//=- X86ScheduleZnver1.td - X86 Znver1 Scheduling -------------*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the machine model for Znver1 to support instruction // scheduling and other instruction cost heuristics. // //===----------------------------------------------------------------------===// def Znver1Model : SchedMachineModel { // Zen can decode 4 instructions per cycle. let IssueWidth = 4; // Based on the reorder buffer we define MicroOpBufferSize let MicroOpBufferSize = 192; let LoadLatency = 4; let MispredictPenalty = 17; let HighLatency = 25; let PostRAScheduler = 1; // FIXME: This variable is required for incomplete model. // We haven't catered all instructions. // So, we reset the value of this variable so as to // say that the model is incomplete. let CompleteModel = 0; } let SchedModel = Znver1Model in { // Zen can issue micro-ops to 10 different units in one cycle. // These are // * Four integer ALU units (ZALU0, ZALU1, ZALU2, ZALU3) // * Two AGU units (ZAGU0, ZAGU1) // * Four FPU units (ZFPU0, ZFPU1, ZFPU2, ZFPU3) // AGUs feed load store queues @two loads and 1 store per cycle. // Four ALU units are defined below def ZnALU0 : ProcResource<1>; def ZnALU1 : ProcResource<1>; def ZnALU2 : ProcResource<1>; def ZnALU3 : ProcResource<1>; // Two AGU units are defined below def ZnAGU0 : ProcResource<1>; def ZnAGU1 : ProcResource<1>; // Four FPU units are defined below def ZnFPU0 : ProcResource<1>; def ZnFPU1 : ProcResource<1>; def ZnFPU2 : ProcResource<1>; def ZnFPU3 : ProcResource<1>; // FPU grouping def ZnFPU : ProcResGroup<[ZnFPU0, ZnFPU1, ZnFPU2, ZnFPU3]>; def ZnFPU013 : ProcResGroup<[ZnFPU0, ZnFPU1, ZnFPU3]>; def ZnFPU01 : ProcResGroup<[ZnFPU0, ZnFPU1]>; def ZnFPU12 : ProcResGroup<[ZnFPU1, ZnFPU2]>; def ZnFPU13 : ProcResGroup<[ZnFPU1, ZnFPU3]>; def ZnFPU23 : ProcResGroup<[ZnFPU2, ZnFPU3]>; def ZnFPU02 : ProcResGroup<[ZnFPU0, ZnFPU2]>; def ZnFPU03 : ProcResGroup<[ZnFPU0, ZnFPU3]>; // Below are the grouping of the units. // Micro-ops to be issued to multiple units are tackled this way. // ALU grouping // ZnALU03 - 0,3 grouping def ZnALU03: ProcResGroup<[ZnALU0, ZnALU3]>; // 56 Entry (14x4 entries) Int Scheduler def ZnALU : ProcResGroup<[ZnALU0, ZnALU1, ZnALU2, ZnALU3]> { let BufferSize=56; } // 28 Entry (14x2) AGU group. AGUs can't be used for all ALU operations // but are relevant for some instructions def ZnAGU : ProcResGroup<[ZnAGU0, ZnAGU1]> { let BufferSize=28; } // Integer Multiplication issued on ALU1. def ZnMultiplier : ProcResource<1>; // Integer division issued on ALU2. def ZnDivider : ProcResource<1>; // 4 Cycles load-to use Latency is captured def : ReadAdvance; // (a folded load is an instruction that loads and does some operation) // Ex: ADDPD xmm,[mem]-> This instruction has two micro-ops // Instructions with folded loads are usually micro-fused, so they only appear // as two micro-ops. // a. load and // b. addpd // This multiclass is for folded loads for integer units. multiclass ZnWriteResPair { // Register variant takes 1-cycle on Execution Port. def : WriteRes { let Latency = Lat; } // Memory variant also uses a cycle on ZnAGU // adds 4 cycles to the latency. def : WriteRes { let NumMicroOps = 2; let Latency = !add(Lat, 4); } } // This multiclass is for folded loads for floating point units. multiclass ZnWriteResFpuPair { // Register variant takes 1-cycle on Execution Port. def : WriteRes { let Latency = Lat; } // Memory variant also uses a cycle on ZnAGU // adds 7 cycles to the latency. def : WriteRes { let Latency = !add(Lat, 7); } } // WriteRMW is set for instructions with Memory write // operation in codegen def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes { let Latency = 8; } def : WriteRes; def : WriteRes; defm : ZnWriteResPair; defm : ZnWriteResPair; defm : ZnWriteResPair; // Treat misc copies as a move. def : InstRW<[WriteMove], (instrs COPY)>; // IDIV def : WriteRes { let Latency = 41; let ResourceCycles = [1, 41]; } def : WriteRes { let Latency = 45; let ResourceCycles = [1, 4, 41]; } // IMUL def : WriteRes{ let Latency = 4; } def : WriteRes { let Latency = 4; } def : WriteRes { let Latency = 8; } // Floating point operations defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; // Vector integer operations which uses FPU units defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; // Vector Shift Operations defm : ZnWriteResFpuPair; // AES Instructions. defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; defm : ZnWriteResFpuPair; def : WriteRes; def : WriteRes; // Following instructions with latency=100 are microcoded. // We set long latency so as to block the entire pipeline. defm : ZnWriteResFpuPair; //Microcoded Instructions let Latency = 100 in { def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; } //=== Regex based itineraries ===// // Notation: // - r: register. // - m = memory. // - i = immediate // - mm: 64 bit mmx register. // - x = 128 bit xmm register. // - (x)mm = mmx or xmm register. // - y = 256 bit ymm register. // - v = any vector register. //=== Integer Instructions ===// //-- Move instructions --// // MOV. // r16,m. def : InstRW<[WriteALULd, ReadAfterLd], (instregex "MOV16rm")>; // MOVSX, MOVZX. // r,m. def : InstRW<[WriteLoad], (instregex "MOV(S|Z)X32rm(8|16)")>; // CMOVcc. // r,r. def : InstRW<[WriteALU], (instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rr")>; // r,m. def : InstRW<[WriteALULd, ReadAfterLd], (instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rm")>; // XCHG. // r,r. def ZnWriteXCHG : SchedWriteRes<[ZnALU]> { let NumMicroOps = 2; let ResourceCycles = [2]; } def : InstRW<[ZnWriteXCHG], (instregex "XCHG(8|16|32|64)rr", "XCHG(16|32|64)ar")>; // r,m. def ZnWriteXCHGrm : SchedWriteRes<[ZnAGU, ZnALU]> { let Latency = 5; let NumMicroOps = 2; } def : InstRW<[ZnWriteXCHGrm, ReadAfterLd], (instregex "XCHG(8|16|32|64)rm")>; def : InstRW<[WriteMicrocoded], (instregex "XLAT")>; // POP16. // r. def ZnWritePop16r : SchedWriteRes<[ZnAGU]>{ let Latency = 5; let NumMicroOps = 2; } def : InstRW<[ZnWritePop16r], (instregex "POP16rmm")>; def : InstRW<[WriteMicrocoded], (instregex "POPF(16|32)")>; def : InstRW<[WriteMicrocoded], (instregex "POPA(16|32)")>; // PUSH. // r. Has default values. // m. def ZnWritePUSH : SchedWriteRes<[ZnAGU]>{ let Latency = 4; } def : InstRW<[ZnWritePUSH], (instregex "PUSH(16|32)rmm")>; //PUSHF def : InstRW<[WriteMicrocoded], (instregex "PUSHF(16|32)")>; // PUSHA. def ZnWritePushA : SchedWriteRes<[ZnAGU]> { let Latency = 8; } def : InstRW<[ZnWritePushA], (instregex "PUSHA(16|32)")>; //LAHF def : InstRW<[WriteMicrocoded], (instregex "LAHF")>; // SAHF. def ZnWriteSAHF : SchedWriteRes<[ZnALU]> { let Latency = 2; let NumMicroOps = 2; } def : InstRW<[ZnWriteSAHF], (instregex "SAHF")>; // BSWAP. def ZnWriteBSwap : SchedWriteRes<[ZnALU]> { let ResourceCycles = [4]; } def : InstRW<[ZnWriteBSwap], (instregex "BSWAP")>; // MOVBE. // r,m. def ZnWriteMOVBE : SchedWriteRes<[ZnAGU, ZnALU]> { let Latency = 5; } def : InstRW<[ZnWriteMOVBE, ReadAfterLd], (instregex "MOVBE(16|32|64)rm")>; // m16,r16. def : InstRW<[ZnWriteMOVBE], (instregex "MOVBE(16|32|64)mr")>; //-- Arithmetic instructions --// // ADD SUB. // m,r/i. def : InstRW<[WriteALULd], (instregex "(ADD|SUB)(8|16|32|64)m(r|i)", "(ADD|SUB)(8|16|32|64)mi8", "(ADD|SUB)64mi32")>; // ADC SBB. // r,r/i. def : InstRW<[WriteALU], (instregex "(ADC|SBB)(8|16|32|64)r(r|i)", "(ADC|SBB)(16|32|64)ri8", "(ADC|SBB)64ri32", "(ADC|SBB)(8|16|32|64)rr_REV")>; // r,m. def : InstRW<[WriteALULd, ReadAfterLd], (instregex "(ADC|SBB)(8|16|32|64)rm")>; // m,r/i. def : InstRW<[WriteALULd], (instregex "(ADC|SBB)(8|16|32|64)m(r|i)", "(ADC|SBB)(16|32|64)mi8", "(ADC|SBB)64mi32")>; // INC DEC NOT NEG. // m. def : InstRW<[WriteALULd], (instregex "(INC|DEC|NOT|NEG)(8|16|32|64)m", "(INC|DEC)64(16|32)m")>; // MUL IMUL. // r16. def ZnWriteMul16 : SchedWriteRes<[ZnALU1, ZnMultiplier]> { let Latency = 3; } def : InstRW<[ZnWriteMul16], (instregex "IMUL16r", "MUL16r")>; // m16. def ZnWriteMul16Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> { let Latency = 8; } def : InstRW<[ZnWriteMul16Ld, ReadAfterLd], (instregex "IMUL16m", "MUL16m")>; // r32. def ZnWriteMul32 : SchedWriteRes<[ZnALU1, ZnMultiplier]> { let Latency = 3; } def : InstRW<[ZnWriteMul32], (instregex "IMUL32r", "MUL32r")>; // m32. def ZnWriteMul32Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> { let Latency = 8; } def : InstRW<[ZnWriteMul32Ld, ReadAfterLd], (instregex "IMUL32m", "MUL32m")>; // r64. def ZnWriteMul64 : SchedWriteRes<[ZnALU1, ZnMultiplier]> { let Latency = 4; let NumMicroOps = 2; } def : InstRW<[ZnWriteMul64], (instregex "IMUL64r", "MUL64r")>; // m64. def ZnWriteMul64Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> { let Latency = 9; let NumMicroOps = 2; } def : InstRW<[ZnWriteMul64Ld, ReadAfterLd], (instregex "IMUL64m", "MUL64m")>; // r16,r16. def ZnWriteMul16rri : SchedWriteRes<[ZnALU1, ZnMultiplier]> { let Latency = 3; } def : InstRW<[ZnWriteMul16rri], (instregex "IMUL16rri", "IMUL16rri8")>; // r16,m16. def ZnWriteMul16rmi : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> { let Latency = 8; } def : InstRW<[ZnWriteMul16rmi, ReadAfterLd], (instregex "IMUL16rmi", "IMUL16rmi8")>; // MULX. // r32,r32,r32. def ZnWriteMulX32 : SchedWriteRes<[ZnALU1, ZnMultiplier]> { let Latency = 3; let ResourceCycles = [1, 2]; } def : InstRW<[ZnWriteMulX32], (instregex "MULX32rr")>; // r32,r32,m32. def ZnWriteMulX32Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> { let Latency = 8; let ResourceCycles = [1, 2, 2]; } def : InstRW<[ZnWriteMulX32Ld, ReadAfterLd], (instregex "MULX32rm")>; // r64,r64,r64. def ZnWriteMulX64 : SchedWriteRes<[ZnALU1]> { let Latency = 3; } def : InstRW<[ZnWriteMulX64], (instregex "MULX64rr")>; // r64,r64,m64. def ZnWriteMulX64Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> { let Latency = 8; } def : InstRW<[ZnWriteMulX64Ld, ReadAfterLd], (instregex "MULX64rm")>; // DIV, IDIV. // r8. def ZnWriteDiv8 : SchedWriteRes<[ZnALU2, ZnDivider]> { let Latency = 15; } def : InstRW<[ZnWriteDiv8], (instregex "DIV8r", "IDIV8r")>; // r16. def ZnWriteDiv16 : SchedWriteRes<[ZnALU2, ZnDivider]> { let Latency = 17; let NumMicroOps = 2; } def : InstRW<[ZnWriteDiv16], (instregex "DIV16r", "IDIV16r")>; // r32. def ZnWriteDiv32 : SchedWriteRes<[ZnALU2, ZnDivider]> { let Latency = 25; let NumMicroOps = 2; } def : InstRW<[ZnWriteDiv32], (instregex "DIV32r", "IDIV32r")>; // r64. def ZnWriteDiv64 : SchedWriteRes<[ZnALU2, ZnDivider]> { let Latency = 41; let NumMicroOps = 2; } def : InstRW<[ZnWriteDiv64], (instregex "DIV64r", "IDIV64r")>; //-- Control transfer instructions --// // J(E|R)CXZ. def ZnWriteJCXZ : SchedWriteRes<[ZnALU03]>; def : InstRW<[ZnWriteJCXZ], (instregex "JCXZ", "JECXZ_(32|64)", "JRCXZ")>; // INTO def : InstRW<[WriteMicrocoded], (instregex "INTO")>; // LOOP. def ZnWriteLOOP : SchedWriteRes<[ZnALU03]>; def : InstRW<[ZnWriteLOOP], (instregex "LOOP")>; // LOOP(N)E, LOOP(N)Z def ZnWriteLOOPE : SchedWriteRes<[ZnALU03]>; def : InstRW<[ZnWriteLOOPE], (instregex "LOOPE", "LOOPNE", "LOOPZ", "LOOPNZ")>; // CALL. // r. def ZnWriteCALLr : SchedWriteRes<[ZnAGU, ZnALU03]>; def : InstRW<[ZnWriteCALLr], (instregex "CALL(16|32)r")>; def : InstRW<[WriteMicrocoded], (instregex "CALL(16|32)m")>; // RET. def ZnWriteRET : SchedWriteRes<[ZnALU03]> { let NumMicroOps = 2; } def : InstRW<[ZnWriteRET], (instregex "RET(L|Q|W)", "LRET(L|Q|W)", "IRET(D|Q)", "RETF")>; //-- Logic instructions --// // AND OR XOR. // m,r/i. def : InstRW<[WriteALULd], (instregex "(AND|OR|XOR)(8|16|32|64)m(r|i)", "(AND|OR|XOR)(8|16|32|64)mi8", "(AND|OR|XOR)64mi32")>; // ANDN. // r,r. def : InstRW<[WriteALU], (instregex "ANDN(32|64)rr")>; // r,m. def : InstRW<[WriteALULd, ReadAfterLd], (instregex "ANDN(32|64)rm")>; // Define ALU latency variants def ZnWriteALULat2 : SchedWriteRes<[ZnALU]> { let Latency = 2; } def ZnWriteALULat2Ld : SchedWriteRes<[ZnAGU, ZnALU]> { let Latency = 6; } def ZnWriteALULat3 : SchedWriteRes<[ZnALU]> { let Latency = 3; } def ZnWriteALULat3Ld : SchedWriteRes<[ZnAGU, ZnALU]> { let Latency = 7; } // BSF BSR. // r,r. def : InstRW<[ZnWriteALULat3], (instregex "BS(R|F)(16|32|64)rr")>; // r,m. def : InstRW<[ZnWriteALULat3Ld, ReadAfterLd], (instregex "BS(R|F)(16|32|64)rm")>; // BT. // r,r/i. def : InstRW<[WriteShift], (instregex "BT(16|32|64)r(r|i8)")>; def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mr")>; def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mi8")>; // BTR BTS BTC. // r,r,i. def ZnWriteBTRSC : SchedWriteRes<[ZnALU]> { let Latency = 2; let NumMicroOps = 2; } def : InstRW<[ZnWriteBTRSC], (instregex "BT(R|S|C)(16|32|64)r(r|i8)")>; // m,r,i. def ZnWriteBTRSCm : SchedWriteRes<[ZnAGU, ZnALU]> { let Latency = 6; let NumMicroOps = 2; } // m,r,i. def : InstRW<[ZnWriteBTRSCm], (instregex "BT(R|S|C)(16|32|64)m(r|i8)")>; // BLSI BLSMSK BLSR. // r,r. def : InstRW<[ZnWriteALULat2], (instregex "BLS(I|MSK|R)(32|64)rr")>; // r,m. def : InstRW<[ZnWriteALULat2Ld, ReadAfterLd], (instregex "BLS(I|MSK|R)(32|64)rm")>; // BEXTR. // r,r,r. def : InstRW<[WriteALU], (instregex "BEXTR(32|64)rr")>; // r,m,r. def : InstRW<[WriteALULd, ReadAfterLd], (instregex "BEXTR(32|64)rm")>; // BZHI. // r,r,r. def : InstRW<[WriteALU], (instregex "BZHI(32|64)rr")>; // r,m,r. def : InstRW<[WriteALULd, ReadAfterLd], (instregex "BZHI(32|64)rm")>; // CLD STD. def : InstRW<[WriteALU], (instregex "STD", "CLD")>; // PDEP PEXT. // r,r,r. def : InstRW<[WriteMicrocoded], (instregex "PDEP(32|64)rr", "PEXT(32|64)rr")>; // r,m,r. def : InstRW<[WriteMicrocoded], (instregex "PDEP(32|64)rm", "PEXT(32|64)rm")>; // ROR ROL. def : InstRW<[WriteShift], (instregex "RO(R|L)(8|16|32|64)r1")>; // RCR RCL. // r,1. def : InstRW<[WriteShift], (instregex "RC(R|L)(8|16|32|64)r1")>; // m,1. def : InstRW<[WriteMicrocoded], (instregex "RC(R|L)(8|16|32|64)m1")>; // i. def : InstRW<[WriteShift], (instregex "RC(R|L)(8|16|32|64)r(i|CL)")>; // m,i. def : InstRW<[WriteMicrocoded], (instregex "RC(R|L)(8|16|32|64)m(i|CL)")>; // SHR SHL SAR. // m,i. def : InstRW<[WriteShiftLd], (instregex "S(A|H)(R|L)(8|16|32|64)m(i|1)")>; // SHRD SHLD. // r,r def : InstRW<[WriteShift], (instregex "SH(R|L)D(16|32|64)rri8")>; // m,r def : InstRW<[WriteShiftLd], (instregex "SH(R|L)D(16|32|64)mri8")>; // r,r,cl. def : InstRW<[WriteMicrocoded], (instregex "SHLD(16|32|64)rrCL")>; // r,r,cl. def : InstRW<[WriteMicrocoded], (instregex "SHRD(16|32|64)rrCL")>; // m,r,cl. def : InstRW<[WriteMicrocoded], (instregex "SH(R|L)D(16|32|64)mrCL")>; // SETcc. // r. def : InstRW<[WriteShift], (instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)r")>; // m. def : InstRW<[WriteShift], (instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)m")>; // LZCNT TZCNT. // r,r. def : InstRW<[ZnWriteALULat2], (instregex "(LZCNT|TZCNT)(16|32|64)rr")>; // r,m. def : InstRW<[ZnWriteALULat2Ld, ReadAfterLd], (instregex "(LZCNT|TZCNT)(16|32|64)rm")>; //-- Misc instructions --// // CMPXCHG. def ZnWriteCMPXCHG : SchedWriteRes<[ZnAGU, ZnALU]> { let Latency = 8; let NumMicroOps = 5; } def : InstRW<[ZnWriteCMPXCHG], (instregex "CMPXCHG(8|16|32|64)rm")>; // CMPXCHG8B. def ZnWriteCMPXCHG8B : SchedWriteRes<[ZnAGU, ZnALU]> { let NumMicroOps = 18; } def : InstRW<[ZnWriteCMPXCHG8B], (instregex "CMPXCHG8B")>; def : InstRW<[WriteMicrocoded], (instregex "CMPXCHG16B")>; // LEAVE def ZnWriteLEAVE : SchedWriteRes<[ZnALU, ZnAGU]> { let Latency = 8; let NumMicroOps = 2; } def : InstRW<[ZnWriteLEAVE], (instregex "LEAVE")>; // PAUSE. def : InstRW<[WriteMicrocoded], (instregex "PAUSE")>; // RDTSC. def : InstRW<[WriteMicrocoded], (instregex "RDTSC")>; // RDPMC. def : InstRW<[WriteMicrocoded], (instregex "RDPMC")>; // RDRAND. def : InstRW<[WriteMicrocoded], (instregex "RDRAND(16|32|64)r")>; // XGETBV. def : InstRW<[WriteMicrocoded], (instregex "XGETBV")>; //-- String instructions --// // CMPS. def : InstRW<[WriteMicrocoded], (instregex "CMPS(B|L|Q|W)")>; // LODSB/W. def : InstRW<[WriteMicrocoded], (instregex "LODS(B|W)")>; // LODSD/Q. def : InstRW<[WriteMicrocoded], (instregex "LODS(L|Q)")>; // MOVS. def : InstRW<[WriteMicrocoded], (instregex "MOVS(B|L|Q|W)")>; // SCAS. def : InstRW<[WriteMicrocoded], (instregex "SCAS(B|W|L|Q)")>; // STOS def : InstRW<[WriteMicrocoded], (instregex "STOS(B|L|Q|W)")>; // XADD. def : InstRW<[WriteMicrocoded], (instregex "XADD(8|16|32|64)rm")>; //=== Floating Point x87 Instructions ===// //-- Move instructions --// def ZnWriteFLDr : SchedWriteRes<[ZnFPU13]> ; def ZnWriteSTr: SchedWriteRes<[ZnFPU23]> { let Latency = 5; let NumMicroOps = 2; } // LD_F. // r. def : InstRW<[ZnWriteFLDr], (instregex "LD_Frr")>; // m. def ZnWriteLD_F80m : SchedWriteRes<[ZnAGU, ZnFPU13]> { let NumMicroOps = 2; } def : InstRW<[ZnWriteLD_F80m], (instregex "LD_F80m")>; // FBLD. def : InstRW<[WriteMicrocoded], (instregex "FBLDm")>; // FST(P). // r. def : InstRW<[ZnWriteSTr], (instregex "ST_(F|FP)rr")>; // m80. def ZnWriteST_FP80m : SchedWriteRes<[ZnAGU, ZnFPU23]> { let Latency = 5; } def : InstRW<[ZnWriteST_FP80m], (instregex "ST_FP80m")>; // FBSTP. // m80. def : InstRW<[WriteMicrocoded], (instregex "FBSTPm")>; def ZnWriteFXCH : SchedWriteRes<[ZnFPU]>; // FXCHG. def : InstRW<[ZnWriteFXCH], (instregex "XCH_F")>; // FILD. def ZnWriteFILD : SchedWriteRes<[ZnAGU, ZnFPU3]> { let Latency = 11; let NumMicroOps = 2; } def : InstRW<[ZnWriteFILD], (instregex "ILD_F(16|32|64)m")>; // FIST(P) FISTTP. def ZnWriteFIST : SchedWriteRes<[ZnAGU, ZnFPU23]> { let Latency = 12; } def : InstRW<[ZnWriteFIST], (instregex "IS(T|TT)_(F|FP)(16|32|64)m")>; def ZnWriteFPU13 : SchedWriteRes<[ZnAGU, ZnFPU13]> { let Latency = 8; } def ZnWriteFPU3 : SchedWriteRes<[ZnAGU, ZnFPU3]> { let Latency = 11; } // FLDZ. def : InstRW<[ZnWriteFPU13], (instregex "LD_F0")>; // FLD1. def : InstRW<[ZnWriteFPU3], (instregex "LD_F1")>; // FLDPI FLDL2E etc. def : InstRW<[ZnWriteFPU3], (instregex "FLDPI", "FLDL2(T|E)" "FLDL(G|N)2")>; def : InstRW<[WriteMicrocoded], (instregex "CMOV(B|BE|E|P|NB|NBE|NE|NP)_F")>; // FNSTSW. // AX. def : InstRW<[WriteMicrocoded], (instregex "FNSTSW16r")>; // m16. def : InstRW<[WriteMicrocoded], (instregex "FNSTSWm")>; // FLDCW. def : InstRW<[WriteMicrocoded], (instregex "FLDCW16m")>; // FNSTCW. def : InstRW<[WriteMicrocoded], (instregex "FNSTCW16m")>; // FINCSTP FDECSTP. def : InstRW<[ZnWriteFPU3], (instregex "FINCSTP", "FDECSTP")>; // FFREE. def : InstRW<[ZnWriteFPU3], (instregex "FFREE")>; // FNSAVE. def : InstRW<[WriteMicrocoded], (instregex "FSAVEm")>; // FRSTOR. def : InstRW<[WriteMicrocoded], (instregex "FRSTORm")>; //-- Arithmetic instructions --// def ZnWriteFPU3Lat2 : SchedWriteRes<[ZnFPU3]> { let Latency = 2; } def ZnWriteFPU3Lat2Ld : SchedWriteRes<[ZnAGU, ZnFPU3]> { let Latency = 9; } def ZnWriteFPU3Lat1 : SchedWriteRes<[ZnFPU3]> ; def ZnWriteFPU0Lat1 : SchedWriteRes<[ZnFPU0]> ; def ZnWriteFPU0Lat1Ld : SchedWriteRes<[ZnAGU, ZnFPU0]> { let Latency = 8; } // FABS. def : InstRW<[ZnWriteFPU3Lat2], (instregex "ABS_F")>; // FCHS. def : InstRW<[ZnWriteFPU3Lat1], (instregex "CHS_F")>; // FCOM(P) FUCOM(P). // r. def : InstRW<[ZnWriteFPU0Lat1], (instregex "COM_FST0r", "COMP_FST0r", "UCOM_Fr", "UCOM_FPr")>; // m. def : InstRW<[ZnWriteFPU0Lat1Ld], (instregex "FCOM(32|64)m", "FCOMP(32|64)m")>; // FCOMPP FUCOMPP. // r. def : InstRW<[ZnWriteFPU0Lat1], (instregex "FCOMPP", "UCOM_FPPr")>; def ZnWriteFPU02 : SchedWriteRes<[ZnAGU, ZnFPU02]> { let Latency = 9; } // FCOMI(P) FUCOMI(P). // m. def : InstRW<[ZnWriteFPU02], (instregex "COM_FIr", "COM_FIPr", "UCOM_FIr", "UCOM_FIPr")>; def ZnWriteFPU03 : SchedWriteRes<[ZnAGU, ZnFPU03]> { let Latency = 12; let NumMicroOps = 2; let ResourceCycles = [1,3]; } // FICOM(P). def : InstRW<[ZnWriteFPU03], (instregex "FICOM(16|32)m", "FICOMP(16|32)m")>; // FTST. def : InstRW<[ZnWriteFPU0Lat1], (instregex "TST_F")>; // FXAM. def : InstRW<[ZnWriteFPU3Lat1], (instregex "FXAM")>; // FPREM. def : InstRW<[WriteMicrocoded], (instregex "FPREM")>; // FPREM1. def : InstRW<[WriteMicrocoded], (instregex "FPREM1")>; // FRNDINT. def : InstRW<[WriteMicrocoded], (instregex "FRNDINT")>; // FSCALE. def : InstRW<[WriteMicrocoded], (instregex "FSCALE")>; // FXTRACT. def : InstRW<[WriteMicrocoded], (instregex "FXTRACT")>; // FNOP. def : InstRW<[ZnWriteFPU0Lat1], (instregex "FNOP")>; // WAIT. def : InstRW<[ZnWriteFPU0Lat1], (instregex "WAIT")>; // FNCLEX. def : InstRW<[WriteMicrocoded], (instregex "FNCLEX")>; // FNINIT. def : InstRW<[WriteMicrocoded], (instregex "FNINIT")>; //=== Integer MMX and XMM Instructions ===// //-- Move instructions --// // Moves from GPR to FPR incurs a penalty def ZnWriteFPU2 : SchedWriteRes<[ZnFPU2]> { let Latency = 3; } // Move to ALU doesn't incur penalty def ZnWriteToALU2 : SchedWriteRes<[ZnFPU2]> { let Latency = 2; } def ZnWriteFPU : SchedWriteRes<[ZnFPU]>; def ZnWriteFPUY : SchedWriteRes<[ZnFPU]> { let NumMicroOps = 2; let Latency=2; } // MOVD. // r32/64 <- (x)mm. def : InstRW<[ZnWriteToALU2], (instregex "MMX_MOVD64grr", "MMX_MOVD64from64rr", "VMOVPDI2DIrr", "MOVPDI2DIrr")>; // (x)mm <- r32/64. def : InstRW<[ZnWriteFPU2], (instregex "MMX_MOVD64rr", "MMX_MOVD64to64rr", "VMOVDI2PDIrr", "MOVDI2PDIrr")>; // MOVQ. // r64 <- (x)mm. def : InstRW<[ZnWriteToALU2], (instregex "VMOVPQIto64rr")>; // (x)mm <- r64. def : InstRW<[ZnWriteFPU2], (instregex "VMOV64toPQIrr", "VMOVZQI2PQIrr")>; // (x)mm <- (x)mm. def : InstRW<[ZnWriteFPU], (instregex "MMX_MOVQ64rr")>; // (V)MOVDQA/U. // x <- x. def : InstRW<[ZnWriteFPU], (instregex "MOVDQ(A|U)rr", "VMOVDQ(A|U)rr", "MOVDQ(A|U)rr_REV", "VMOVDQ(A|U)rr_REV")>; // y <- y. def : InstRW<[ZnWriteFPUY], (instregex "VMOVDQ(A|U)Yrr", "VMOVDQ(A|U)Yrr_REV")>; // MOVDQ2Q. def : InstRW<[ZnWriteFPU], (instregex "MMX_MOVDQ2Qrr")>; // MOVQ2DQ. def : InstRW<[ZnWriteFPU], (instregex "MMX_MOVQ2DQrr")>; // PACKSSWB/DW. // mm <- mm. def ZnWriteFPU12 : SchedWriteRes<[ZnFPU12]> ; def ZnWriteFPU12Y : SchedWriteRes<[ZnFPU12]> { let NumMicroOps = 2; } def ZnWriteFPU12m : SchedWriteRes<[ZnAGU, ZnFPU12]> ; def : InstRW<[ZnWriteFPU12], (instregex "MMX_PACKSSDWirr", "MMX_PACKSSWBirr", "MMX_PACKUSWBirr")>; def : InstRW<[ZnWriteFPU12m], (instregex "MMX_PACKSSDWirm", "MMX_PACKSSWBirm", "MMX_PACKUSWBirm")>; // VPMOVSX/ZX BW BD BQ DW DQ. // y <- x. def : InstRW<[ZnWriteFPU12Y], (instregex "VPMOV(SX|ZX)(BW|BQ|DW|DQ)Yrr")>; def ZnWriteFPU013 : SchedWriteRes<[ZnFPU013]> ; def ZnWriteFPU013Y : SchedWriteRes<[ZnFPU013]> { let Latency = 2; } def ZnWriteFPU013m : SchedWriteRes<[ZnAGU, ZnFPU013]> { let Latency = 8; let NumMicroOps = 2; } def ZnWriteFPU013Ld : SchedWriteRes<[ZnAGU, ZnFPU013]> { let Latency = 8; let NumMicroOps = 2; } def ZnWriteFPU013LdY : SchedWriteRes<[ZnAGU, ZnFPU013]> { let Latency = 9; let NumMicroOps = 2; } // PBLENDW. // x,x,i / v,v,v,i def : InstRW<[ZnWriteFPU013], (instregex "(V?)PBLENDWrri")>; // ymm def : InstRW<[ZnWriteFPU013Y], (instregex "(V?)PBLENDWYrri")>; // x,m,i / v,v,m,i def : InstRW<[ZnWriteFPU013Ld], (instregex "(V?)PBLENDWrmi")>; // y,m,i def : InstRW<[ZnWriteFPU013LdY], (instregex "(V?)PBLENDWYrmi")>; def ZnWriteFPU01 : SchedWriteRes<[ZnFPU01]> ; def ZnWriteFPU01Y : SchedWriteRes<[ZnFPU01]> { let NumMicroOps = 2; } // VPBLENDD. // v,v,v,i. def : InstRW<[ZnWriteFPU01], (instregex "VPBLENDDrri")>; // ymm def : InstRW<[ZnWriteFPU01Y], (instregex "VPBLENDDYrri")>; // v,v,m,i def ZnWriteFPU01Op2 : SchedWriteRes<[ZnAGU, ZnFPU01]> { let NumMicroOps = 2; let Latency = 8; let ResourceCycles = [1, 2]; } def ZnWriteFPU01Op2Y : SchedWriteRes<[ZnAGU, ZnFPU01]> { let NumMicroOps = 2; let Latency = 9; let ResourceCycles = [1, 3]; } def : InstRW<[ZnWriteFPU01Op2], (instregex "VPBLENDDrmi")>; def : InstRW<[ZnWriteFPU01Op2Y], (instregex "VPBLENDDYrmi")>; // MASKMOVQ. def : InstRW<[WriteMicrocoded], (instregex "MMX_MASKMOVQ(64)?")>; // MASKMOVDQU. def : InstRW<[WriteMicrocoded], (instregex "(V?)MASKMOVDQU(64)?")>; // VPMASKMOVQ. // ymm def : InstRW<[ZnWriteFPU01Op2],(instregex "VPMASKMOVQrm")>; def : InstRW<[ZnWriteFPU01Op2Y],(instregex "VPMASKMOVQYrm")>; def : InstRW<[WriteMicrocoded], (instregex "VPMASKMOVD(Y?)rm")>; // m, v,v. def : InstRW<[WriteMicrocoded], (instregex "VPMASKMOV(D|Q)(Y?)mr")>; // PMOVMSKB. def ZnWritePMOVMSKB : SchedWriteRes<[ZnFPU2]> { let NumMicroOps = 2; } def ZnWritePMOVMSKBY : SchedWriteRes<[ZnFPU2]> { let Latency = 2; } def : InstRW<[ZnWritePMOVMSKB], (instregex "(V|MMX_)?PMOVMSKBrr")>; def : InstRW<[ZnWritePMOVMSKBY], (instregex "(V|MMX_)?PMOVMSKBYrr")>; // PEXTR B/W/D/Q. // r32,x,i. def ZnWritePEXTRr : SchedWriteRes<[ZnFPU12, ZnFPU2]> { let Latency = 2; let ResourceCycles = [1, 2]; } def : InstRW<[ZnWritePEXTRr], (instregex "PEXTR(B|W|D|Q)rr", "MMX_PEXTRWirri")>; def ZnWritePEXTRm : SchedWriteRes<[ZnAGU, ZnFPU12, ZnFPU2]> { let Latency = 5; let NumMicroOps = 2; let ResourceCycles = [1, 2, 3]; } // m8,x,i. def : InstRW<[ZnWritePEXTRm], (instregex "PEXTR(B|W|D|Q)mr")>; // VPBROADCAST B/W. // x, m8/16. def ZnWriteVPBROADCAST128Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> { let Latency = 8; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def : InstRW<[ZnWriteVPBROADCAST128Ld], (instregex "VPBROADCAST(B|W)rm")>; // y, m8/16 def ZnWriteVPBROADCAST256Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> { let Latency = 8; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def : InstRW<[ZnWriteVPBROADCAST256Ld], (instregex "VPBROADCAST(B|W)Yrm")>; // VPGATHER. def : InstRW<[WriteMicrocoded], (instregex "VPGATHER(Q|D)(Q|D)(Y?)rm")>; //-- Arithmetic instructions --// // HADD, HSUB PS/PD // PHADD|PHSUB (S) W/D. def : InstRW<[WriteMicrocoded], (instregex "MMX_PHADD(W?)r(r|m)64", "MMX_PHADDSWr(r|m)64", "MMX_PHSUB(W|D)r(r|m)64", "MMX_PHSUBSWrr64", "(V?)PH(ADD|SUB)(W|D)(Y?)r(r|m)", "(V?)PH(ADD|SUB)SWr(r|m)(256)?")>; // PCMPGTQ. def ZnWritePCMPGTQr : SchedWriteRes<[ZnFPU03]>; def : InstRW<[ZnWritePCMPGTQr], (instregex "(V?)PCMPGTQ(Y?)rr")>; // x <- x,m. def ZnWritePCMPGTQm : SchedWriteRes<[ZnAGU, ZnFPU03]> { let Latency = 8; } // ymm. def ZnWritePCMPGTQYm : SchedWriteRes<[ZnAGU, ZnFPU03]> { let Latency = 8; let NumMicroOps = 2; let ResourceCycles = [1,2]; } def : InstRW<[ZnWritePCMPGTQm], (instregex "(V?)PCMPGTQrm")>; def : InstRW<[ZnWritePCMPGTQYm], (instregex "(V?)PCMPGTQYrm")>; // PMULLD. // x,x. def ZnWritePMULLDr : SchedWriteRes<[ZnFPU0]> { let Latency = 4; } // ymm. def ZnWritePMULLDYr : SchedWriteRes<[ZnFPU0]> { let Latency = 5; let ResourceCycles = [2]; } def : InstRW<[ZnWritePMULLDr], (instregex "(V?)PMULLDrr")>; def : InstRW<[ZnWritePMULLDYr], (instregex "(V?)PMULLDYrr")>; // x,m. def ZnWritePMULLDm : SchedWriteRes<[ZnAGU, ZnFPU0]> { let Latency = 11; let NumMicroOps = 2; } // y,m. def ZnWritePMULLDYm : SchedWriteRes<[ZnAGU, ZnFPU0]> { let Latency = 12; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def : InstRW<[ZnWritePMULLDm], (instregex "(V?)PMULLDrm")>; def : InstRW<[ZnWritePMULLDYm], (instregex "(V?)PMULLDYrm")>; //-- Logic instructions --// // PTEST. // v,v. def ZnWritePTESTr : SchedWriteRes<[ZnFPU12]> { let ResourceCycles = [2]; } def : InstRW<[ZnWritePTESTr], (instregex "(V?)PTEST(Y?)rr")>; // v,m. def ZnWritePTESTm : SchedWriteRes<[ZnAGU, ZnFPU12]> { let Latency = 8; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def : InstRW<[ZnWritePTESTm], (instregex "(V?)PTEST(Y?)rm")>; // PSLL,PSRL,PSRA W/D/Q. // x,x / v,v,x. def ZnWritePShift : SchedWriteRes<[ZnFPU2]> ; def ZnWritePShiftY : SchedWriteRes<[ZnFPU2]> { let Latency = 2; } def ZnWritePShiftLd : SchedWriteRes<[ZnAGU,ZnFPU2]> { let Latency = 8; } def ZnWritePShiftYLd : SchedWriteRes<[ZnAGU, ZnFPU2]> { let Latency = 9; } def : InstRW<[ZnWritePShift], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)rr")>; def : InstRW<[ZnWritePShiftY], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)Yrr")>; def : InstRW<[ZnWritePShiftLd], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)rm")>; def : InstRW<[ZnWritePShiftYLd], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)Yrm")>; // PSLL,PSRL DQ. def : InstRW<[ZnWritePShift], (instregex "(V?)PS(R|L)LDQri")>; def : InstRW<[ZnWritePShiftY], (instregex "(V?)PS(R|L)LDQYri")>; //=== Floating Point XMM and YMM Instructions ===// //-- Move instructions --// // MOVMSKP S/D. // r32 <- x,y. def ZnWriteMOVMSKPr : SchedWriteRes<[ZnFPU2]> ; def : InstRW<[ZnWriteMOVMSKPr], (instregex "(V?)MOVMSKP(S|D)(Y?)rr")>; // VPERM2F128. def : InstRW<[WriteMicrocoded], (instregex "VPERM2F128rr")>; def : InstRW<[WriteMicrocoded], (instregex "VPERM2F128rm")>; // BLENDVP S/D. def ZnWriteFPU01Lat3 : SchedWriteRes<[ZnFPU013]> { let Latency = 3; } def ZnWriteFPU01Lat3Ld : SchedWriteRes<[ZnAGU, ZnFPU013]> { let Latency = 11; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def : InstRW<[ZnWriteFPU01Lat3], (instregex "BLENDVP(S|D)rr0")>; def : InstRW<[ZnWriteFPU01Lat3Ld, ReadAfterLd], (instregex "BLENDVP(S|D)rm0")>; def ZnWriteBROADCAST : SchedWriteRes<[ZnAGU, ZnFPU13]> { let NumMicroOps = 2; let Latency = 8; } // VBROADCASTF128. def : InstRW<[ZnWriteBROADCAST], (instregex "VBROADCASTF128")>; // EXTRACTPS. // r32,x,i. def ZnWriteEXTRACTPSr : SchedWriteRes<[ZnFPU12, ZnFPU2]> { let Latency = 2; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def : InstRW<[ZnWriteEXTRACTPSr], (instregex "(V?)EXTRACTPSrr")>; def ZnWriteEXTRACTPSm : SchedWriteRes<[ZnAGU,ZnFPU12, ZnFPU2]> { let Latency = 5; let NumMicroOps = 2; let ResourceCycles = [5, 1, 2]; } // m32,x,i. def : InstRW<[ZnWriteEXTRACTPSm], (instregex "(V?)EXTRACTPSmr")>; // VEXTRACTF128. // x,y,i. def : InstRW<[ZnWriteFPU013], (instregex "VEXTRACTF128rr")>; // m128,y,i. def : InstRW<[ZnWriteFPU013m], (instregex "VEXTRACTF128mr")>; def ZnWriteVINSERT128r: SchedWriteRes<[ZnFPU013]> { let Latency = 2; let ResourceCycles = [2]; } def ZnWriteVINSERT128Ld: SchedWriteRes<[ZnAGU,ZnFPU013]> { let Latency = 9; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } // VINSERTF128. // y,y,x,i. def : InstRW<[ZnWriteVINSERT128r], (instregex "VINSERTF128rr")>; def : InstRW<[ZnWriteVINSERT128Ld], (instregex "VINSERTF128rm")>; // VMASKMOVP S/D. // x,x,m. def ZnWriteVMASKMOVPLd : SchedWriteRes<[ZnAGU, ZnFPU01]> { let Latency = 8; } // y,y,m. def ZnWriteVMASKMOVPLdY : SchedWriteRes<[ZnAGU, ZnFPU01]> { let Latency = 8; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def ZnWriteVMASKMOVPm : SchedWriteRes<[ZnAGU, ZnFPU01]> { let Latency = 4; } def : InstRW<[ZnWriteVMASKMOVPLd], (instregex "VMASKMOVP(S|D)rm")>; def : InstRW<[ZnWriteVMASKMOVPLdY], (instregex "VMASKMOVP(S|D)Yrm")>; def : InstRW<[ZnWriteVMASKMOVPm], (instregex "VMASKMOVP(S|D)mr")>; // m256,y,y. def ZnWriteVMASKMOVPYmr : SchedWriteRes<[ZnAGU,ZnFPU01]> { let Latency = 5; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def : InstRW<[ZnWriteVMASKMOVPYmr], (instregex "VMASKMOVP(S|D)Ymr")>; // VGATHERDPS. // x. def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPSrm")>; // y. def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPSYrm")>; // VGATHERQPS. // x. def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPSrm")>; // y. def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPSYrm")>; // VGATHERDPD. // x. def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPDrm")>; // y. def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPDYrm")>; // VGATHERQPD. // x. def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPDrm")>; // y. def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPDYrm")>; //-- Conversion instructions --// def ZnWriteCVTPD2PSr: SchedWriteRes<[ZnFPU3]> { let Latency = 4; } // CVTPD2PS. // x,x. def : InstRW<[ZnWriteCVTPD2PSr], (instregex "(V?)CVTPD2PSrr")>; def ZnWriteCVTPD2PSLd: SchedWriteRes<[ZnAGU,ZnFPU03]> { let Latency = 11; let NumMicroOps = 2; let ResourceCycles = [1,2]; } // x,m128. def : InstRW<[ZnWriteCVTPD2PSLd], (instregex "(V?)CVTPD2PS(X?)rm")>; // x,y. def ZnWriteCVTPD2PSYr : SchedWriteRes<[ZnFPU3]> { let Latency = 5; } def : InstRW<[ZnWriteCVTPD2PSYr], (instregex "(V?)CVTPD2PSYrr")>; // x,m256. def ZnWriteCVTPD2PSYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> { let Latency = 11; } def : InstRW<[ZnWriteCVTPD2PSYLd], (instregex "(V?)CVTPD2PSYrm")>; // CVTSD2SS. // x,x. // Same as WriteCVTPD2PSr def : InstRW<[ZnWriteCVTPD2PSr], (instregex "(Int_)?(V)?CVTSD2SSrr")>; // x,m64. def : InstRW<[ZnWriteCVTPD2PSLd], (instregex "(Int_)?(V)?CVTSD2SSrm")>; // CVTPS2PD. // x,x. def ZnWriteCVTPS2PDr : SchedWriteRes<[ZnFPU3]> { let Latency = 3; } def : InstRW<[ZnWriteCVTPS2PDr], (instregex "(V?)CVTPS2PDrr")>; // x,m64. // y,m128. def ZnWriteCVTPS2PDLd : SchedWriteRes<[ZnAGU, ZnFPU3]> { let Latency = 10; let NumMicroOps = 2; } def : InstRW<[ZnWriteCVTPS2PDLd], (instregex "(V?)CVTPS2PD(Y?)rm")>; // y,x. def ZnWriteVCVTPS2PDY : SchedWriteRes<[ZnFPU3]> { let Latency = 3; } def : InstRW<[ZnWriteVCVTPS2PDY], (instregex "VCVTPS2PDYrr")>; // CVTSS2SD. // x,x. def ZnWriteCVTSS2SDr : SchedWriteRes<[ZnFPU3]> { let Latency = 4; } def : InstRW<[ZnWriteCVTSS2SDr], (instregex "(Int_)?(V?)CVTSS2SDrr")>; // x,m32. def ZnWriteCVTSS2SDLd : SchedWriteRes<[ZnAGU, ZnFPU3]> { let Latency = 11; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def : InstRW<[ZnWriteCVTSS2SDLd], (instregex "(Int_)?(V?)CVTSS2SDrm")>; def ZnWriteCVTDQ2PDr: SchedWriteRes<[ZnFPU12,ZnFPU3]> { let Latency = 5; } // CVTDQ2PD. // x,x. def : InstRW<[ZnWriteCVTDQ2PDr], (instregex "(V)?CVTDQ2PDrr")>; // Same as xmm // y,x. def : InstRW<[ZnWriteCVTDQ2PDr], (instregex "VCVTDQ2PDYrr")>; def ZnWriteCVTPD2DQr: SchedWriteRes<[ZnFPU12, ZnFPU3]> { let Latency = 5; } // CVT(T)PD2DQ. // x,x. def : InstRW<[ZnWriteCVTDQ2PDr], (instregex "(V?)CVT(T?)PD2DQrr")>; def ZnWriteCVTPD2DQLd: SchedWriteRes<[ZnAGU,ZnFPU12,ZnFPU3]> { let Latency = 12; let NumMicroOps = 2; } // x,m128. def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "(V?)CVT(T?)PD2DQrm")>; // same as xmm handling // x,y. def : InstRW<[ZnWriteCVTPD2DQr], (instregex "VCVT(T?)PD2DQYrr")>; // x,m256. def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "VCVT(T?)PD2DQYrm")>; def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "VCVT(T?)PD2DQ(64)?rm")>; def ZnWriteCVTPS2PIr: SchedWriteRes<[ZnFPU3]> { let Latency = 4; } // CVT(T)PS2PI. // mm,x. def : InstRW<[ZnWriteCVTPS2PIr], (instregex "MMX_CVT(T?)PS2PIirr")>; // CVTPI2PD. // x,mm. def : InstRW<[ZnWriteCVTPS2PDr], (instregex "MMX_CVT(T?)PI2PDirr")>; // CVT(T)PD2PI. // mm,x. def : InstRW<[ZnWriteCVTPS2PIr], (instregex "MMX_CVT(T?)PD2PIirr")>; def ZnWriteCVSTSI2SSr: SchedWriteRes<[ZnFPU3]> { let Latency = 5; } // CVSTSI2SS. // x,r32. def : InstRW<[ZnWriteCVSTSI2SSr], (instregex "(Int_)?(V?)CVT(T?)SI2SS(64)?rr")>; // same as CVTPD2DQr // CVT(T)SS2SI. // r32,x. def : InstRW<[ZnWriteCVTPD2DQr], (instregex "(Int_)?(V?)CVT(T?)SS2SI(64)?rr")>; // same as CVTPD2DQm // r32,m32. def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "(Int_)?(V?)CVT(T?)SS2SI(64)?rm")>; def ZnWriteCVSTSI2SDr: SchedWriteRes<[ZnFPU013, ZnFPU3]> { let Latency = 5; } // CVTSI2SD. // x,r32/64. def : InstRW<[ZnWriteCVSTSI2SDr], (instregex "(Int_)?(V?)CVTSI2SS(64)?rr")>; def ZnWriteCVSTSI2SIr: SchedWriteRes<[ZnFPU3, ZnFPU2]> { let Latency = 5; } def ZnWriteCVSTSI2SILd: SchedWriteRes<[ZnAGU, ZnFPU3, ZnFPU2]> { let Latency = 12; } // CVTSD2SI. // r32/64 def : InstRW<[ZnWriteCVSTSI2SIr], (instregex "(Int_)?CVT(T?)SD2SI(64)?rr")>; // r32,m32. def : InstRW<[ZnWriteCVSTSI2SILd], (instregex "(Int_)?CVT(T?)SD2SI(64)?rm")>; def ZnWriteVCVSTSI2SIr: SchedWriteRes<[ZnFPU3]> { let Latency = 5; } def ZnWriteVCVSTSI2SILd: SchedWriteRes<[ZnFPU3, ZnAGU]> { let Latency = 12; } // VCVTSD2SI. // r32/64 def : InstRW<[ZnWriteCVSTSI2SIr], (instregex "(Int_)?VCVT(T?)SD2SI(64)?rr")>; // r32,m32. def : InstRW<[ZnWriteCVSTSI2SILd], (instregex "(Int_)?VCVT(T?)SD2SI(64)?rm")>; // VCVTPS2PH. // x,v,i. def : InstRW<[WriteMicrocoded], (instregex "VCVTPS2PH(Y?)rr")>; // m,v,i. def : InstRW<[WriteMicrocoded], (instregex "VCVTPS2PH(Y?)mr")>; // VCVTPH2PS. // v,x. def : InstRW<[WriteMicrocoded], (instregex "VCVTPH2PS(Y?)rr")>; // v,m. def : InstRW<[WriteMicrocoded], (instregex "VCVTPH2PS(Y?)rm")>; //-- SSE4A instructions --// // EXTRQ def ZnWriteEXTRQ: SchedWriteRes<[ZnFPU12, ZnFPU2]> { let Latency = 2; } def : InstRW<[ZnWriteEXTRQ], (instregex "EXTRQ")>; // INSERTQ def ZnWriteINSERTQ: SchedWriteRes<[ZnFPU03,ZnFPU1]> { let Latency = 4; } def : InstRW<[ZnWriteINSERTQ], (instregex "INSERTQ")>; // MOVNTSS/MOVNTSD def ZnWriteMOVNT: SchedWriteRes<[ZnAGU,ZnFPU2]> { let Latency = 8; } def : InstRW<[ZnWriteMOVNT], (instregex "MOVNTS(S|D)")>; //-- SHA instructions --// // SHA256MSG2 def : InstRW<[WriteMicrocoded], (instregex "SHA256MSG2(Y?)r(r|m)")>; // SHA1MSG1, SHA256MSG1 // x,x. def ZnWriteSHA1MSG1r : SchedWriteRes<[ZnFPU12]> { let Latency = 2; let ResourceCycles = [2]; } def : InstRW<[ZnWriteSHA1MSG1r], (instregex "SHA(1|256)MSG1rr")>; // x,m. def ZnWriteSHA1MSG1Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> { let Latency = 9; let ResourceCycles = [1,2]; } def : InstRW<[ZnWriteSHA1MSG1Ld], (instregex "SHA(1|256)MSG1rm")>; // SHA1MSG2 // x,x. def ZnWriteSHA1MSG2r : SchedWriteRes<[ZnFPU12]> ; def : InstRW<[ZnWriteSHA1MSG2r], (instregex "SHA1MSG2rr")>; // x,m. def ZnWriteSHA1MSG2Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> { let Latency = 8; } def : InstRW<[ZnWriteSHA1MSG2Ld], (instregex "SHA1MSG2rm")>; // SHA1NEXTE // x,x. def ZnWriteSHA1NEXTEr : SchedWriteRes<[ZnFPU1]> ; def : InstRW<[ZnWriteSHA1NEXTEr], (instregex "SHA1NEXTErr")>; // x,m. def ZnWriteSHA1NEXTELd : SchedWriteRes<[ZnAGU, ZnFPU1]> { let Latency = 8; } def : InstRW<[ZnWriteSHA1NEXTELd], (instregex "SHA1NEXTErm")>; // SHA1RNDS4 // x,x. def ZnWriteSHA1RNDS4r : SchedWriteRes<[ZnFPU1]> { let Latency = 6; } def : InstRW<[ZnWriteSHA1RNDS4r], (instregex "SHA1RNDS4rr")>; // x,m. def ZnWriteSHA1RNDS4Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> { let Latency = 13; } def : InstRW<[ZnWriteSHA1RNDS4Ld], (instregex "SHA1RNDS4rm")>; // SHA256RNDS2 // x,x. def ZnWriteSHA256RNDS2r : SchedWriteRes<[ZnFPU1]> { let Latency = 4; } def : InstRW<[ZnWriteSHA256RNDS2r], (instregex "SHA256RNDS2rr")>; // x,m. def ZnWriteSHA256RNDS2Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> { let Latency = 11; } def : InstRW<[ZnWriteSHA256RNDS2Ld], (instregex "SHA256RNDS2rm")>; //-- Arithmetic instructions --// // HADD, HSUB PS/PD def : InstRW<[WriteMicrocoded], (instregex "(V?)H(ADD|SUB)P(S|D)(Y?)r(r|m)")>; // MULL SS/SD PS/PD. // x,x / v,v,v. def ZnWriteMULr : SchedWriteRes<[ZnFPU01]> { let Latency = 3; } // ymm. def ZnWriteMULYr : SchedWriteRes<[ZnFPU01]> { let Latency = 4; } def : InstRW<[ZnWriteMULr], (instregex "(V?)MUL(P|S)(S|D)rr")>; def : InstRW<[ZnWriteMULYr], (instregex "(V?)MUL(P|S)(S|D)Yrr")>; // x,m / v,v,m. def ZnWriteMULLd : SchedWriteRes<[ZnAGU, ZnFPU01]> { let Latency = 10; let NumMicroOps = 2; } def : InstRW<[ZnWriteMULLd], (instregex "(V?)MUL(P|S)(S|D)rm")>; // ymm def ZnWriteMULYLd : SchedWriteRes<[ZnAGU, ZnFPU01]> { let Latency = 11; let NumMicroOps = 2; } def : InstRW<[ZnWriteMULYLd], (instregex "(V?)MUL(P|S)(S|D)Yrm")>; // VDIVPS. // y,y,y. def ZnWriteVDIVPSYr : SchedWriteRes<[ZnFPU3]> { let Latency = 12; let ResourceCycles = [12]; } def : InstRW<[ZnWriteVDIVPSYr], (instregex "VDIVPSYrr")>; // y,y,m256. def ZnWriteVDIVPSYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> { let Latency = 19; let NumMicroOps = 2; let ResourceCycles = [1, 19]; } def : InstRW<[ZnWriteVDIVPSYLd], (instregex "VDIVPSYrm")>; // VDIVPD. // y,y,y. def ZnWriteVDIVPDY : SchedWriteRes<[ZnFPU3]> { let Latency = 15; let ResourceCycles = [15]; } def : InstRW<[ZnWriteVDIVPDY], (instregex "VDIVPDYrr")>; // y,y,m256. def ZnWriteVDIVPDYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> { let Latency = 22; let NumMicroOps = 2; let ResourceCycles = [1,22]; } def : InstRW<[ZnWriteVDIVPDYLd], (instregex "VDIVPDYrm")>; // VRCPPS. // y,y. def ZnWriteVRCPPSr : SchedWriteRes<[ZnFPU01]> { let Latency = 5; } def : InstRW<[ZnWriteVRCPPSr], (instregex "VRCPPSYr(_Int)?")>; // y,m256. def ZnWriteVRCPPSLd : SchedWriteRes<[ZnAGU, ZnFPU01]> { let Latency = 12; let NumMicroOps = 3; } def : InstRW<[ZnWriteVRCPPSLd], (instregex "VRCPPSYm(_Int)?")>; // ROUND SS/SD PS/PD. // v,v,i. def ZnWriteROUNDr : SchedWriteRes<[ZnFPU3]> { let Latency = 4; } def : InstRW<[ZnWriteROUNDr], (instregex "(V?)ROUND(Y?)(S|P)(S|D)r(_Int)?")>; // VFMADD. // v,v,v. def ZnWriteFMADDr : SchedWriteRes<[ZnFPU03]> { let Latency = 5; } def : InstRW<[ZnWriteFMADDr], (instregex "VF(N?)M(ADD|SUB|ADDSUB|SUBADD)P(S|D)(213|132|231)(Y)?r", "VF(N?)M(ADD|SUB)(132|231|213)S(S|D)r", "VF(N?)M(ADD|SUB)S(S|D)4rr(_REV|_Int)?", "VF(N?)M(ADD|SUB)P(S|D)4rr(Y)?(_REV)?")>; // v,v,m. def ZnWriteFMADDm : SchedWriteRes<[ZnAGU, ZnFPU03]> { let Latency = 12; let NumMicroOps = 2; } def : InstRW<[ZnWriteFMADDm], (instregex "VF(N?)M(ADD|SUB|ADDSUB|SUBADD)(213|132|231)P(S|D)(Y)?m", "VF(N?)M(ADD|SUB)(132|231|213)S(S|D)m", "VF(N?)M(ADD|SUB)S(S|D)4(rm|mr)(_Int)?", "VF(N?)M(ADD|SUB)P(S|D)4(rm|mr)(Y)?")>; // v,m,i. def ZnWriteROUNDm : SchedWriteRes<[ZnAGU, ZnFPU3]> { let Latency = 11; let NumMicroOps = 2; } def : InstRW<[ZnWriteROUNDm], (instregex "(V?)ROUND(Y?)(S|P)(S|D)m(_Int)?")>; // DPPS. // x,x,i / v,v,v,i. def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPS(Y?)rri")>; // x,m,i / v,v,m,i. def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPS(Y?)rmi")>; // DPPD. // x,x,i. def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPDrri")>; // x,m,i. def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPDrmi")>; // VSQRTPS. // y,y. def ZnWriteVSQRTPSYr : SchedWriteRes<[ZnFPU3]> { let Latency = 28; let ResourceCycles = [28]; } def : InstRW<[ZnWriteVSQRTPSYr], (instregex "VSQRTPSYr")>; // y,m256. def ZnWriteVSQRTPSYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> { let Latency = 35; let ResourceCycles = [1,35]; let NumMicroOps = 2; } def : InstRW<[ZnWriteVSQRTPSYLd], (instregex "VSQRTPSYm")>; // VSQRTPD. // y,y. def ZnWriteVSQRTPDYr : SchedWriteRes<[ZnFPU3]> { let Latency = 40; let ResourceCycles = [40]; } def : InstRW<[ZnWriteVSQRTPDYr], (instregex "VSQRTPDYr")>; // y,m256. def ZnWriteVSQRTPDYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> { let Latency = 47; let NumMicroOps = 2; let ResourceCycles = [1,47]; } def : InstRW<[ZnWriteVSQRTPDYLd], (instregex "VSQRTPDYm")>; // RSQRTSS // x,x. def ZnWriteRSQRTSSr : SchedWriteRes<[ZnFPU02]> { let Latency = 5; } def : InstRW<[ZnWriteRSQRTSSr], (instregex "(V?)RSQRTSS(Y?)r(_Int)?")>; // RSQRTPS // x,x. def ZnWriteRSQRTPSr : SchedWriteRes<[ZnFPU01]> { let Latency = 5; } def : InstRW<[ZnWriteRSQRTPSr], (instregex "(V?)RSQRTPS(Y?)r(_Int)?")>; // RSQRTSSm // x,m128. def ZnWriteRSQRTSSLd: SchedWriteRes<[ZnAGU, ZnFPU02]> { let Latency = 12; let NumMicroOps = 2; let ResourceCycles = [1,2]; } def : InstRW<[ZnWriteRSQRTSSLd], (instregex "(V?)RSQRTSSm(_Int)?")>; // RSQRTPSm def ZnWriteRSQRTPSLd : SchedWriteRes<[ZnAGU, ZnFPU01]> { let Latency = 12; let NumMicroOps = 2; } def : InstRW<[ZnWriteRSQRTPSLd], (instregex "(V?)RSQRTPSm(_Int)?")>; // RSQRTPS 256. // y,y. def ZnWriteRSQRTPSYr : SchedWriteRes<[ZnFPU01]> { let Latency = 5; let NumMicroOps = 2; let ResourceCycles = [2]; } def : InstRW<[ZnWriteRSQRTPSYr], (instregex "VRSQRTPSYr(_Int)?")>; // y,m256. def ZnWriteRSQRTPSYLd : SchedWriteRes<[ZnAGU, ZnFPU01]> { let Latency = 12; let NumMicroOps = 2; } def : InstRW<[ZnWriteRSQRTPSYLd], (instregex "VRSQRTPSYm(_Int)?")>; //-- Logic instructions --// // AND, ANDN, OR, XOR PS/PD. // x,x / v,v,v. def : InstRW<[WriteVecLogic], (instregex "(V?)(AND|ANDN|OR|XOR)P(S|D)(Y?)rr")>; // x,m / v,v,m. def : InstRW<[WriteVecLogicLd], (instregex "(V?)(AND|ANDN|OR|XOR)P(S|D)(Y?)rm")>; //-- Other instructions --// // VZEROUPPER. def : InstRW<[WriteMicrocoded], (instregex "VZEROUPPER")>; // VZEROALL. def : InstRW<[WriteMicrocoded], (instregex "VZEROALL")>; // LDMXCSR. def : InstRW<[WriteMicrocoded], (instregex "(V)?LDMXCSR")>; // STMXCSR. def : InstRW<[WriteMicrocoded], (instregex "(V)?STMXCSR")>; } // SchedModel