, X86::VPORQZrmbk, X86::VPORDZrmbk }, { X86::VXORPSZrmbk, X86::VXORPDZrmbk, X86::VPXORQZrmbk, X86::VPXORDZrmbk }, { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz, X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz}, { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz, X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz }, { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz, X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz }, { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz, X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz }, { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz, X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz}, { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz, X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz }, { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz, X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz }, { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz, X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz }, { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz, X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz }, { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, { X86::VORPSZrmbkz, X86::VORPDZrmbkz, X86::VPORQZrmbkz, X86::VPORDZrmbkz }, { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz, X86::VPXORQZrmbkz, X86::VPXORDZrmbkz }, }; // FIXME: Some shuffle and unpack instructions have equivalents in different // domains, but they require a bit more work than just switching opcodes. static const uint16_t *lookup(unsigned opcode, unsigned domain, ArrayRef Table) { for (const uint16_t (&Row)[3] : Table) if (Row[domain-1] == opcode) return Row; return nullptr; } static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, ArrayRef Table) { // If this is the integer domain make sure to check both integer columns. for (const uint16_t (&Row)[4] : Table) if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode)) return Row; return nullptr; } std::pair X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; unsigned opcode = MI.getOpcode(); uint16_t validDomains = 0; if (domain) { if (lookup(MI.getOpcode(), domain, ReplaceableInstrs)) { validDomains = 0xe; } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { // Insert/extract instructions should only effect domain if AVX2 // is enabled. if (!Subtarget.hasAVX2()) return std::make_pair(0, 0); validDomains = 0xe; } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { validDomains = 0xe; } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) { validDomains = 0xe; } else if (Subtarget.hasDQI()) { if (const uint16_t *table = lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQMasked)) { if (domain == 1 || (domain == 3 && table[3] == opcode)) validDomains = 0xa; else validDomains = 0xc; } } } return std::make_pair(domain, validDomains); } void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { assert(Domain>0 && Domain<4 && "Invalid execution domain"); uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; assert(dom && "Not an SSE instruction"); const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); if (!table) { // try the other table assert((Subtarget.hasAVX2() || Domain < 3) && "256-bit vector operations only available in AVX2"); table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); } if (!table) { // try the other table assert(Subtarget.hasAVX2() && "256-bit insert/extract only available in AVX2"); table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); } if (!table) { // try the AVX512 table assert(Subtarget.hasAVX512() && "Requires AVX-512"); table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); // Don't change integer Q instructions to D instructions. if (table && Domain == 3 && table[3] == MI.getOpcode()) Domain = 4; } if (!table) { // try the AVX512DQ table assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); // Don't change integer Q instructions to D instructions and // use D intructions if we started with a PS instruction. if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) Domain = 4; } if (!table) { // try the AVX512DQMasked table assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) Domain = 4; } assert(table && "Cannot change domain"); MI.setDesc(get(table[Domain - 1])); } /// Return the noop instruction to use for a noop. void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { NopInst.setOpcode(X86::NOOP); } bool X86InstrInfo::isHighLatencyDef(int opc) const { switch (opc) { default: return false; case X86::DIVPDrm: case X86::DIVPDrr: case X86::DIVPSrm: case X86::DIVPSrr: case X86::DIVSDrm: case X86::DIVSDrm_Int: case X86::DIVSDrr: case X86::DIVSDrr_Int: case X86::DIVSSrm: case X86::DIVSSrm_Int: case X86::DIVSSrr: case X86::DIVSSrr_Int: case X86::SQRTPDm: case X86::SQRTPDr: case X86::SQRTPSm: case X86::SQRTPSr: case X86::SQRTSDm: case X86::SQRTSDm_Int: case X86::SQRTSDr: case X86::SQRTSDr_Int: case X86::SQRTSSm: case X86::SQRTSSm_Int: case X86::SQRTSSr: case X86::SQRTSSr_Int: // AVX instructions with high latency case X86::VDIVPDrm: case X86::VDIVPDrr: case X86::VDIVPDYrm: case X86::VDIVPDYrr: case X86::VDIVPSrm: case X86::VDIVPSrr: case X86::VDIVPSYrm: case X86::VDIVPSYrr: case X86::VDIVSDrm: case X86::VDIVSDrm_Int: case X86::VDIVSDrr: case X86::VDIVSDrr_Int: case X86::VDIVSSrm: case X86::VDIVSSrm_Int: case X86::VDIVSSrr: case X86::VDIVSSrr_Int: case X86::VSQRTPDm: case X86::VSQRTPDr: case X86::VSQRTPDYm: case X86::VSQRTPDYr: case X86::VSQRTPSm: case X86::VSQRTPSr: case X86::VSQRTPSYm: case X86::VSQRTPSYr: case X86::VSQRTSDm: case X86::VSQRTSDm_Int: case X86::VSQRTSDr: case X86::VSQRTSDr_Int: case X86::VSQRTSSm: case X86::VSQRTSSm_Int: case X86::VSQRTSSr: case X86::VSQRTSSr_Int: // AVX512 instructions with high latency case X86::VDIVPDZ128rm: case X86::VDIVPDZ128rmb: case X86::VDIVPDZ128rmbk: case X86::VDIVPDZ128rmbkz: case X86::VDIVPDZ128rmk: case X86::VDIVPDZ128rmkz: case X86::VDIVPDZ128rr: case X86::VDIVPDZ128rrk: case X86::VDIVPDZ128rrkz: case X86::VDIVPDZ256rm: case X86::VDIVPDZ256rmb: case X86::VDIVPDZ256rmbk: case X86::VDIVPDZ256rmbkz: case X86::VDIVPDZ256rmk: case X86::VDIVPDZ256rmkz: case X86::VDIVPDZ256rr: case X86::VDIVPDZ256rrk: case X86::VDIVPDZ256rrkz: case X86::VDIVPDZrb: case X86::VDIVPDZrbk: case X86::VDIVPDZrbkz: case X86::VDIVPDZrm: case X86::VDIVPDZrmb: case X86::VDIVPDZrmbk: case X86::VDIVPDZrmbkz: case X86::VDIVPDZrmk: case X86::VDIVPDZrmkz: case X86::VDIVPDZrr: case X86::VDIVPDZrrk: case X86::VDIVPDZrrkz: case X86::VDIVPSZ128rm: case X86::VDIVPSZ128rmb: case X86::VDIVPSZ128rmbk: case X86::VDIVPSZ128rmbkz: case X86::VDIVPSZ128rmk: case X86::VDIVPSZ128rmkz: case X86::VDIVPSZ128rr: case X86::VDIVPSZ128rrk: case X86::VDIVPSZ128rrkz: case X86::VDIVPSZ256rm: case X86::VDIVPSZ256rmb: case X86::VDIVPSZ256rmbk: case X86::VDIVPSZ256rmbkz: case X86::VDIVPSZ256rmk: case X86::VDIVPSZ256rmkz: case X86::VDIVPSZ256rr: case X86::VDIVPSZ256rrk: case X86::VDIVPSZ256rrkz: case X86::VDIVPSZrb: case X86::VDIVPSZrbk: case X86::VDIVPSZrbkz: case X86::VDIVPSZrm: case X86::VDIVPSZrmb: case X86::VDIVPSZrmbk: case X86::VDIVPSZrmbkz: case X86::VDIVPSZrmk: case X86::VDIVPSZrmkz: case X86::VDIVPSZrr: case X86::VDIVPSZrrk: case X86::VDIVPSZrrkz: case X86::VDIVSDZrm: case X86::VDIVSDZrr: case X86::VDIVSDZrm_Int: case X86::VDIVSDZrm_Intk: case X86::VDIVSDZrm_Intkz: case X86::VDIVSDZrr_Int: case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: case X86::VDIVSDZrrb: case X86::VDIVSDZrrbk: case X86::VDIVSDZrrbkz: case X86::VDIVSSZrm: case X86::VDIVSSZrr: case X86::VDIVSSZrm_Int: case X86::VDIVSSZrm_Intk: case X86::VDIVSSZrm_Intkz: case X86::VDIVSSZrr_Int: case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: case X86::VDIVSSZrrb: case X86::VDIVSSZrrbk: case X86::VDIVSSZrrbkz: case X86::VSQRTPDZ128m: case X86::VSQRTPDZ128mb: case X86::VSQRTPDZ128mbk: case X86::VSQRTPDZ128mbkz: case X86::VSQRTPDZ128mk: case X86::VSQRTPDZ128mkz: case X86::VSQRTPDZ128r: case X86::VSQRTPDZ128rk: case X86::VSQRTPDZ128rkz: case X86::VSQRTPDZ256m: case X86::VSQRTPDZ256mb: case X86::VSQRTPDZ256mbk: case X86::VSQRTPDZ256mbkz: case X86::VSQRTPDZ256mk: case X86::VSQRTPDZ256mkz: case X86::VSQRTPDZ256r: case X86::VSQRTPDZ256rk: case X86::VSQRTPDZ256rkz: case X86::VSQRTPDZm: case X86::VSQRTPDZmb: case X86::VSQRTPDZmbk: case X86::VSQRTPDZmbkz: case X86::VSQRTPDZmk: case X86::VSQRTPDZmkz: case X86::VSQRTPDZr: case X86::VSQRTPDZrb: case X86::VSQRTPDZrbk: case X86::VSQRTPDZrbkz: case X86::VSQRTPDZrk: case X86::VSQRTPDZrkz: case X86::VSQRTPSZ128m: case X86::VSQRTPSZ128mb: case X86::VSQRTPSZ128mbk: case X86::VSQRTPSZ128mbkz: case X86::VSQRTPSZ128mk: case X86::VSQRTPSZ128mkz: case X86::VSQRTPSZ128r: case X86::VSQRTPSZ128rk: case X86::VSQRTPSZ128rkz: case X86::VSQRTPSZ256m: case X86::VSQRTPSZ256mb: case X86::VSQRTPSZ256mbk: case X86::VSQRTPSZ256mbkz: case X86::VSQRTPSZ256mk: case X86::VSQRTPSZ256mkz: case X86::VSQRTPSZ256r: case X86::VSQRTPSZ256rk: case X86::VSQRTPSZ256rkz: case X86::VSQRTPSZm: case X86::VSQRTPSZmb: case X86::VSQRTPSZmbk: case X86::VSQRTPSZmbkz: case X86::VSQRTPSZmk: case X86::VSQRTPSZmkz: case X86::VSQRTPSZr: case X86::VSQRTPSZrb: case X86::VSQRTPSZrbk: case X86::VSQRTPSZrbkz: case X86::VSQRTPSZrk: case X86::VSQRTPSZrkz: case X86::VSQRTSDZm: case X86::VSQRTSDZm_Int: case X86::VSQRTSDZm_Intk: case X86::VSQRTSDZm_Intkz: case X86::VSQRTSDZr: case X86::VSQRTSDZr_Int: case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz: case X86::VSQRTSDZrb_Int: case X86::VSQRTSDZrb_Intk: case X86::VSQRTSDZrb_Intkz: case X86::VSQRTSSZm: case X86::VSQRTSSZm_Int: case X86::VSQRTSSZm_Intk: case X86::VSQRTSSZm_Intkz: case X86::VSQRTSSZr: case X86::VSQRTSSZr_Int: case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz: case X86::VSQRTSSZrb_Int: case X86::VSQRTSSZrb_Intk: case X86::VSQRTSSZrb_Intkz: case X86::VGATHERDPDYrm: case X86::VGATHERDPDZ128rm: case X86::VGATHERDPDZ256rm: case X86::VGATHERDPDZrm: case X86::VGATHERDPDrm: case X86::VGATHERDPSYrm: case X86::VGATHERDPSZ128rm: case X86::VGATHERDPSZ256rm: case X86::VGATHERDPSZrm: case X86::VGATHERDPSrm: case X86::VGATHERPF0DPDm: case X86::VGATHERPF0DPSm: case X86::VGATHERPF0QPDm: case X86::VGATHERPF0QPSm: case X86::VGATHERPF1DPDm: case X86::VGATHERPF1DPSm: case X86::VGATHERPF1QPDm: case X86::VGATHERPF1QPSm: case X86::VGATHERQPDYrm: case X86::VGATHERQPDZ128rm: case X86::VGATHERQPDZ256rm: case X86::VGATHERQPDZrm: case X86::VGATHERQPDrm: case X86::VGATHERQPSYrm: case X86::VGATHERQPSZ128rm: case X86::VGATHERQPSZ256rm: case X86::VGATHERQPSZrm: case X86::VGATHERQPSrm: case X86::VPGATHERDDYrm: case X86::VPGATHERDDZ128rm: case X86::VPGATHERDDZ256rm: case X86::VPGATHERDDZrm: case X86::VPGATHERDDrm: case X86::VPGATHERDQYrm: case X86::VPGATHERDQZ128rm: case X86::VPGATHERDQZ256rm: case X86::VPGATHERDQZrm: case X86::VPGATHERDQrm: case X86::VPGATHERQDYrm: case X86::VPGATHERQDZ128rm: case X86::VPGATHERQDZ256rm: case X86::VPGATHERQDZrm: case X86::VPGATHERQDrm: case X86::VPGATHERQQYrm: case X86::VPGATHERQQZ128rm: case X86::VPGATHERQQZ256rm: case X86::VPGATHERQQZrm: case X86::VPGATHERQQrm: case X86::VSCATTERDPDZ128mr: case X86::VSCATTERDPDZ256mr: case X86::VSCATTERDPDZmr: case X86::VSCATTERDPSZ128mr: case X86::VSCATTERDPSZ256mr: case X86::VSCATTERDPSZmr: case X86::VSCATTERPF0DPDm: case X86::VSCATTERPF0DPSm: case X86::VSCATTERPF0QPDm: case X86::VSCATTERPF0QPSm: case X86::VSCATTERPF1DPDm: case X86::VSCATTERPF1DPSm: case X86::VSCATTERPF1QPDm: case X86::VSCATTERPF1QPSm: case X86::VSCATTERQPDZ128mr: case X86::VSCATTERQPDZ256mr: case X86::VSCATTERQPDZmr: case X86::VSCATTERQPSZ128mr: case X86::VSCATTERQPSZ256mr: case X86::VSCATTERQPSZmr: case X86::VPSCATTERDDZ128mr: case X86::VPSCATTERDDZ256mr: case X86::VPSCATTERDDZmr: case X86::VPSCATTERDQZ128mr: case X86::VPSCATTERDQZ256mr: case X86::VPSCATTERDQZmr: case X86::VPSCATTERQDZ128mr: case X86::VPSCATTERQDZ256mr: case X86::VPSCATTERQDZmr: case X86::VPSCATTERQQZ128mr: case X86::VPSCATTERQQZ256mr: case X86::VPSCATTERQQZmr: return true; } } bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { return isHighLatencyDef(DefMI.getOpcode()); } bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const { assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) && "Reassociation needs binary operators"); // Integer binary math/logic instructions have a third source operand: // the EFLAGS register. That operand must be both defined here and never // used; ie, it must be dead. If the EFLAGS operand is live, then we can // not change anything because rearranging the operands could affect other // instructions that depend on the exact status flags (zero, sign, etc.) // that are set by using these particular operands with this operation. if (Inst.getNumOperands() == 4) { assert(Inst.getOperand(3).isReg() && Inst.getOperand(3).getReg() == X86::EFLAGS && "Unexpected operand in reassociable instruction"); if (!Inst.getOperand(3).isDead()) return false; } return TargetInstrInfo::hasReassociableOperands(Inst, MBB); } // TODO: There are many more machine instruction opcodes to match: // 1. Other data types (integer, vectors) // 2. Other math / logic operations (xor, or) // 3. Other forms of the same operation (intrinsics and other variants) bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { switch (Inst.getOpcode()) { case X86::AND8rr: case X86::AND16rr: case X86::AND32rr: case X86::AND64rr: case X86::OR8rr: case X86::OR16rr: case X86::OR32rr: case X86::OR64rr: case X86::XOR8rr: case X86::XOR16rr: case X86::XOR32rr: case X86::XOR64rr: case X86::IMUL16rr: case X86::IMUL32rr: case X86::IMUL64rr: case X86::PANDrr: case X86::PORrr: case X86::PXORrr: case X86::ANDPDrr: case X86::ANDPSrr: case X86::ORPDrr: case X86::ORPSrr: case X86::XORPDrr: case X86::XORPSrr: case X86::PADDBrr: case X86::PADDWrr: case X86::PADDDrr: case X86::PADDQrr: case X86::VPANDrr: case X86::VPANDYrr: case X86::VPANDDZ128rr: case X86::VPANDDZ256rr: case X86::VPANDDZrr: case X86::VPANDQZ128rr: case X86::VPANDQZ256rr: case X86::VPANDQZrr: case X86::VPORrr: case X86::VPORYrr: case X86::VPORDZ128rr: case X86::VPORDZ256rr: case X86::VPORDZrr: case X86::VPORQZ128rr: case X86::VPORQZ256rr: case X86::VPORQZrr: case X86::VPXORrr: case X86::VPXORYrr: case X86::VPXORDZ128rr: case X86::VPXORDZ256rr: case X86::VPXORDZrr: case X86::VPXORQZ128rr: case X86::VPXORQZ256rr: case X86::VPXORQZrr: case X86::VANDPDrr: case X86::VANDPSrr: case X86::VANDPDYrr: case X86::VANDPSYrr: case X86::VANDPDZ128rr: case X86::VANDPSZ128rr: case X86::VANDPDZ256rr: case X86::VANDPSZ256rr: case X86::VANDPDZrr: case X86::VANDPSZrr: case X86::VORPDrr: case X86::VORPSrr: case X86::VORPDYrr: case X86::VORPSYrr: case X86::VORPDZ128rr: case X86::VORPSZ128rr: case X86::VORPDZ256rr: case X86::VORPSZ256rr: case X86::VORPDZrr: case X86::VORPSZrr: case X86::VXORPDrr: case X86::VXORPSrr: case X86::VXORPDYrr: case X86::VXORPSYrr: case X86::VXORPDZ128rr: case X86::VXORPSZ128rr: case X86::VXORPDZ256rr: case X86::VXORPSZ256rr: case X86::VXORPDZrr: case X86::VXORPSZrr: case X86::KADDBrr: case X86::KADDWrr: case X86::KADDDrr: case X86::KADDQrr: case X86::KANDBrr: case X86::KANDWrr: case X86::KANDDrr: case X86::KANDQrr: case X86::KORBrr: case X86::KORWrr: case X86::KORDrr: case X86::KORQrr: case X86::KXORBrr: case X86::KXORWrr: case X86::KXORDrr: case X86::KXORQrr: case X86::VPADDBrr: case X86::VPADDWrr: case X86::VPADDDrr: case X86::VPADDQrr: case X86::VPADDBYrr: case X86::VPADDWYrr: case X86::VPADDDYrr: case X86::VPADDQYrr: case X86::VPADDBZ128rr: case X86::VPADDWZ128rr: case X86::VPADDDZ128rr: case X86::VPADDQZ128rr: case X86::VPADDBZ256rr: case X86::VPADDWZ256rr: case X86::VPADDDZ256rr: case X86::VPADDQZ256rr: case X86::VPADDBZrr: case X86::VPADDWZrr: case X86::VPADDDZrr: case X86::VPADDQZrr: case X86::VPMULLWrr: case X86::VPMULLWYrr: case X86::VPMULLWZ128rr: case X86::VPMULLWZ256rr: case X86::VPMULLWZrr: case X86::VPMULLDrr: case X86::VPMULLDYrr: case X86::VPMULLDZ128rr: case X86::VPMULLDZ256rr: case X86::VPMULLDZrr: case X86::VPMULLQZ128rr: case X86::VPMULLQZ256rr: case X86::VPMULLQZrr: // Normal min/max instructions are not commutative because of NaN and signed // zero semantics, but these are. Thus, there's no need to check for global // relaxed math; the instructions themselves have the properties we need. case X86::MAXCPDrr: case X86::MAXCPSrr: case X86::MAXCSDrr: case X86::MAXCSSrr: case X86::MINCPDrr: case X86::MINCPSrr: case X86::MINCSDrr: case X86::MINCSSrr: case X86::VMAXCPDrr: case X86::VMAXCPSrr: case X86::VMAXCPDYrr: case X86::VMAXCPSYrr: case X86::VMAXCPDZ128rr: case X86::VMAXCPSZ128rr: case X86::VMAXCPDZ256rr: case X86::VMAXCPSZ256rr: case X86::VMAXCPDZrr: case X86::VMAXCPSZrr: case X86::VMAXCSDrr: case X86::VMAXCSSrr: case X86::VMAXCSDZrr: case X86::VMAXCSSZrr: case X86::VMINCPDrr: case X86::VMINCPSrr: case X86::VMINCPDYrr: case X86::VMINCPSYrr: case X86::VMINCPDZ128rr: case X86::VMINCPSZ128rr: case X86::VMINCPDZ256rr: case X86::VMINCPSZ256rr: case X86::VMINCPDZrr: case X86::VMINCPSZrr: case X86::VMINCSDrr: case X86::VMINCSSrr: case X86::VMINCSDZrr: case X86::VMINCSSZrr: return true; case X86::ADDPDrr: case X86::ADDPSrr: case X86::ADDSDrr: case X86::ADDSSrr: case X86::MULPDrr: case X86::MULPSrr: case X86::MULSDrr: case X86::MULSSrr: case X86::VADDPDrr: case X86::VADDPSrr: case X86::VADDPDYrr: case X86::VADDPSYrr: case X86::VADDPDZ128rr: case X86::VADDPSZ128rr: case X86::VADDPDZ256rr: case X86::VADDPSZ256rr: case X86::VADDPDZrr: case X86::VADDPSZrr: case X86::VADDSDrr: case X86::VADDSSrr: case X86::VADDSDZrr: case X86::VADDSSZrr: case X86::VMULPDrr: case X86::VMULPSrr: case X86::VMULPDYrr: case X86::VMULPSYrr: case X86::VMULPDZ128rr: case X86::VMULPSZ128rr: case X86::VMULPDZ256rr: case X86::VMULPSZ256rr: case X86::VMULPDZrr: case X86::VMULPSZrr: case X86::VMULSDrr: case X86::VMULSSrr: case X86::VMULSDZrr: case X86::VMULSSZrr: return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath; default: return false; } } /// This is an architecture-specific helper function of reassociateOps. /// Set special operand attributes for new instructions after reassociation. void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const { // Integer instructions define an implicit EFLAGS source register operand as // the third source (fourth total) operand. if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4) return; assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 && "Unexpected instruction type for reassociation"); MachineOperand &OldOp1 = OldMI1.getOperand(3); MachineOperand &OldOp2 = OldMI2.getOperand(3); MachineOperand &NewOp1 = NewMI1.getOperand(3); MachineOperand &NewOp2 = NewMI2.getOperand(3); assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() && "Must have dead EFLAGS operand in reassociable instruction"); assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() && "Must have dead EFLAGS operand in reassociable instruction"); (void)OldOp1; (void)OldOp2; assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS && "Unexpected operand in reassociable instruction"); assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS && "Unexpected operand in reassociable instruction"); // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations // of this pass or other passes. The EFLAGS operands must be dead in these new // instructions because the EFLAGS operands in the original instructions must // be dead in order for reassociation to occur. NewOp1.setIsDead(); NewOp2.setIsDead(); } std::pair X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { return std::make_pair(TF, 0u); } ArrayRef> X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { using namespace X86II; static const std::pair TargetFlags[] = { {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, {MO_GOT, "x86-got"}, {MO_GOTOFF, "x86-gotoff"}, {MO_GOTPCREL, "x86-gotpcrel"}, {MO_PLT, "x86-plt"}, {MO_TLSGD, "x86-tlsgd"}, {MO_TLSLD, "x86-tlsld"}, {MO_TLSLDM, "x86-tlsldm"}, {MO_GOTTPOFF, "x86-gottpoff"}, {MO_INDNTPOFF, "x86-indntpoff"}, {MO_TPOFF, "x86-tpoff"}, {MO_DTPOFF, "x86-dtpoff"}, {MO_NTPOFF, "x86-ntpoff"}, {MO_GOTNTPOFF, "x86-gotntpoff"}, {MO_DLLIMPORT, "x86-dllimport"}, {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, {MO_TLVP, "x86-tlvp"}, {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, {MO_SECREL, "x86-secrel"}}; return makeArrayRef(TargetFlags); } namespace { /// Create Global Base Reg pass. This initializes the PIC /// global base register for x86-32. struct CGBR : public MachineFunctionPass { static char ID; CGBR() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override { const X86TargetMachine *TM = static_cast(&MF.getTarget()); const X86Subtarget &STI = MF.getSubtarget(); // Don't do anything if this is 64-bit as 64-bit PIC // uses RIP relative addressing. if (STI.is64Bit()) return false; // Only emit a global base reg in PIC mode. if (!TM->isPositionIndependent()) return false; X86MachineFunctionInfo *X86FI = MF.getInfo(); unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); // If we didn't need a GlobalBaseReg, don't insert code. if (GlobalBaseReg == 0) return false; // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = MF.front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); DebugLoc DL = FirstMBB.findDebugLoc(MBBI); MachineRegisterInfo &RegInfo = MF.getRegInfo(); const X86InstrInfo *TII = STI.getInstrInfo(); unsigned PC; if (STI.isPICStyleGOT()) PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); else PC = GlobalBaseReg; // Operand of MovePCtoStack is completely ignored by asm printer. It's // only used in JIT code emission as displacement to pc. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); // If we're using vanilla 'GOT' PIC style, we should use relative addressing // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. if (STI.isPICStyleGOT()) { // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", X86II::MO_GOT_ABSOLUTE_ADDRESS); } return true; } StringRef getPassName() const override { return "X86 PIC Global Base Reg Initialization"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } char CGBR::ID = 0; FunctionPass* llvm::createX86GlobalBaseRegPass() { return new CGBR(); } namespace { struct LDTLSCleanup : public MachineFunctionPass { static char ID; LDTLSCleanup() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(*MF.getFunction())) return false; X86MachineFunctionInfo *MFI = MF.getInfo(); if (MFI->getNumLocalDynamicTLSAccesses() < 2) { // No point folding accesses if there isn't at least two. return false; } MachineDominatorTree *DT = &getAnalysis(); return VisitNode(DT->getRootNode(), 0); } // Visit the dominator subtree rooted at Node in pre-order. // If TLSBaseAddrReg is non-null, then use that to replace any // TLS_base_addr instructions. Otherwise, create the register // when the first such instruction is seen, and then use it // as we encounter more instructions. bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { MachineBasicBlock *BB = Node->getBlock(); bool Changed = false; // Traverse the current block. for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { switch (I->getOpcode()) { case X86::TLS_base_addr32: case X86::TLS_base_addr64: if (TLSBaseAddrReg) I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); else I = SetRegister(*I, &TLSBaseAddrReg); Changed = true; break; default: break; } } // Visit the children of this block in the dominator tree. for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) { Changed |= VisitNode(*I, TLSBaseAddrReg); } return Changed; } // Replace the TLS_base_addr instruction I with a copy from // TLSBaseAddrReg, returning the new instruction. MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, unsigned TLSBaseAddrReg) { MachineFunction *MF = I.getParent()->getParent(); const X86Subtarget &STI = MF->getSubtarget(); const bool is64Bit = STI.is64Bit(); const X86InstrInfo *TII = STI.getInstrInfo(); // Insert a Copy from TLSBaseAddrReg to RAX/EAX. MachineInstr *Copy = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) .addReg(TLSBaseAddrReg); // Erase the TLS_base_addr instruction. I.eraseFromParent(); return Copy; } // Create a virtal register in *TLSBaseAddrReg, and populate it by // inserting a copy instruction after I. Returns the new instruction. MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { MachineFunction *MF = I.getParent()->getParent(); const X86Subtarget &STI = MF->getSubtarget(); const bool is64Bit = STI.is64Bit(); const X86InstrInfo *TII = STI.getInstrInfo(); // Create a virtual register for the TLS base address. MachineRegisterInfo &RegInfo = MF->getRegInfo(); *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass); // Insert a copy from RAX/EAX to TLSBaseAddrReg. MachineInstr *Next = I.getNextNode(); MachineInstr *Copy = BuildMI(*I.getParent(), Next, I.getDebugLoc(), TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) .addReg(is64Bit ? X86::RAX : X86::EAX); return Copy; } StringRef getPassName() const override { return "Local Dynamic TLS Access Clean-up"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } }; } char LDTLSCleanup::ID = 0; FunctionPass* llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } unsigned X86InstrInfo::getOutliningBenefit(size_t SequenceSize, size_t Occurrences, bool CanBeTailCall) const { unsigned NotOutlinedSize = SequenceSize * Occurrences; unsigned OutlinedSize; // Is it a tail call? if (CanBeTailCall) { // If yes, we don't have to include a return instruction-- it's already in // our sequence. So we have one occurrence of the sequence + #Occurrences // calls. OutlinedSize = SequenceSize + Occurrences; } else { // If not, add one for the return instruction. OutlinedSize = (SequenceSize + 1) + Occurrences; } // Return the number of instructions saved by outlining this sequence. return NotOutlinedSize > OutlinedSize ? NotOutlinedSize - OutlinedSize : 0; } bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF) const { return MF.getFunction()->hasFnAttribute(Attribute::NoRedZone); } X86GenInstrInfo::MachineOutlinerInstrType X86InstrInfo::getOutliningType(MachineInstr &MI) const { // Don't allow debug values to impact outlining type. if (MI.isDebugValue() || MI.isIndirectDebugValue()) return MachineOutlinerInstrType::Invisible; // Is this a tail call? If yes, we can outline as a tail call. if (isTailCall(MI)) return MachineOutlinerInstrType::Legal; // Is this the terminator of a basic block? if (MI.isTerminator() || MI.isReturn()) { // Does its parent have any successors in its MachineFunction? if (MI.getParent()->succ_empty()) return MachineOutlinerInstrType::Legal; // It does, so we can't tail call it. return MachineOutlinerInstrType::Illegal; } // Don't outline anything that modifies or reads from the stack pointer. // // FIXME: There are instructions which are being manually built without // explicit uses/defs so we also have to check the MCInstrDesc. We should be // able to remove the extra checks once those are fixed up. For example, // sometimes we might get something like %RAX = POP64r 1. This won't be // caught by modifiesRegister or readsRegister even though the instruction // really ought to be formed so that modifiesRegister/readsRegister would // catch it. if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) return MachineOutlinerInstrType::Illegal; // Outlined calls change the instruction pointer, so don't read from it. if (MI.readsRegister(X86::RIP, &RI) || MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) return MachineOutlinerInstrType::Illegal; // Positions can't safely be outlined. if (MI.isPosition()) return MachineOutlinerInstrType::Illegal; // Make sure none of the operands of this instruction do anything tricky. for (const MachineOperand &MOP : MI.operands()) if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || MOP.isTargetIndex()) return MachineOutlinerInstrType::Illegal; return MachineOutlinerInstrType::Legal; } void X86InstrInfo::insertOutlinerEpilogue(MachineBasicBlock &MBB, MachineFunction &MF, bool IsTailCall) const { // If we're a tail call, we already have a return, so don't do anything. if (IsTailCall) return; // We're a normal call, so our sequence doesn't have a return instruction. // Add it in. MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ)); MBB.insert(MBB.end(), retq); } void X86InstrInfo::insertOutlinerPrologue(MachineBasicBlock &MBB, MachineFunction &MF, bool IsTailCall) const { return; } MachineBasicBlock::iterator X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, bool IsTailCall) const { // Is it a tail call? if (IsTailCall) { // Yes, just insert a JMP. It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::JMP_1)) .addGlobalAddress(M.getNamedValue(MF.getName()))); } else { // No, insert a call. It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) .addGlobalAddress(M.getNamedValue(MF.getName()))); } return It; }