//===-- LowerTypeTests.cpp - type metadata lowering pass ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass lowers type metadata and calls to the llvm.type.test intrinsic. // See http://llvm.org/docs/TypeMetadata.html for more information. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/LowerTypeTests.h" #include "llvm/ADT/EquivalenceClasses.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalObject.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSummaryIndexYAML.h" #include "llvm/IR/Operator.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/TrailingObjects.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/ModuleUtils.h" using namespace llvm; using namespace lowertypetests; using SummaryAction = LowerTypeTestsSummaryAction; #define DEBUG_TYPE "lowertypetests" STATISTIC(ByteArraySizeBits, "Byte array size in bits"); STATISTIC(ByteArraySizeBytes, "Byte array size in bytes"); STATISTIC(NumByteArraysCreated, "Number of byte arrays created"); STATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered"); STATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers"); static cl::opt AvoidReuse( "lowertypetests-avoid-reuse", cl::desc("Try to avoid reuse of byte array addresses using aliases"), cl::Hidden, cl::init(true)); static cl::opt ClSummaryAction( "lowertypetests-summary-action", cl::desc("What to do with the summary when running this pass"), cl::values(clEnumValN(SummaryAction::None, "none", "Do nothing"), clEnumValN(SummaryAction::Import, "import", "Import typeid resolutions from summary and globals"), clEnumValN(SummaryAction::Export, "export", "Export typeid resolutions to summary and globals")), cl::Hidden); static cl::opt ClReadSummary( "lowertypetests-read-summary", cl::desc("Read summary from given YAML file before running pass"), cl::Hidden); static cl::opt ClWriteSummary( "lowertypetests-write-summary", cl::desc("Write summary to given YAML file after running pass"), cl::Hidden); bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const { if (Offset < ByteOffset) return false; if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0) return false; uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2; if (BitOffset >= BitSize) return false; return Bits.count(BitOffset); } void BitSetInfo::print(raw_ostream &OS) const { OS << "offset " << ByteOffset << " size " << BitSize << " align " << (1 << AlignLog2); if (isAllOnes()) { OS << " all-ones\n"; return; } OS << " { "; for (uint64_t B : Bits) OS << B << ' '; OS << "}\n"; } BitSetInfo BitSetBuilder::build() { if (Min > Max) Min = 0; // Normalize each offset against the minimum observed offset, and compute // the bitwise OR of each of the offsets. The number of trailing zeros // in the mask gives us the log2 of the alignment of all offsets, which // allows us to compress the bitset by only storing one bit per aligned // address. uint64_t Mask = 0; for (uint64_t &Offset : Offsets) { Offset -= Min; Mask |= Offset; } BitSetInfo BSI; BSI.ByteOffset = Min; BSI.AlignLog2 = 0; if (Mask != 0) BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined); // Build the compressed bitset while normalizing the offsets against the // computed alignment. BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1; for (uint64_t Offset : Offsets) { Offset >>= BSI.AlignLog2; BSI.Bits.insert(Offset); } return BSI; } void GlobalLayoutBuilder::addFragment(const std::set &F) { // Create a new fragment to hold the layout for F. Fragments.emplace_back(); std::vector &Fragment = Fragments.back(); uint64_t FragmentIndex = Fragments.size() - 1; for (auto ObjIndex : F) { uint64_t OldFragmentIndex = FragmentMap[ObjIndex]; if (OldFragmentIndex == 0) { // We haven't seen this object index before, so just add it to the current // fragment. Fragment.push_back(ObjIndex); } else { // This index belongs to an existing fragment. Copy the elements of the // old fragment into this one and clear the old fragment. We don't update // the fragment map just yet, this ensures that any further references to // indices from the old fragment in this fragment do not insert any more // indices. std::vector &OldFragment = Fragments[OldFragmentIndex]; Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end()); OldFragment.clear(); } } // Update the fragment map to point our object indices to this fragment. for (uint64_t ObjIndex : Fragment) FragmentMap[ObjIndex] = FragmentIndex; } void ByteArrayBuilder::allocate(const std::set &Bits, uint64_t BitSize, uint64_t &AllocByteOffset, uint8_t &AllocMask) { // Find the smallest current allocation. unsigned Bit = 0; for (unsigned I = 1; I != BitsPerByte; ++I) if (BitAllocs[I] < BitAllocs[Bit]) Bit = I; AllocByteOffset = BitAllocs[Bit]; // Add our size to it. unsigned ReqSize = AllocByteOffset + BitSize; BitAllocs[Bit] = ReqSize; if (Bytes.size() < ReqSize) Bytes.resize(ReqSize); // Set our bits. AllocMask = 1 << Bit; for (uint64_t B : Bits) Bytes[AllocByteOffset + B] |= AllocMask; } namespace { struct ByteArrayInfo { std::set Bits; uint64_t BitSize; GlobalVariable *ByteArray; GlobalVariable *MaskGlobal; }; /// A POD-like structure that we use to store a global reference together with /// its metadata types. In this pass we frequently need to query the set of /// metadata types referenced by a global, which at the IR level is an expensive /// operation involving a map lookup; this data structure helps to reduce the /// number of times we need to do this lookup. class GlobalTypeMember final : TrailingObjects { GlobalObject *GO; size_t NTypes; friend TrailingObjects; size_t numTrailingObjects(OverloadToken) const { return NTypes; } public: static GlobalTypeMember *create(BumpPtrAllocator &Alloc, GlobalObject *GO, ArrayRef Types) { auto *GTM = static_cast(Alloc.Allocate( totalSizeToAlloc(Types.size()), alignof(GlobalTypeMember))); GTM->GO = GO; GTM->NTypes = Types.size(); std::uninitialized_copy(Types.begin(), Types.end(), GTM->getTrailingObjects()); return GTM; } GlobalObject *getGlobal() const { return GO; } ArrayRef types() const { return makeArrayRef(getTrailingObjects(), NTypes); } }; class LowerTypeTestsModule { Module &M; SummaryAction Action; ModuleSummaryIndex *Summary; bool LinkerSubsectionsViaSymbols; Triple::ArchType Arch; Triple::OSType OS; Triple::ObjectFormatType ObjectFormat; IntegerType *Int1Ty = Type::getInt1Ty(M.getContext()); IntegerType *Int8Ty = Type::getInt8Ty(M.getContext()); PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); IntegerType *Int32Ty = Type::getInt32Ty(M.getContext()); PointerType *Int32PtrTy = PointerType::getUnqual(Int32Ty); IntegerType *Int64Ty = Type::getInt64Ty(M.getContext()); IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext(), 0); // Indirect function call index assignment counter for WebAssembly uint64_t IndirectIndex = 1; // Mapping from type identifiers to the call sites that test them. DenseMap> TypeTestCallSites; /// This structure describes how to lower type tests for a particular type /// identifier. It is either built directly from the global analysis (during /// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type /// identifier summaries and external symbol references (in ThinLTO backends). struct TypeIdLowering { TypeTestResolution::Kind TheKind; /// All except Unsat: the start address within the combined global. Constant *OffsetedGlobal; /// ByteArray, Inline, AllOnes: log2 of the required global alignment /// relative to the start address. Constant *AlignLog2; /// ByteArray, Inline, AllOnes: one less than the size of the memory region /// covering members of this type identifier as a multiple of 2^AlignLog2. Constant *SizeM1; /// ByteArray, Inline, AllOnes: range of SizeM1 expressed as a bit width. unsigned SizeM1BitWidth; /// ByteArray: the byte array to test the address against. Constant *TheByteArray; /// ByteArray: the bit mask to apply to bytes loaded from the byte array. Constant *BitMask; /// Inline: the bit mask to test the address against. Constant *InlineBits; }; std::vector ByteArrayInfos; Function *WeakInitializerFn = nullptr; BitSetInfo buildBitSet(Metadata *TypeId, const DenseMap &GlobalLayout); ByteArrayInfo *createByteArray(BitSetInfo &BSI); void allocateByteArrays(); Value *createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL, Value *BitOffset); void lowerTypeTestCalls( ArrayRef TypeIds, Constant *CombinedGlobalAddr, const DenseMap &GlobalLayout); Value *lowerTypeTestCall(Metadata *TypeId, CallInst *CI, const TypeIdLowering &TIL); void buildBitSetsFromGlobalVariables(ArrayRef TypeIds, ArrayRef Globals); unsigned getJumpTableEntrySize(); Type *getJumpTableEntryType(); void createJumpTableEntry(raw_ostream &AsmOS, raw_ostream &ConstraintOS, SmallVectorImpl &AsmArgs, Function *Dest); void verifyTypeMDNode(GlobalObject *GO, MDNode *Type); void buildBitSetsFromFunctions(ArrayRef TypeIds, ArrayRef Functions); void buildBitSetsFromFunctionsNative(ArrayRef TypeIds, ArrayRef Functions); void buildBitSetsFromFunctionsWASM(ArrayRef TypeIds, ArrayRef Functions); void buildBitSetsFromDisjointSet(ArrayRef TypeIds, ArrayRef Globals); void replaceWeakDeclarationWithJumpTablePtr(Function *F, Constant *JT); void moveInitializerToModuleConstructor(GlobalVariable *GV); void findGlobalVariableUsersOf(Constant *C, SmallSetVector &Out); void createJumpTable(Function *F, ArrayRef Functions); public: LowerTypeTestsModule(Module &M, SummaryAction Action, ModuleSummaryIndex *Summary); bool lower(); // Lower the module using the action and summary passed as command line // arguments. For testing purposes only. static bool runForTesting(Module &M); }; struct LowerTypeTests : public ModulePass { static char ID; bool UseCommandLine = false; SummaryAction Action; ModuleSummaryIndex *Summary; LowerTypeTests() : ModulePass(ID), UseCommandLine(true) { initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry()); } LowerTypeTests(SummaryAction Action, ModuleSummaryIndex *Summary) : ModulePass(ID), Action(Action), Summary(Summary) { initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { if (skipModule(M)) return false; if (UseCommandLine) return LowerTypeTestsModule::runForTesting(M); return LowerTypeTestsModule(M, Action, Summary).lower(); } }; } // anonymous namespace INITIALIZE_PASS(LowerTypeTests, "lowertypetests", "Lower type metadata", false, false) char LowerTypeTests::ID = 0; ModulePass *llvm::createLowerTypeTestsPass(SummaryAction Action, ModuleSummaryIndex *Summary) { return new LowerTypeTests(Action, Summary); } /// Build a bit set for TypeId using the object layouts in /// GlobalLayout. BitSetInfo LowerTypeTestsModule::buildBitSet( Metadata *TypeId, const DenseMap &GlobalLayout) { BitSetBuilder BSB; // Compute the byte offset of each address associated with this type // identifier. for (auto &GlobalAndOffset : GlobalLayout) { for (MDNode *Type : GlobalAndOffset.first->types()) { if (Type->getOperand(1) != TypeId) continue; uint64_t Offset = cast( cast(Type->getOperand(0))->getValue()) ->getZExtValue(); BSB.addOffset(GlobalAndOffset.second + Offset); } } return BSB.build(); } /// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in /// Bits. This pattern matches to the bt instruction on x86. static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits, Value *BitOffset) { auto BitsType = cast(Bits->getType()); unsigned BitWidth = BitsType->getBitWidth(); BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType); Value *BitIndex = B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1)); Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex); Value *MaskedBits = B.CreateAnd(Bits, BitMask); return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0)); } ByteArrayInfo *LowerTypeTestsModule::createByteArray(BitSetInfo &BSI) { // Create globals to stand in for byte arrays and masks. These never actually // get initialized, we RAUW and erase them later in allocateByteArrays() once // we know the offset and mask to use. auto ByteArrayGlobal = new GlobalVariable( M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr); auto MaskGlobal = new GlobalVariable(M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr); ByteArrayInfos.emplace_back(); ByteArrayInfo *BAI = &ByteArrayInfos.back(); BAI->Bits = BSI.Bits; BAI->BitSize = BSI.BitSize; BAI->ByteArray = ByteArrayGlobal; BAI->MaskGlobal = MaskGlobal; return BAI; } void LowerTypeTestsModule::allocateByteArrays() { std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(), [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) { return BAI1.BitSize > BAI2.BitSize; }); std::vector ByteArrayOffsets(ByteArrayInfos.size()); ByteArrayBuilder BAB; for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) { ByteArrayInfo *BAI = &ByteArrayInfos[I]; uint8_t Mask; BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask); BAI->MaskGlobal->replaceAllUsesWith( ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty, Mask), Int8PtrTy)); BAI->MaskGlobal->eraseFromParent(); } Constant *ByteArrayConst = ConstantDataArray::get(M.getContext(), BAB.Bytes); auto ByteArray = new GlobalVariable(M, ByteArrayConst->getType(), /*isConstant=*/true, GlobalValue::PrivateLinkage, ByteArrayConst); for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) { ByteArrayInfo *BAI = &ByteArrayInfos[I]; Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0), ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])}; Constant *GEP = ConstantExpr::getInBoundsGetElementPtr( ByteArrayConst->getType(), ByteArray, Idxs); // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures // that the pc-relative displacement is folded into the lea instead of the // test instruction getting another displacement. if (LinkerSubsectionsViaSymbols) { BAI->ByteArray->replaceAllUsesWith(GEP); } else { GlobalAlias *Alias = GlobalAlias::create( Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, &M); BAI->ByteArray->replaceAllUsesWith(Alias); } BAI->ByteArray->eraseFromParent(); } ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] + BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] + BAB.BitAllocs[6] + BAB.BitAllocs[7]; ByteArraySizeBytes = BAB.Bytes.size(); } /// Build a test that bit BitOffset is set in the type identifier that was /// lowered to TIL, which must be either an Inline or a ByteArray. Value *LowerTypeTestsModule::createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL, Value *BitOffset) { if (TIL.TheKind == TypeTestResolution::Inline) { // If the bit set is sufficiently small, we can avoid a load by bit testing // a constant. return createMaskedBitTest(B, TIL.InlineBits, BitOffset); } else { Constant *ByteArray = TIL.TheByteArray; if (!LinkerSubsectionsViaSymbols && AvoidReuse) { // Each use of the byte array uses a different alias. This makes the // backend less likely to reuse previously computed byte array addresses, // improving the security of the CFI mechanism based on this pass. ByteArray = GlobalAlias::create(Int8Ty, 0, GlobalValue::PrivateLinkage, "bits_use", ByteArray, &M); } Value *ByteAddr = B.CreateGEP(Int8Ty, ByteArray, BitOffset); Value *Byte = B.CreateLoad(ByteAddr); Value *ByteAndMask = B.CreateAnd(Byte, ConstantExpr::getPtrToInt(TIL.BitMask, Int8Ty)); return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0)); } } static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL, Value *V, uint64_t COffset) { if (auto GV = dyn_cast(V)) { SmallVector Types; GV->getMetadata(LLVMContext::MD_type, Types); for (MDNode *Type : Types) { if (Type->getOperand(1) != TypeId) continue; uint64_t Offset = cast( cast(Type->getOperand(0))->getValue()) ->getZExtValue(); if (COffset == Offset) return true; } return false; } if (auto GEP = dyn_cast(V)) { APInt APOffset(DL.getPointerSizeInBits(0), 0); bool Result = GEP->accumulateConstantOffset(DL, APOffset); if (!Result) return false; COffset += APOffset.getZExtValue(); return isKnownTypeIdMember(TypeId, DL, GEP->getPointerOperand(), COffset); } if (auto Op = dyn_cast(V)) { if (Op->getOpcode() == Instruction::BitCast) return isKnownTypeIdMember(TypeId, DL, Op->getOperand(0), COffset); if (Op->getOpcode() == Instruction::Select) return isKnownTypeIdMember(TypeId, DL, Op->getOperand(1), COffset) && isKnownTypeIdMember(TypeId, DL, Op->getOperand(2), COffset); } return false; } /// Lower a llvm.type.test call to its implementation. Returns the value to /// replace the call with. Value *LowerTypeTestsModule::lowerTypeTestCall(Metadata *TypeId, CallInst *CI, const TypeIdLowering &TIL) { if (TIL.TheKind == TypeTestResolution::Unsat) return ConstantInt::getFalse(M.getContext()); Value *Ptr = CI->getArgOperand(0); const DataLayout &DL = M.getDataLayout(); if (isKnownTypeIdMember(TypeId, DL, Ptr, 0)) return ConstantInt::getTrue(M.getContext()); BasicBlock *InitialBB = CI->getParent(); IRBuilder<> B(CI); Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy); Constant *OffsetedGlobalAsInt = ConstantExpr::getPtrToInt(TIL.OffsetedGlobal, IntPtrTy); if (TIL.TheKind == TypeTestResolution::Single) return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt); Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt); // We need to check that the offset both falls within our range and is // suitably aligned. We can check both properties at the same time by // performing a right rotate by log2(alignment) followed by an integer // comparison against the bitset size. The rotate will move the lower // order bits that need to be zero into the higher order bits of the // result, causing the comparison to fail if they are nonzero. The rotate // also conveniently gives us a bit offset to use during the load from // the bitset. Value *OffsetSHR = B.CreateLShr(PtrOffset, ConstantExpr::getZExt(TIL.AlignLog2, IntPtrTy)); Value *OffsetSHL = B.CreateShl( PtrOffset, ConstantExpr::getZExt( ConstantExpr::getSub( ConstantInt::get(Int8Ty, DL.getPointerSizeInBits(0)), TIL.AlignLog2), IntPtrTy)); Value *BitOffset = B.CreateOr(OffsetSHR, OffsetSHL); Constant *BitSizeConst = ConstantExpr::getZExt(TIL.SizeM1, IntPtrTy); Value *OffsetInRange = B.CreateICmpULE(BitOffset, BitSizeConst); // If the bit set is all ones, testing against it is unnecessary. if (TIL.TheKind == TypeTestResolution::AllOnes) return OffsetInRange; TerminatorInst *Term = SplitBlockAndInsertIfThen(OffsetInRange, CI, false); IRBuilder<> ThenB(Term); // Now that we know that the offset is in range and aligned, load the // appropriate bit from the bitset. Value *Bit = createBitSetTest(ThenB, TIL, BitOffset); // The value we want is 0 if we came directly from the initial block // (having failed the range or alignment checks), or the loaded bit if // we came from the block in which we loaded it. B.SetInsertPoint(CI); PHINode *P = B.CreatePHI(Int1Ty, 2); P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB); P->addIncoming(Bit, ThenB.GetInsertBlock()); return P; } /// Given a disjoint set of type identifiers and globals, lay out the globals, /// build the bit sets and lower the llvm.type.test calls. void LowerTypeTestsModule::buildBitSetsFromGlobalVariables( ArrayRef TypeIds, ArrayRef Globals) { // Build a new global with the combined contents of the referenced globals. // This global is a struct whose even-indexed elements contain the original // contents of the referenced globals and whose odd-indexed elements contain // any padding required to align the next element to the next power of 2. std::vector GlobalInits; const DataLayout &DL = M.getDataLayout(); for (GlobalTypeMember *G : Globals) { GlobalVariable *GV = cast(G->getGlobal()); GlobalInits.push_back(GV->getInitializer()); uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); // Compute the amount of padding required. uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize; // Cap at 128 was found experimentally to have a good data/instruction // overhead tradeoff. if (Padding > 128) Padding = alignTo(InitSize, 128) - InitSize; GlobalInits.push_back( ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding))); } if (!GlobalInits.empty()) GlobalInits.pop_back(); Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits); auto *CombinedGlobal = new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true, GlobalValue::PrivateLinkage, NewInit); StructType *NewTy = cast(NewInit->getType()); const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy); // Compute the offsets of the original globals within the new global. DenseMap GlobalLayout; for (unsigned I = 0; I != Globals.size(); ++I) // Multiply by 2 to account for padding elements. GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2); lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout); // Build aliases pointing to offsets into the combined global for each // global from which we built the combined global, and replace references // to the original globals with references to the aliases. for (unsigned I = 0; I != Globals.size(); ++I) { GlobalVariable *GV = cast(Globals[I]->getGlobal()); // Multiply by 2 to account for padding elements. Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, I * 2)}; Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr( NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs); if (LinkerSubsectionsViaSymbols) { GV->replaceAllUsesWith(CombinedGlobalElemPtr); } else { assert(GV->getType()->getAddressSpace() == 0); GlobalAlias *GAlias = GlobalAlias::create(NewTy->getElementType(I * 2), 0, GV->getLinkage(), "", CombinedGlobalElemPtr, &M); GAlias->setVisibility(GV->getVisibility()); GAlias->takeName(GV); GV->replaceAllUsesWith(GAlias); } GV->eraseFromParent(); } } void LowerTypeTestsModule::lowerTypeTestCalls( ArrayRef TypeIds, Constant *CombinedGlobalAddr, const DenseMap &GlobalLayout) { CombinedGlobalAddr = ConstantExpr::getBitCast(CombinedGlobalAddr, Int8PtrTy); // For each type identifier in this disjoint set... for (Metadata *TypeId : TypeIds) { // Build the bitset. BitSetInfo BSI = buildBitSet(TypeId, GlobalLayout); DEBUG({ if (auto MDS = dyn_cast(TypeId)) dbgs() << MDS->getString() << ": "; else dbgs() << ": "; BSI.print(dbgs()); }); TypeIdLowering TIL; TIL.OffsetedGlobal = ConstantExpr::getGetElementPtr( Int8Ty, CombinedGlobalAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset)), TIL.AlignLog2 = ConstantInt::get(Int8Ty, BSI.AlignLog2); if (BSI.isAllOnes()) { TIL.TheKind = (BSI.BitSize == 1) ? TypeTestResolution::Single : TypeTestResolution::AllOnes; TIL.SizeM1BitWidth = (BSI.BitSize <= 128) ? 7 : 32; TIL.SizeM1 = ConstantInt::get((BSI.BitSize <= 128) ? Int8Ty : Int32Ty, BSI.BitSize - 1); } else if (BSI.BitSize <= 64) { TIL.TheKind = TypeTestResolution::Inline; TIL.SizeM1BitWidth = (BSI.BitSize <= 32) ? 5 : 6; TIL.SizeM1 = ConstantInt::get(Int8Ty, BSI.BitSize - 1); uint64_t InlineBits = 0; for (auto Bit : BSI.Bits) InlineBits |= uint64_t(1) << Bit; if (InlineBits == 0) TIL.TheKind = TypeTestResolution::Unsat; else TIL.InlineBits = ConstantInt::get( (BSI.BitSize <= 32) ? Int32Ty : Int64Ty, InlineBits); } else { TIL.TheKind = TypeTestResolution::ByteArray; TIL.SizeM1BitWidth = (BSI.BitSize <= 128) ? 7 : 32; TIL.SizeM1 = ConstantInt::get((BSI.BitSize <= 128) ? Int8Ty : Int32Ty, BSI.BitSize - 1); ++NumByteArraysCreated; ByteArrayInfo *BAI = createByteArray(BSI); TIL.TheByteArray = BAI->ByteArray; TIL.BitMask = BAI->MaskGlobal; } // Lower each call to llvm.type.test for this type identifier. for (CallInst *CI : TypeTestCallSites[TypeId]) { ++NumTypeTestCallsLowered; Value *Lowered = lowerTypeTestCall(TypeId, CI, TIL); CI->replaceAllUsesWith(Lowered); CI->eraseFromParent(); } } } void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) { if (Type->getNumOperands() != 2) report_fatal_error("All operands of type metadata must have 2 elements"); if (GO->isThreadLocal()) report_fatal_error("Bit set element may not be thread-local"); if (isa(GO) && GO->hasSection()) report_fatal_error( "A member of a type identifier may not have an explicit section"); if (isa(GO) && GO->isDeclarationForLinker()) report_fatal_error( "A global var member of a type identifier must be a definition"); auto OffsetConstMD = dyn_cast(Type->getOperand(0)); if (!OffsetConstMD) report_fatal_error("Type offset must be a constant"); auto OffsetInt = dyn_cast(OffsetConstMD->getValue()); if (!OffsetInt) report_fatal_error("Type offset must be an integer constant"); } static const unsigned kX86JumpTableEntrySize = 8; static const unsigned kARMJumpTableEntrySize = 4; unsigned LowerTypeTestsModule::getJumpTableEntrySize() { switch (Arch) { case Triple::x86: case Triple::x86_64: return kX86JumpTableEntrySize; case Triple::arm: case Triple::thumb: case Triple::aarch64: return kARMJumpTableEntrySize; default: report_fatal_error("Unsupported architecture for jump tables"); } } // Create a jump table entry for the target. This consists of an instruction // sequence containing a relative branch to Dest. Appends inline asm text, // constraints and arguments to AsmOS, ConstraintOS and AsmArgs. void LowerTypeTestsModule::createJumpTableEntry( raw_ostream &AsmOS, raw_ostream &ConstraintOS, SmallVectorImpl &AsmArgs, Function *Dest) { unsigned ArgIndex = AsmArgs.size(); if (Arch == Triple::x86 || Arch == Triple::x86_64) { AsmOS << "jmp ${" << ArgIndex << ":c}@plt\n"; AsmOS << "int3\nint3\nint3\n"; } else if (Arch == Triple::arm || Arch == Triple::aarch64) { AsmOS << "b $" << ArgIndex << "\n"; } else if (Arch == Triple::thumb) { AsmOS << "b.w $" << ArgIndex << "\n"; } else { report_fatal_error("Unsupported architecture for jump tables"); } ConstraintOS << (ArgIndex > 0 ? ",s" : "s"); AsmArgs.push_back(Dest); } Type *LowerTypeTestsModule::getJumpTableEntryType() { return ArrayType::get(Int8Ty, getJumpTableEntrySize()); } /// Given a disjoint set of type identifiers and functions, build the bit sets /// and lower the llvm.type.test calls, architecture dependently. void LowerTypeTestsModule::buildBitSetsFromFunctions( ArrayRef TypeIds, ArrayRef Functions) { if (Arch == Triple::x86 || Arch == Triple::x86_64 || Arch == Triple::arm || Arch == Triple::thumb || Arch == Triple::aarch64) buildBitSetsFromFunctionsNative(TypeIds, Functions); else if (Arch == Triple::wasm32 || Arch == Triple::wasm64) buildBitSetsFromFunctionsWASM(TypeIds, Functions); else report_fatal_error("Unsupported architecture for jump tables"); } void LowerTypeTestsModule::moveInitializerToModuleConstructor( GlobalVariable *GV) { if (WeakInitializerFn == nullptr) { WeakInitializerFn = Function::Create( FunctionType::get(Type::getVoidTy(M.getContext()), /* IsVarArg */ false), GlobalValue::InternalLinkage, "__cfi_global_var_init", &M); BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", WeakInitializerFn); ReturnInst::Create(M.getContext(), BB); WeakInitializerFn->setSection( ObjectFormat == Triple::MachO ? "__TEXT,__StaticInit,regular,pure_instructions" : ".text.startup"); // This code is equivalent to relocation application, and should run at the // earliest possible time (i.e. with the highest priority). appendToGlobalCtors(M, WeakInitializerFn, /* Priority */ 0); } IRBuilder<> IRB(WeakInitializerFn->getEntryBlock().getTerminator()); GV->setConstant(false); IRB.CreateAlignedStore(GV->getInitializer(), GV, GV->getAlignment()); GV->setInitializer(Constant::getNullValue(GV->getValueType())); } void LowerTypeTestsModule::findGlobalVariableUsersOf( Constant *C, SmallSetVector &Out) { for (auto *U : C->users()){ if (auto *GV = dyn_cast(U)) Out.insert(GV); else if (auto *C2 = dyn_cast(U)) findGlobalVariableUsersOf(C2, Out); } } // Replace all uses of F with (F ? JT : 0). void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr( Function *F, Constant *JT) { // The target expression can not appear in a constant initializer on most // (all?) targets. Switch to a runtime initializer. SmallSetVector GlobalVarUsers; findGlobalVariableUsersOf(F, GlobalVarUsers); for (auto GV : GlobalVarUsers) moveInitializerToModuleConstructor(GV); // Can not RAUW F with an expression that uses F. Replace with a temporary // placeholder first. Function *PlaceholderFn = Function::Create(cast(F->getValueType()), GlobalValue::ExternalWeakLinkage, "", &M); F->replaceAllUsesWith(PlaceholderFn); Constant *Target = ConstantExpr::getSelect( ConstantExpr::getICmp(CmpInst::ICMP_NE, F, Constant::getNullValue(F->getType())), JT, Constant::getNullValue(F->getType())); PlaceholderFn->replaceAllUsesWith(Target); PlaceholderFn->eraseFromParent(); } void LowerTypeTestsModule::createJumpTable( Function *F, ArrayRef Functions) { std::string AsmStr, ConstraintStr; raw_string_ostream AsmOS(AsmStr), ConstraintOS(ConstraintStr); SmallVector AsmArgs; AsmArgs.reserve(Functions.size() * 2); for (unsigned I = 0; I != Functions.size(); ++I) createJumpTableEntry(AsmOS, ConstraintOS, AsmArgs, cast(Functions[I]->getGlobal())); // Try to emit the jump table at the end of the text segment. // Jump table must come after __cfi_check in the cross-dso mode. // FIXME: this magic section name seems to do the trick. F->setSection(ObjectFormat == Triple::MachO ? "__TEXT,__text,regular,pure_instructions" : ".text.cfi"); // Align the whole table by entry size. F->setAlignment(getJumpTableEntrySize()); // Skip prologue. // Disabled on win32 due to https://llvm.org/bugs/show_bug.cgi?id=28641#c3. // Luckily, this function does not get any prologue even without the // attribute. if (OS != Triple::Win32) F->addFnAttr(llvm::Attribute::Naked); // Thumb jump table assembly needs Thumb2. The following attribute is added by // Clang for -march=armv7. if (Arch == Triple::thumb) F->addFnAttr("target-cpu", "cortex-a8"); BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", F); IRBuilder<> IRB(BB); SmallVector ArgTypes; ArgTypes.reserve(AsmArgs.size()); for (const auto &Arg : AsmArgs) ArgTypes.push_back(Arg->getType()); InlineAsm *JumpTableAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), ArgTypes, false), AsmOS.str(), ConstraintOS.str(), /*hasSideEffects=*/true); IRB.CreateCall(JumpTableAsm, AsmArgs); IRB.CreateUnreachable(); } /// Given a disjoint set of type identifiers and functions, build a jump table /// for the functions, build the bit sets and lower the llvm.type.test calls. void LowerTypeTestsModule::buildBitSetsFromFunctionsNative( ArrayRef TypeIds, ArrayRef Functions) { // Unlike the global bitset builder, the function bitset builder cannot // re-arrange functions in a particular order and base its calculations on the // layout of the functions' entry points, as we have no idea how large a // particular function will end up being (the size could even depend on what // this pass does!) Instead, we build a jump table, which is a block of code // consisting of one branch instruction for each of the functions in the bit // set that branches to the target function, and redirect any taken function // addresses to the corresponding jump table entry. In the object file's // symbol table, the symbols for the target functions also refer to the jump // table entries, so that addresses taken outside the module will pass any // verification done inside the module. // // In more concrete terms, suppose we have three functions f, g, h which are // of the same type, and a function foo that returns their addresses: // // f: // mov 0, %eax // ret // // g: // mov 1, %eax // ret // // h: // mov 2, %eax // ret // // foo: // mov f, %eax // mov g, %edx // mov h, %ecx // ret // // We output the jump table as module-level inline asm string. The end result // will (conceptually) look like this: // // f = .cfi.jumptable // g = .cfi.jumptable + 4 // h = .cfi.jumptable + 8 // .cfi.jumptable: // jmp f.cfi ; 5 bytes // int3 ; 1 byte // int3 ; 1 byte // int3 ; 1 byte // jmp g.cfi ; 5 bytes // int3 ; 1 byte // int3 ; 1 byte // int3 ; 1 byte // jmp h.cfi ; 5 bytes // int3 ; 1 byte // int3 ; 1 byte // int3 ; 1 byte // // f.cfi: // mov 0, %eax // ret // // g.cfi: // mov 1, %eax // ret // // h.cfi: // mov 2, %eax // ret // // foo: // mov f, %eax // mov g, %edx // mov h, %ecx // ret // // Because the addresses of f, g, h are evenly spaced at a power of 2, in the // normal case the check can be carried out using the same kind of simple // arithmetic that we normally use for globals. // FIXME: find a better way to represent the jumptable in the IR. assert(!Functions.empty()); // Build a simple layout based on the regular layout of jump tables. DenseMap GlobalLayout; unsigned EntrySize = getJumpTableEntrySize(); for (unsigned I = 0; I != Functions.size(); ++I) GlobalLayout[Functions[I]] = I * EntrySize; Function *JumpTableFn = Function::Create(FunctionType::get(Type::getVoidTy(M.getContext()), /* IsVarArg */ false), GlobalValue::PrivateLinkage, ".cfi.jumptable", &M); ArrayType *JumpTableType = ArrayType::get(getJumpTableEntryType(), Functions.size()); auto JumpTable = ConstantExpr::getPointerCast(JumpTableFn, JumpTableType->getPointerTo(0)); lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout); // Build aliases pointing to offsets into the jump table, and replace // references to the original functions with references to the aliases. for (unsigned I = 0; I != Functions.size(); ++I) { Function *F = cast(Functions[I]->getGlobal()); Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast( ConstantExpr::getInBoundsGetElementPtr( JumpTableType, JumpTable, ArrayRef{ConstantInt::get(IntPtrTy, 0), ConstantInt::get(IntPtrTy, I)}), F->getType()); if (LinkerSubsectionsViaSymbols || F->isDeclarationForLinker()) { if (F->isWeakForLinker()) replaceWeakDeclarationWithJumpTablePtr(F, CombinedGlobalElemPtr); else F->replaceAllUsesWith(CombinedGlobalElemPtr); } else { assert(F->getType()->getAddressSpace() == 0); GlobalAlias *FAlias = GlobalAlias::create(F->getValueType(), 0, F->getLinkage(), "", CombinedGlobalElemPtr, &M); FAlias->setVisibility(F->getVisibility()); FAlias->takeName(F); if (FAlias->hasName()) F->setName(FAlias->getName() + ".cfi"); F->replaceAllUsesWith(FAlias); } if (!F->isDeclarationForLinker()) F->setLinkage(GlobalValue::InternalLinkage); } createJumpTable(JumpTableFn, Functions); } /// Assign a dummy layout using an incrementing counter, tag each function /// with its index represented as metadata, and lower each type test to an /// integer range comparison. During generation of the indirect function call /// table in the backend, it will assign the given indexes. /// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet /// been finalized. void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM( ArrayRef TypeIds, ArrayRef Functions) { assert(!Functions.empty()); // Build consecutive monotonic integer ranges for each call target set DenseMap GlobalLayout; for (GlobalTypeMember *GTM : Functions) { Function *F = cast(GTM->getGlobal()); // Skip functions that are not address taken, to avoid bloating the table if (!F->hasAddressTaken()) continue; // Store metadata with the index for each function MDNode *MD = MDNode::get(F->getContext(), ArrayRef(ConstantAsMetadata::get( ConstantInt::get(Int64Ty, IndirectIndex)))); F->setMetadata("wasm.index", MD); // Assign the counter value GlobalLayout[GTM] = IndirectIndex++; } // The indirect function table index space starts at zero, so pass a NULL // pointer as the subtracted "jump table" offset. lowerTypeTestCalls(TypeIds, ConstantPointerNull::get(Int32PtrTy), GlobalLayout); } void LowerTypeTestsModule::buildBitSetsFromDisjointSet( ArrayRef TypeIds, ArrayRef Globals) { llvm::DenseMap TypeIdIndices; for (unsigned I = 0; I != TypeIds.size(); ++I) TypeIdIndices[TypeIds[I]] = I; // For each type identifier, build a set of indices that refer to members of // the type identifier. std::vector> TypeMembers(TypeIds.size()); unsigned GlobalIndex = 0; for (GlobalTypeMember *GTM : Globals) { for (MDNode *Type : GTM->types()) { // Type = { offset, type identifier } unsigned TypeIdIndex = TypeIdIndices[Type->getOperand(1)]; TypeMembers[TypeIdIndex].insert(GlobalIndex); } GlobalIndex++; } // Order the sets of indices by size. The GlobalLayoutBuilder works best // when given small index sets first. std::stable_sort( TypeMembers.begin(), TypeMembers.end(), [](const std::set &O1, const std::set &O2) { return O1.size() < O2.size(); }); // Create a GlobalLayoutBuilder and provide it with index sets as layout // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as // close together as possible. GlobalLayoutBuilder GLB(Globals.size()); for (auto &&MemSet : TypeMembers) GLB.addFragment(MemSet); // Build the bitsets from this disjoint set. if (Globals.empty() || isa(Globals[0]->getGlobal())) { // Build a vector of global variables with the computed layout. std::vector OrderedGVs(Globals.size()); auto OGI = OrderedGVs.begin(); for (auto &&F : GLB.Fragments) { for (auto &&Offset : F) { auto GV = dyn_cast(Globals[Offset]->getGlobal()); if (!GV) report_fatal_error("Type identifier may not contain both global " "variables and functions"); *OGI++ = Globals[Offset]; } } buildBitSetsFromGlobalVariables(TypeIds, OrderedGVs); } else { // Build a vector of functions with the computed layout. std::vector OrderedFns(Globals.size()); auto OFI = OrderedFns.begin(); for (auto &&F : GLB.Fragments) { for (auto &&Offset : F) { auto Fn = dyn_cast(Globals[Offset]->getGlobal()); if (!Fn) report_fatal_error("Type identifier may not contain both global " "variables and functions"); *OFI++ = Globals[Offset]; } } buildBitSetsFromFunctions(TypeIds, OrderedFns); } } /// Lower all type tests in this module. LowerTypeTestsModule::LowerTypeTestsModule(Module &M, SummaryAction Action, ModuleSummaryIndex *Summary) : M(M), Action(Action), Summary(Summary) { // FIXME: Use these fields. (void)this->Action; (void)this->Summary; Triple TargetTriple(M.getTargetTriple()); LinkerSubsectionsViaSymbols = TargetTriple.isMacOSX(); Arch = TargetTriple.getArch(); OS = TargetTriple.getOS(); ObjectFormat = TargetTriple.getObjectFormat(); } bool LowerTypeTestsModule::runForTesting(Module &M) { ModuleSummaryIndex Summary; // Handle the command-line summary arguments. This code is for testing // purposes only, so we handle errors directly. if (!ClReadSummary.empty()) { ExitOnError ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary + ": "); auto ReadSummaryFile = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); yaml::Input In(ReadSummaryFile->getBuffer()); In >> Summary; ExitOnErr(errorCodeToError(In.error())); } bool Changed = LowerTypeTestsModule(M, ClSummaryAction, &Summary).lower(); if (!ClWriteSummary.empty()) { ExitOnError ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary + ": "); std::error_code EC; raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text); ExitOnErr(errorCodeToError(EC)); yaml::Output Out(OS); Out << Summary; } return Changed; } bool LowerTypeTestsModule::lower() { Function *TypeTestFunc = M.getFunction(Intrinsic::getName(Intrinsic::type_test)); if (!TypeTestFunc || TypeTestFunc->use_empty()) return false; // Equivalence class set containing type identifiers and the globals that // reference them. This is used to partition the set of type identifiers in // the module into disjoint sets. typedef EquivalenceClasses> GlobalClassesTy; GlobalClassesTy GlobalClasses; // Verify the type metadata and build a few data structures to let us // efficiently enumerate the type identifiers associated with a global: // a list of GlobalTypeMembers (a GlobalObject stored alongside a vector // of associated type metadata) and a mapping from type identifiers to their // list of GlobalTypeMembers and last observed index in the list of globals. // The indices will be used later to deterministically order the list of type // identifiers. BumpPtrAllocator Alloc; struct TIInfo { unsigned Index; std::vector RefGlobals; }; llvm::DenseMap TypeIdInfo; unsigned I = 0; SmallVector Types; for (GlobalObject &GO : M.global_objects()) { Types.clear(); GO.getMetadata(LLVMContext::MD_type, Types); if (Types.empty()) continue; auto *GTM = GlobalTypeMember::create(Alloc, &GO, Types); for (MDNode *Type : Types) { verifyTypeMDNode(&GO, Type); auto &Info = TypeIdInfo[cast(Type)->getOperand(1)]; Info.Index = ++I; Info.RefGlobals.push_back(GTM); } } for (const Use &U : TypeTestFunc->uses()) { auto CI = cast(U.getUser()); auto BitSetMDVal = dyn_cast(CI->getArgOperand(1)); if (!BitSetMDVal) report_fatal_error("Second argument of llvm.type.test must be metadata"); auto BitSet = BitSetMDVal->getMetadata(); // Add the call site to the list of call sites for this type identifier. We // also use TypeTestCallSites to keep track of whether we have seen this // type identifier before. If we have, we don't need to re-add the // referenced globals to the equivalence class. std::pair>::iterator, bool> Ins = TypeTestCallSites.insert( std::make_pair(BitSet, std::vector())); Ins.first->second.push_back(CI); if (!Ins.second) continue; // Add the type identifier to the equivalence class. GlobalClassesTy::iterator GCI = GlobalClasses.insert(BitSet); GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI); // Add the referenced globals to the type identifier's equivalence class. for (GlobalTypeMember *GTM : TypeIdInfo[BitSet].RefGlobals) CurSet = GlobalClasses.unionSets( CurSet, GlobalClasses.findLeader(GlobalClasses.insert(GTM))); } if (GlobalClasses.empty()) return false; // Build a list of disjoint sets ordered by their maximum global index for // determinism. std::vector> Sets; for (GlobalClassesTy::iterator I = GlobalClasses.begin(), E = GlobalClasses.end(); I != E; ++I) { if (!I->isLeader()) continue; ++NumTypeIdDisjointSets; unsigned MaxIndex = 0; for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I); MI != GlobalClasses.member_end(); ++MI) { if ((*MI).is()) MaxIndex = std::max(MaxIndex, TypeIdInfo[MI->get()].Index); } Sets.emplace_back(I, MaxIndex); } std::sort(Sets.begin(), Sets.end(), [](const std::pair &S1, const std::pair &S2) { return S1.second < S2.second; }); // For each disjoint set we found... for (const auto &S : Sets) { // Build the list of type identifiers in this disjoint set. std::vector TypeIds; std::vector Globals; for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(S.first); MI != GlobalClasses.member_end(); ++MI) { if ((*MI).is()) TypeIds.push_back(MI->get()); else Globals.push_back(MI->get()); } // Order type identifiers by global index for determinism. This ordering is // stable as there is a one-to-one mapping between metadata and indices. std::sort(TypeIds.begin(), TypeIds.end(), [&](Metadata *M1, Metadata *M2) { return TypeIdInfo[M1].Index < TypeIdInfo[M2].Index; }); // Build bitsets for this disjoint set. buildBitSetsFromDisjointSet(TypeIds, Globals); } allocateByteArrays(); return true; } PreservedAnalyses LowerTypeTestsPass::run(Module &M, ModuleAnalysisManager &AM) { bool Changed = LowerTypeTestsModule(M, SummaryAction::None, /*Summary=*/nullptr).lower(); if (!Changed) return PreservedAnalyses::all(); return PreservedAnalyses::none(); }