//===- InstCombineCalls.cpp -----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the visitCall and visitInvoke functions. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/None.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constant.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SimplifyLibCalls.h" #include #include #include #include #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "instcombine" STATISTIC(NumSimplified, "Number of library calls simplified"); static cl::opt UnfoldElementAtomicMemcpyMaxElements( "unfold-element-atomic-memcpy-max-elements", cl::init(16), cl::desc("Maximum number of elements in atomic memcpy the optimizer is " "allowed to unfold")); /// Return the specified type promoted as it would be to pass though a va_arg /// area. static Type *getPromotedType(Type *Ty) { if (IntegerType* ITy = dyn_cast(Ty)) { if (ITy->getBitWidth() < 32) return Type::getInt32Ty(Ty->getContext()); } return Ty; } /// Return a constant boolean vector that has true elements in all positions /// where the input constant data vector has an element with the sign bit set. static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) { SmallVector BoolVec; IntegerType *BoolTy = Type::getInt1Ty(V->getContext()); for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) { Constant *Elt = V->getElementAsConstant(I); assert((isa(Elt) || isa(Elt)) && "Unexpected constant data vector element type"); bool Sign = V->getElementType()->isIntegerTy() ? cast(Elt)->isNegative() : cast(Elt)->isNegative(); BoolVec.push_back(ConstantInt::get(BoolTy, Sign)); } return ConstantVector::get(BoolVec); } Instruction *InstCombiner::SimplifyElementUnorderedAtomicMemCpy( ElementUnorderedAtomicMemCpyInst *AMI) { // Try to unfold this intrinsic into sequence of explicit atomic loads and // stores. // First check that number of elements is compile time constant. auto *LengthCI = dyn_cast(AMI->getLength()); if (!LengthCI) return nullptr; // Check that there are not too many elements. uint64_t LengthInBytes = LengthCI->getZExtValue(); uint32_t ElementSizeInBytes = AMI->getElementSizeInBytes(); uint64_t NumElements = LengthInBytes / ElementSizeInBytes; if (NumElements >= UnfoldElementAtomicMemcpyMaxElements) return nullptr; // Only expand if there are elements to copy. if (NumElements > 0) { // Don't unfold into illegal integers uint64_t ElementSizeInBits = ElementSizeInBytes * 8; if (!getDataLayout().isLegalInteger(ElementSizeInBits)) return nullptr; // Cast source and destination to the correct type. Intrinsic input // arguments are usually represented as i8*. Often operands will be // explicitly casted to i8* and we can just strip those casts instead of // inserting new ones. However it's easier to rely on other InstCombine // rules which will cover trivial cases anyway. Value *Src = AMI->getRawSource(); Value *Dst = AMI->getRawDest(); Type *ElementPointerType = Type::getIntNPtrTy(AMI->getContext(), ElementSizeInBits, Src->getType()->getPointerAddressSpace()); Value *SrcCasted = Builder->CreatePointerCast(Src, ElementPointerType, "memcpy_unfold.src_casted"); Value *DstCasted = Builder->CreatePointerCast(Dst, ElementPointerType, "memcpy_unfold.dst_casted"); for (uint64_t i = 0; i < NumElements; ++i) { // Get current element addresses ConstantInt *ElementIdxCI = ConstantInt::get(AMI->getContext(), APInt(64, i)); Value *SrcElementAddr = Builder->CreateGEP(SrcCasted, ElementIdxCI, "memcpy_unfold.src_addr"); Value *DstElementAddr = Builder->CreateGEP(DstCasted, ElementIdxCI, "memcpy_unfold.dst_addr"); // Load from the source. Transfer alignment information and mark load as // unordered atomic. LoadInst *Load = Builder->CreateLoad(SrcElementAddr, "memcpy_unfold.val"); Load->setOrdering(AtomicOrdering::Unordered); // We know alignment of the first element. It is also guaranteed by the // verifier that element size is less or equal than first element // alignment and both of this values are powers of two. This means that // all subsequent accesses are at least element size aligned. // TODO: We can infer better alignment but there is no evidence that this // will matter. Load->setAlignment(i == 0 ? AMI->getParamAlignment(1) : ElementSizeInBytes); Load->setDebugLoc(AMI->getDebugLoc()); // Store loaded value via unordered atomic store. StoreInst *Store = Builder->CreateStore(Load, DstElementAddr); Store->setOrdering(AtomicOrdering::Unordered); Store->setAlignment(i == 0 ? AMI->getParamAlignment(0) : ElementSizeInBytes); Store->setDebugLoc(AMI->getDebugLoc()); } } // Set the number of elements of the copy to 0, it will be deleted on the // next iteration. AMI->setLength(Constant::getNullValue(LengthCI->getType())); return AMI; } Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, &AC, &DT); unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, &AC, &DT); unsigned MinAlign = std::min(DstAlign, SrcAlign); unsigned CopyAlign = MI->getAlignment(); if (CopyAlign < MinAlign) { MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false)); return MI; } // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with // load/store. ConstantInt *MemOpLength = dyn_cast(MI->getArgOperand(2)); if (!MemOpLength) return nullptr; // Source and destination pointer types are always "i8*" for intrinsic. See // if the size is something we can handle with a single primitive load/store. // A single load+store correctly handles overlapping memory in the memmove // case. uint64_t Size = MemOpLength->getLimitedValue(); assert(Size && "0-sized memory transferring should be removed already."); if (Size > 8 || (Size&(Size-1))) return nullptr; // If not 1/2/4/8 bytes, exit. // Use an integer load+store unless we can find something better. unsigned SrcAddrSp = cast(MI->getArgOperand(1)->getType())->getAddressSpace(); unsigned DstAddrSp = cast(MI->getArgOperand(0)->getType())->getAddressSpace(); IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); // If the memcpy has metadata describing the members, see if we can get the // TBAA tag describing our copy. MDNode *CopyMD = nullptr; if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { if (M->getNumOperands() == 3 && M->getOperand(0) && mdconst::hasa(M->getOperand(0)) && mdconst::extract(M->getOperand(0))->isNullValue() && M->getOperand(1) && mdconst::hasa(M->getOperand(1)) && mdconst::extract(M->getOperand(1))->getValue() == Size && M->getOperand(2) && isa(M->getOperand(2))) CopyMD = cast(M->getOperand(2)); } // If the memcpy/memmove provides better alignment info than we can // infer, use it. SrcAlign = std::max(SrcAlign, CopyAlign); DstAlign = std::max(DstAlign, CopyAlign); Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile()); L->setAlignment(SrcAlign); if (CopyMD) L->setMetadata(LLVMContext::MD_tbaa, CopyMD); MDNode *LoopMemParallelMD = MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); if (LoopMemParallelMD) L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile()); S->setAlignment(DstAlign); if (CopyMD) S->setMetadata(LLVMContext::MD_tbaa, CopyMD); if (LoopMemParallelMD) S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType())); return MI; } Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); if (MI->getAlignment() < Alignment) { MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Alignment, false)); return MI; } // Extract the length and alignment and fill if they are constant. ConstantInt *LenC = dyn_cast(MI->getLength()); ConstantInt *FillC = dyn_cast(MI->getValue()); if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) return nullptr; uint64_t Len = LenC->getLimitedValue(); Alignment = MI->getAlignment(); assert(Len && "0-sized memory setting should be removed already."); // memset(s,c,n) -> store s, c (for n=1,2,4,8) if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. Value *Dest = MI->getDest(); unsigned DstAddrSp = cast(Dest->getType())->getAddressSpace(); Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); Dest = Builder->CreateBitCast(Dest, NewDstPtrTy); // Alignment 0 is identity for alignment 1 for memset, but not store. if (Alignment == 0) Alignment = 1; // Extract the fill value and store. uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest, MI->isVolatile()); S->setAlignment(Alignment); // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setLength(Constant::getNullValue(LenC->getType())); return MI; } return nullptr; } static Value *simplifyX86immShift(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { bool LogicalShift = false; bool ShiftLeft = false; switch (II.getIntrinsicID()) { default: llvm_unreachable("Unexpected intrinsic!"); case Intrinsic::x86_sse2_psra_d: case Intrinsic::x86_sse2_psra_w: case Intrinsic::x86_sse2_psrai_d: case Intrinsic::x86_sse2_psrai_w: case Intrinsic::x86_avx2_psra_d: case Intrinsic::x86_avx2_psra_w: case Intrinsic::x86_avx2_psrai_d: case Intrinsic::x86_avx2_psrai_w: case Intrinsic::x86_avx512_psra_q_128: case Intrinsic::x86_avx512_psrai_q_128: case Intrinsic::x86_avx512_psra_q_256: case Intrinsic::x86_avx512_psrai_q_256: case Intrinsic::x86_avx512_psra_d_512: case Intrinsic::x86_avx512_psra_q_512: case Intrinsic::x86_avx512_psra_w_512: case Intrinsic::x86_avx512_psrai_d_512: case Intrinsic::x86_avx512_psrai_q_512: case Intrinsic::x86_avx512_psrai_w_512: LogicalShift = false; ShiftLeft = false; break; case Intrinsic::x86_sse2_psrl_d: case Intrinsic::x86_sse2_psrl_q: case Intrinsic::x86_sse2_psrl_w: case Intrinsic::x86_sse2_psrli_d: case Intrinsic::x86_sse2_psrli_q: case Intrinsic::x86_sse2_psrli_w: case Intrinsic::x86_avx2_psrl_d: case Intrinsic::x86_avx2_psrl_q: case Intrinsic::x86_avx2_psrl_w: case Intrinsic::x86_avx2_psrli_d: case Intrinsic::x86_avx2_psrli_q: case Intrinsic::x86_avx2_psrli_w: case Intrinsic::x86_avx512_psrl_d_512: case Intrinsic::x86_avx512_psrl_q_512: case Intrinsic::x86_avx512_psrl_w_512: case Intrinsic::x86_avx512_psrli_d_512: case Intrinsic::x86_avx512_psrli_q_512: case Intrinsic::x86_avx512_psrli_w_512: LogicalShift = true; ShiftLeft = false; break; case Intrinsic::x86_sse2_psll_d: case Intrinsic::x86_sse2_psll_q: case Intrinsic::x86_sse2_psll_w: case Intrinsic::x86_sse2_pslli_d: case Intrinsic::x86_sse2_pslli_q: case Intrinsic::x86_sse2_pslli_w: case Intrinsic::x86_avx2_psll_d: case Intrinsic::x86_avx2_psll_q: case Intrinsic::x86_avx2_psll_w: case Intrinsic::x86_avx2_pslli_d: case Intrinsic::x86_avx2_pslli_q: case Intrinsic::x86_avx2_pslli_w: case Intrinsic::x86_avx512_psll_d_512: case Intrinsic::x86_avx512_psll_q_512: case Intrinsic::x86_avx512_psll_w_512: case Intrinsic::x86_avx512_pslli_d_512: case Intrinsic::x86_avx512_pslli_q_512: case Intrinsic::x86_avx512_pslli_w_512: LogicalShift = true; ShiftLeft = true; break; } assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); // Simplify if count is constant. auto Arg1 = II.getArgOperand(1); auto CAZ = dyn_cast(Arg1); auto CDV = dyn_cast(Arg1); auto CInt = dyn_cast(Arg1); if (!CAZ && !CDV && !CInt) return nullptr; APInt Count(64, 0); if (CDV) { // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector // operand to compute the shift amount. auto VT = cast(CDV->getType()); unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits(); assert((64 % BitWidth) == 0 && "Unexpected packed shift size"); unsigned NumSubElts = 64 / BitWidth; // Concatenate the sub-elements to create the 64-bit value. for (unsigned i = 0; i != NumSubElts; ++i) { unsigned SubEltIdx = (NumSubElts - 1) - i; auto SubElt = cast(CDV->getElementAsConstant(SubEltIdx)); Count <<= BitWidth; Count |= SubElt->getValue().zextOrTrunc(64); } } else if (CInt) Count = CInt->getValue(); auto Vec = II.getArgOperand(0); auto VT = cast(Vec->getType()); auto SVT = VT->getElementType(); unsigned VWidth = VT->getNumElements(); unsigned BitWidth = SVT->getPrimitiveSizeInBits(); // If shift-by-zero then just return the original value. if (Count.isNullValue()) return Vec; // Handle cases when Shift >= BitWidth. if (Count.uge(BitWidth)) { // If LogicalShift - just return zero. if (LogicalShift) return ConstantAggregateZero::get(VT); // If ArithmeticShift - clamp Shift to (BitWidth - 1). Count = APInt(64, BitWidth - 1); } // Get a constant vector of the same type as the first operand. auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth)); auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt); if (ShiftLeft) return Builder.CreateShl(Vec, ShiftVec); if (LogicalShift) return Builder.CreateLShr(Vec, ShiftVec); return Builder.CreateAShr(Vec, ShiftVec); } // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift. // Unlike the generic IR shifts, the intrinsics have defined behaviour for out // of range shift amounts (logical - set to zero, arithmetic - splat sign bit). static Value *simplifyX86varShift(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { bool LogicalShift = false; bool ShiftLeft = false; switch (II.getIntrinsicID()) { default: llvm_unreachable("Unexpected intrinsic!"); case Intrinsic::x86_avx2_psrav_d: case Intrinsic::x86_avx2_psrav_d_256: case Intrinsic::x86_avx512_psrav_q_128: case Intrinsic::x86_avx512_psrav_q_256: case Intrinsic::x86_avx512_psrav_d_512: case Intrinsic::x86_avx512_psrav_q_512: case Intrinsic::x86_avx512_psrav_w_128: case Intrinsic::x86_avx512_psrav_w_256: case Intrinsic::x86_avx512_psrav_w_512: LogicalShift = false; ShiftLeft = false; break; case Intrinsic::x86_avx2_psrlv_d: case Intrinsic::x86_avx2_psrlv_d_256: case Intrinsic::x86_avx2_psrlv_q: case Intrinsic::x86_avx2_psrlv_q_256: case Intrinsic::x86_avx512_psrlv_d_512: case Intrinsic::x86_avx512_psrlv_q_512: case Intrinsic::x86_avx512_psrlv_w_128: case Intrinsic::x86_avx512_psrlv_w_256: case Intrinsic::x86_avx512_psrlv_w_512: LogicalShift = true; ShiftLeft = false; break; case Intrinsic::x86_avx2_psllv_d: case Intrinsic::x86_avx2_psllv_d_256: case Intrinsic::x86_avx2_psllv_q: case Intrinsic::x86_avx2_psllv_q_256: case Intrinsic::x86_avx512_psllv_d_512: case Intrinsic::x86_avx512_psllv_q_512: case Intrinsic::x86_avx512_psllv_w_128: case Intrinsic::x86_avx512_psllv_w_256: case Intrinsic::x86_avx512_psllv_w_512: LogicalShift = true; ShiftLeft = true; break; } assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); // Simplify if all shift amounts are constant/undef. auto *CShift = dyn_cast(II.getArgOperand(1)); if (!CShift) return nullptr; auto Vec = II.getArgOperand(0); auto VT = cast(II.getType()); auto SVT = VT->getVectorElementType(); int NumElts = VT->getNumElements(); int BitWidth = SVT->getIntegerBitWidth(); // Collect each element's shift amount. // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth. bool AnyOutOfRange = false; SmallVector ShiftAmts; for (int I = 0; I < NumElts; ++I) { auto *CElt = CShift->getAggregateElement(I); if (CElt && isa(CElt)) { ShiftAmts.push_back(-1); continue; } auto *COp = dyn_cast_or_null(CElt); if (!COp) return nullptr; // Handle out of range shifts. // If LogicalShift - set to BitWidth (special case). // If ArithmeticShift - set to (BitWidth - 1) (sign splat). APInt ShiftVal = COp->getValue(); if (ShiftVal.uge(BitWidth)) { AnyOutOfRange = LogicalShift; ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1); continue; } ShiftAmts.push_back((int)ShiftVal.getZExtValue()); } // If all elements out of range or UNDEF, return vector of zeros/undefs. // ArithmeticShift should only hit this if they are all UNDEF. auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); }; if (all_of(ShiftAmts, OutOfRange)) { SmallVector ConstantVec; for (int Idx : ShiftAmts) { if (Idx < 0) { ConstantVec.push_back(UndefValue::get(SVT)); } else { assert(LogicalShift && "Logical shift expected"); ConstantVec.push_back(ConstantInt::getNullValue(SVT)); } } return ConstantVector::get(ConstantVec); } // We can't handle only some out of range values with generic logical shifts. if (AnyOutOfRange) return nullptr; // Build the shift amount constant vector. SmallVector ShiftVecAmts; for (int Idx : ShiftAmts) { if (Idx < 0) ShiftVecAmts.push_back(UndefValue::get(SVT)); else ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx)); } auto ShiftVec = ConstantVector::get(ShiftVecAmts); if (ShiftLeft) return Builder.CreateShl(Vec, ShiftVec); if (LogicalShift) return Builder.CreateLShr(Vec, ShiftVec); return Builder.CreateAShr(Vec, ShiftVec); } static Value *simplifyX86muldq(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { Value *Arg0 = II.getArgOperand(0); Value *Arg1 = II.getArgOperand(1); Type *ResTy = II.getType(); assert(Arg0->getType()->getScalarSizeInBits() == 32 && Arg1->getType()->getScalarSizeInBits() == 32 && ResTy->getScalarSizeInBits() == 64 && "Unexpected muldq/muludq types"); // muldq/muludq(undef, undef) -> zero (matches generic mul behavior) if (isa(Arg0) || isa(Arg1)) return ConstantAggregateZero::get(ResTy); // Constant folding. // PMULDQ = (mul(vXi64 sext(shuffle<0,2,..>(Arg0)), // vXi64 sext(shuffle<0,2,..>(Arg1)))) // PMULUDQ = (mul(vXi64 zext(shuffle<0,2,..>(Arg0)), // vXi64 zext(shuffle<0,2,..>(Arg1)))) if (!isa(Arg0) || !isa(Arg1)) return nullptr; unsigned NumElts = ResTy->getVectorNumElements(); assert(Arg0->getType()->getVectorNumElements() == (2 * NumElts) && Arg1->getType()->getVectorNumElements() == (2 * NumElts) && "Unexpected muldq/muludq types"); unsigned IntrinsicID = II.getIntrinsicID(); bool IsSigned = (Intrinsic::x86_sse41_pmuldq == IntrinsicID || Intrinsic::x86_avx2_pmul_dq == IntrinsicID || Intrinsic::x86_avx512_pmul_dq_512 == IntrinsicID); SmallVector ShuffleMask; for (unsigned i = 0; i != NumElts; ++i) ShuffleMask.push_back(i * 2); auto *LHS = Builder.CreateShuffleVector(Arg0, Arg0, ShuffleMask); auto *RHS = Builder.CreateShuffleVector(Arg1, Arg1, ShuffleMask); if (IsSigned) { LHS = Builder.CreateSExt(LHS, ResTy); RHS = Builder.CreateSExt(RHS, ResTy); } else { LHS = Builder.CreateZExt(LHS, ResTy); RHS = Builder.CreateZExt(RHS, ResTy); } return Builder.CreateMul(LHS, RHS); } static Value *simplifyX86pack(IntrinsicInst &II, InstCombiner &IC, InstCombiner::BuilderTy &Builder, bool IsSigned) { Value *Arg0 = II.getArgOperand(0); Value *Arg1 = II.getArgOperand(1); Type *ResTy = II.getType(); // Fast all undef handling. if (isa(Arg0) && isa(Arg1)) return UndefValue::get(ResTy); Type *ArgTy = Arg0->getType(); unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128; unsigned NumDstElts = ResTy->getVectorNumElements(); unsigned NumSrcElts = ArgTy->getVectorNumElements(); assert(NumDstElts == (2 * NumSrcElts) && "Unexpected packing types"); unsigned NumDstEltsPerLane = NumDstElts / NumLanes; unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes; unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits(); assert(ArgTy->getScalarSizeInBits() == (2 * DstScalarSizeInBits) && "Unexpected packing types"); // Constant folding. auto *Cst0 = dyn_cast(Arg0); auto *Cst1 = dyn_cast(Arg1); if (!Cst0 || !Cst1) return nullptr; SmallVector Vals; for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) { unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane; auto *Cst = (Elt >= NumSrcEltsPerLane) ? Cst1 : Cst0; auto *COp = Cst->getAggregateElement(SrcIdx); if (COp && isa(COp)) { Vals.push_back(UndefValue::get(ResTy->getScalarType())); continue; } auto *CInt = dyn_cast_or_null(COp); if (!CInt) return nullptr; APInt Val = CInt->getValue(); assert(Val.getBitWidth() == ArgTy->getScalarSizeInBits() && "Unexpected constant bitwidth"); if (IsSigned) { // PACKSS: Truncate signed value with signed saturation. // Source values less than dst minint are saturated to minint. // Source values greater than dst maxint are saturated to maxint. if (Val.isSignedIntN(DstScalarSizeInBits)) Val = Val.trunc(DstScalarSizeInBits); else if (Val.isNegative()) Val = APInt::getSignedMinValue(DstScalarSizeInBits); else Val = APInt::getSignedMaxValue(DstScalarSizeInBits); } else { // PACKUS: Truncate signed value with unsigned saturation. // Source values less than zero are saturated to zero. // Source values greater than dst maxuint are saturated to maxuint. if (Val.isIntN(DstScalarSizeInBits)) Val = Val.trunc(DstScalarSizeInBits); else if (Val.isNegative()) Val = APInt::getNullValue(DstScalarSizeInBits); else Val = APInt::getAllOnesValue(DstScalarSizeInBits); } Vals.push_back(ConstantInt::get(ResTy->getScalarType(), Val)); } } return ConstantVector::get(Vals); } static Value *simplifyX86movmsk(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { Value *Arg = II.getArgOperand(0); Type *ResTy = II.getType(); Type *ArgTy = Arg->getType(); // movmsk(undef) -> zero as we must ensure the upper bits are zero. if (isa(Arg)) return Constant::getNullValue(ResTy); // We can't easily peek through x86_mmx types. if (!ArgTy->isVectorTy()) return nullptr; auto *C = dyn_cast(Arg); if (!C) return nullptr; // Extract signbits of the vector input and pack into integer result. APInt Result(ResTy->getPrimitiveSizeInBits(), 0); for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) { auto *COp = C->getAggregateElement(I); if (!COp) return nullptr; if (isa(COp)) continue; auto *CInt = dyn_cast(COp); auto *CFp = dyn_cast(COp); if (!CInt && !CFp) return nullptr; if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative())) Result.setBit(I); } return Constant::getIntegerValue(ResTy, Result); } static Value *simplifyX86insertps(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { auto *CInt = dyn_cast(II.getArgOperand(2)); if (!CInt) return nullptr; VectorType *VecTy = cast(II.getType()); assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type"); // The immediate permute control byte looks like this: // [3:0] - zero mask for each 32-bit lane // [5:4] - select one 32-bit destination lane // [7:6] - select one 32-bit source lane uint8_t Imm = CInt->getZExtValue(); uint8_t ZMask = Imm & 0xf; uint8_t DestLane = (Imm >> 4) & 0x3; uint8_t SourceLane = (Imm >> 6) & 0x3; ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); // If all zero mask bits are set, this was just a weird way to // generate a zero vector. if (ZMask == 0xf) return ZeroVector; // Initialize by passing all of the first source bits through. uint32_t ShuffleMask[4] = { 0, 1, 2, 3 }; // We may replace the second operand with the zero vector. Value *V1 = II.getArgOperand(1); if (ZMask) { // If the zero mask is being used with a single input or the zero mask // overrides the destination lane, this is a shuffle with the zero vector. if ((II.getArgOperand(0) == II.getArgOperand(1)) || (ZMask & (1 << DestLane))) { V1 = ZeroVector; // We may still move 32-bits of the first source vector from one lane // to another. ShuffleMask[DestLane] = SourceLane; // The zero mask may override the previous insert operation. for (unsigned i = 0; i < 4; ++i) if ((ZMask >> i) & 0x1) ShuffleMask[i] = i + 4; } else { // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle? return nullptr; } } else { // Replace the selected destination lane with the selected source lane. ShuffleMask[DestLane] = SourceLane + 4; } return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask); } /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding /// or conversion to a shuffle vector. static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0, ConstantInt *CILength, ConstantInt *CIIndex, InstCombiner::BuilderTy &Builder) { auto LowConstantHighUndef = [&](uint64_t Val) { Type *IntTy64 = Type::getInt64Ty(II.getContext()); Constant *Args[] = {ConstantInt::get(IntTy64, Val), UndefValue::get(IntTy64)}; return ConstantVector::get(Args); }; // See if we're dealing with constant values. Constant *C0 = dyn_cast(Op0); ConstantInt *CI0 = C0 ? dyn_cast_or_null(C0->getAggregateElement((unsigned)0)) : nullptr; // Attempt to constant fold. if (CILength && CIIndex) { // From AMD documentation: "The bit index and field length are each six // bits in length other bits of the field are ignored." APInt APIndex = CIIndex->getValue().zextOrTrunc(6); APInt APLength = CILength->getValue().zextOrTrunc(6); unsigned Index = APIndex.getZExtValue(); // From AMD documentation: "a value of zero in the field length is // defined as length of 64". unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); // From AMD documentation: "If the sum of the bit index + length field // is greater than 64, the results are undefined". unsigned End = Index + Length; // Note that both field index and field length are 8-bit quantities. // Since variables 'Index' and 'Length' are unsigned values // obtained from zero-extending field index and field length // respectively, their sum should never wrap around. if (End > 64) return UndefValue::get(II.getType()); // If we are inserting whole bytes, we can convert this to a shuffle. // Lowering can recognize EXTRQI shuffle masks. if ((Length % 8) == 0 && (Index % 8) == 0) { // Convert bit indices to byte indices. Length /= 8; Index /= 8; Type *IntTy8 = Type::getInt8Ty(II.getContext()); Type *IntTy32 = Type::getInt32Ty(II.getContext()); VectorType *ShufTy = VectorType::get(IntTy8, 16); SmallVector ShuffleMask; for (int i = 0; i != (int)Length; ++i) ShuffleMask.push_back( Constant::getIntegerValue(IntTy32, APInt(32, i + Index))); for (int i = Length; i != 8; ++i) ShuffleMask.push_back( Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); for (int i = 8; i != 16; ++i) ShuffleMask.push_back(UndefValue::get(IntTy32)); Value *SV = Builder.CreateShuffleVector( Builder.CreateBitCast(Op0, ShufTy), ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask)); return Builder.CreateBitCast(SV, II.getType()); } // Constant Fold - shift Index'th bit to lowest position and mask off // Length bits. if (CI0) { APInt Elt = CI0->getValue(); Elt.lshrInPlace(Index); Elt = Elt.zextOrTrunc(Length); return LowConstantHighUndef(Elt.getZExtValue()); } // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI. if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) { Value *Args[] = {Op0, CILength, CIIndex}; Module *M = II.getModule(); Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi); return Builder.CreateCall(F, Args); } } // Constant Fold - extraction from zero is always {zero, undef}. if (CI0 && CI0->equalsInt(0)) return LowConstantHighUndef(0); return nullptr; } /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant /// folding or conversion to a shuffle vector. static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1, APInt APLength, APInt APIndex, InstCombiner::BuilderTy &Builder) { // From AMD documentation: "The bit index and field length are each six bits // in length other bits of the field are ignored." APIndex = APIndex.zextOrTrunc(6); APLength = APLength.zextOrTrunc(6); // Attempt to constant fold. unsigned Index = APIndex.getZExtValue(); // From AMD documentation: "a value of zero in the field length is // defined as length of 64". unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); // From AMD documentation: "If the sum of the bit index + length field // is greater than 64, the results are undefined". unsigned End = Index + Length; // Note that both field index and field length are 8-bit quantities. // Since variables 'Index' and 'Length' are unsigned values // obtained from zero-extending field index and field length // respectively, their sum should never wrap around. if (End > 64) return UndefValue::get(II.getType()); // If we are inserting whole bytes, we can convert this to a shuffle. // Lowering can recognize INSERTQI shuffle masks. if ((Length % 8) == 0 && (Index % 8) == 0) { // Convert bit indices to byte indices. Length /= 8; Index /= 8; Type *IntTy8 = Type::getInt8Ty(II.getContext()); Type *IntTy32 = Type::getInt32Ty(II.getContext()); VectorType *ShufTy = VectorType::get(IntTy8, 16); SmallVector ShuffleMask; for (int i = 0; i != (int)Index; ++i) ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); for (int i = 0; i != (int)Length; ++i) ShuffleMask.push_back( Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); for (int i = Index + Length; i != 8; ++i) ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); for (int i = 8; i != 16; ++i) ShuffleMask.push_back(UndefValue::get(IntTy32)); Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy), Builder.CreateBitCast(Op1, ShufTy), ConstantVector::get(ShuffleMask)); return Builder.CreateBitCast(SV, II.getType()); } // See if we're dealing with constant values. Constant *C0 = dyn_cast(Op0); Constant *C1 = dyn_cast(Op1); ConstantInt *CI00 = C0 ? dyn_cast_or_null(C0->getAggregateElement((unsigned)0)) : nullptr; ConstantInt *CI10 = C1 ? dyn_cast_or_null(C1->getAggregateElement((unsigned)0)) : nullptr; // Constant Fold - insert bottom Length bits starting at the Index'th bit. if (CI00 && CI10) { APInt V00 = CI00->getValue(); APInt V10 = CI10->getValue(); APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index); V00 = V00 & ~Mask; V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index); APInt Val = V00 | V10; Type *IntTy64 = Type::getInt64Ty(II.getContext()); Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()), UndefValue::get(IntTy64)}; return ConstantVector::get(Args); } // If we were an INSERTQ call, we'll save demanded elements if we convert to // INSERTQI. if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) { Type *IntTy8 = Type::getInt8Ty(II.getContext()); Constant *CILength = ConstantInt::get(IntTy8, Length, false); Constant *CIIndex = ConstantInt::get(IntTy8, Index, false); Value *Args[] = {Op0, Op1, CILength, CIIndex}; Module *M = II.getModule(); Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi); return Builder.CreateCall(F, Args); } return nullptr; } /// Attempt to convert pshufb* to shufflevector if the mask is constant. static Value *simplifyX86pshufb(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { Constant *V = dyn_cast(II.getArgOperand(1)); if (!V) return nullptr; auto *VecTy = cast(II.getType()); auto *MaskEltTy = Type::getInt32Ty(II.getContext()); unsigned NumElts = VecTy->getNumElements(); assert((NumElts == 16 || NumElts == 32 || NumElts == 64) && "Unexpected number of elements in shuffle mask!"); // Construct a shuffle mask from constant integers or UNDEFs. Constant *Indexes[64] = {nullptr}; // Each byte in the shuffle control mask forms an index to permute the // corresponding byte in the destination operand. for (unsigned I = 0; I < NumElts; ++I) { Constant *COp = V->getAggregateElement(I); if (!COp || (!isa(COp) && !isa(COp))) return nullptr; if (isa(COp)) { Indexes[I] = UndefValue::get(MaskEltTy); continue; } int8_t Index = cast(COp)->getValue().getZExtValue(); // If the most significant bit (bit[7]) of each byte of the shuffle // control mask is set, then zero is written in the result byte. // The zero vector is in the right-hand side of the resulting // shufflevector. // The value of each index for the high 128-bit lane is the least // significant 4 bits of the respective shuffle control byte. Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0); Indexes[I] = ConstantInt::get(MaskEltTy, Index); } auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); auto V1 = II.getArgOperand(0); auto V2 = Constant::getNullValue(VecTy); return Builder.CreateShuffleVector(V1, V2, ShuffleMask); } /// Attempt to convert vpermilvar* to shufflevector if the mask is constant. static Value *simplifyX86vpermilvar(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { Constant *V = dyn_cast(II.getArgOperand(1)); if (!V) return nullptr; auto *VecTy = cast(II.getType()); auto *MaskEltTy = Type::getInt32Ty(II.getContext()); unsigned NumElts = VecTy->getVectorNumElements(); bool IsPD = VecTy->getScalarType()->isDoubleTy(); unsigned NumLaneElts = IsPD ? 2 : 4; assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2); // Construct a shuffle mask from constant integers or UNDEFs. Constant *Indexes[16] = {nullptr}; // The intrinsics only read one or two bits, clear the rest. for (unsigned I = 0; I < NumElts; ++I) { Constant *COp = V->getAggregateElement(I); if (!COp || (!isa(COp) && !isa(COp))) return nullptr; if (isa(COp)) { Indexes[I] = UndefValue::get(MaskEltTy); continue; } APInt Index = cast(COp)->getValue(); Index = Index.zextOrTrunc(32).getLoBits(2); // The PD variants uses bit 1 to select per-lane element index, so // shift down to convert to generic shuffle mask index. if (IsPD) Index.lshrInPlace(1); // The _256 variants are a bit trickier since the mask bits always index // into the corresponding 128 half. In order to convert to a generic // shuffle, we have to make that explicit. Index += APInt(32, (I / NumLaneElts) * NumLaneElts); Indexes[I] = ConstantInt::get(MaskEltTy, Index); } auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); auto V1 = II.getArgOperand(0); auto V2 = UndefValue::get(V1->getType()); return Builder.CreateShuffleVector(V1, V2, ShuffleMask); } /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant. static Value *simplifyX86vpermv(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { auto *V = dyn_cast(II.getArgOperand(1)); if (!V) return nullptr; auto *VecTy = cast(II.getType()); auto *MaskEltTy = Type::getInt32Ty(II.getContext()); unsigned Size = VecTy->getNumElements(); assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) && "Unexpected shuffle mask size"); // Construct a shuffle mask from constant integers or UNDEFs. Constant *Indexes[64] = {nullptr}; for (unsigned I = 0; I < Size; ++I) { Constant *COp = V->getAggregateElement(I); if (!COp || (!isa(COp) && !isa(COp))) return nullptr; if (isa(COp)) { Indexes[I] = UndefValue::get(MaskEltTy); continue; } uint32_t Index = cast(COp)->getZExtValue(); Index &= Size - 1; Indexes[I] = ConstantInt::get(MaskEltTy, Index); } auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size)); auto V1 = II.getArgOperand(0); auto V2 = UndefValue::get(VecTy); return Builder.CreateShuffleVector(V1, V2, ShuffleMask); } /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit /// source vectors, unless a zero bit is set. If a zero bit is set, /// then ignore that half of the mask and clear that half of the vector. static Value *simplifyX86vperm2(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { auto *CInt = dyn_cast(II.getArgOperand(2)); if (!CInt) return nullptr; VectorType *VecTy = cast(II.getType()); ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); // The immediate permute control byte looks like this: // [1:0] - select 128 bits from sources for low half of destination // [2] - ignore // [3] - zero low half of destination // [5:4] - select 128 bits from sources for high half of destination // [6] - ignore // [7] - zero high half of destination uint8_t Imm = CInt->getZExtValue(); bool LowHalfZero = Imm & 0x08; bool HighHalfZero = Imm & 0x80; // If both zero mask bits are set, this was just a weird way to // generate a zero vector. if (LowHalfZero && HighHalfZero) return ZeroVector; // If 0 or 1 zero mask bits are set, this is a simple shuffle. unsigned NumElts = VecTy->getNumElements(); unsigned HalfSize = NumElts / 2; SmallVector ShuffleMask(NumElts); // The high bit of the selection field chooses the 1st or 2nd operand. bool LowInputSelect = Imm & 0x02; bool HighInputSelect = Imm & 0x20; // The low bit of the selection field chooses the low or high half // of the selected operand. bool LowHalfSelect = Imm & 0x01; bool HighHalfSelect = Imm & 0x10; // Determine which operand(s) are actually in use for this instruction. Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0); Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0); // If needed, replace operands based on zero mask. V0 = LowHalfZero ? ZeroVector : V0; V1 = HighHalfZero ? ZeroVector : V1; // Permute low half of result. unsigned StartIndex = LowHalfSelect ? HalfSize : 0; for (unsigned i = 0; i < HalfSize; ++i) ShuffleMask[i] = StartIndex + i; // Permute high half of result. StartIndex = HighHalfSelect ? HalfSize : 0; StartIndex += NumElts; for (unsigned i = 0; i < HalfSize; ++i) ShuffleMask[i + HalfSize] = StartIndex + i; return Builder.CreateShuffleVector(V0, V1, ShuffleMask); } /// Decode XOP integer vector comparison intrinsics. static Value *simplifyX86vpcom(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder, bool IsSigned) { if (auto *CInt = dyn_cast(II.getArgOperand(2))) { uint64_t Imm = CInt->getZExtValue() & 0x7; VectorType *VecTy = cast(II.getType()); CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; switch (Imm) { case 0x0: Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; case 0x1: Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; case 0x2: Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; case 0x3: Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; case 0x4: Pred = ICmpInst::ICMP_EQ; break; case 0x5: Pred = ICmpInst::ICMP_NE; break; case 0x6: return ConstantInt::getSigned(VecTy, 0); // FALSE case 0x7: return ConstantInt::getSigned(VecTy, -1); // TRUE } if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0), II.getArgOperand(1))) return Builder.CreateSExtOrTrunc(Cmp, VecTy); } return nullptr; } // Emit a select instruction and appropriate bitcasts to help simplify // masked intrinsics. static Value *emitX86MaskSelect(Value *Mask, Value *Op0, Value *Op1, InstCombiner::BuilderTy &Builder) { unsigned VWidth = Op0->getType()->getVectorNumElements(); // If the mask is all ones we don't need the select. But we need to check // only the bit thats will be used in case VWidth is less than 8. if (auto *C = dyn_cast(Mask)) if (C->getValue().zextOrTrunc(VWidth).isAllOnesValue()) return Op0; auto *MaskTy = VectorType::get(Builder.getInt1Ty(), cast(Mask->getType())->getBitWidth()); Mask = Builder.CreateBitCast(Mask, MaskTy); // If we have less than 8 elements, then the starting mask was an i8 and // we need to extract down to the right number of elements. if (VWidth < 8) { uint32_t Indices[4]; for (unsigned i = 0; i != VWidth; ++i) Indices[i] = i; Mask = Builder.CreateShuffleVector(Mask, Mask, makeArrayRef(Indices, VWidth), "extract"); } return Builder.CreateSelect(Mask, Op0, Op1); } static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) { Value *Arg0 = II.getArgOperand(0); Value *Arg1 = II.getArgOperand(1); // fmin(x, x) -> x if (Arg0 == Arg1) return Arg0; const auto *C1 = dyn_cast(Arg1); // fmin(x, nan) -> x if (C1 && C1->isNaN()) return Arg0; // This is the value because if undef were NaN, we would return the other // value and cannot return a NaN unless both operands are. // // fmin(undef, x) -> x if (isa(Arg0)) return Arg1; // fmin(x, undef) -> x if (isa(Arg1)) return Arg0; Value *X = nullptr; Value *Y = nullptr; if (II.getIntrinsicID() == Intrinsic::minnum) { // fmin(x, fmin(x, y)) -> fmin(x, y) // fmin(y, fmin(x, y)) -> fmin(x, y) if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) { if (Arg0 == X || Arg0 == Y) return Arg1; } // fmin(fmin(x, y), x) -> fmin(x, y) // fmin(fmin(x, y), y) -> fmin(x, y) if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) { if (Arg1 == X || Arg1 == Y) return Arg0; } // TODO: fmin(nnan x, inf) -> x // TODO: fmin(nnan ninf x, flt_max) -> x if (C1 && C1->isInfinity()) { // fmin(x, -inf) -> -inf if (C1->isNegative()) return Arg1; } } else { assert(II.getIntrinsicID() == Intrinsic::maxnum); // fmax(x, fmax(x, y)) -> fmax(x, y) // fmax(y, fmax(x, y)) -> fmax(x, y) if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) { if (Arg0 == X || Arg0 == Y) return Arg1; } // fmax(fmax(x, y), x) -> fmax(x, y) // fmax(fmax(x, y), y) -> fmax(x, y) if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) { if (Arg1 == X || Arg1 == Y) return Arg0; } // TODO: fmax(nnan x, -inf) -> x // TODO: fmax(nnan ninf x, -flt_max) -> x if (C1 && C1->isInfinity()) { // fmax(x, inf) -> inf if (!C1->isNegative()) return Arg1; } } return nullptr; } static bool maskIsAllOneOrUndef(Value *Mask) { auto *ConstMask = dyn_cast(Mask); if (!ConstMask) return false; if (ConstMask->isAllOnesValue() || isa(ConstMask)) return true; for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; ++I) { if (auto *MaskElt = ConstMask->getAggregateElement(I)) if (MaskElt->isAllOnesValue() || isa(MaskElt)) continue; return false; } return true; } static Value *simplifyMaskedLoad(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { // If the mask is all ones or undefs, this is a plain vector load of the 1st // argument. if (maskIsAllOneOrUndef(II.getArgOperand(2))) { Value *LoadPtr = II.getArgOperand(0); unsigned Alignment = cast(II.getArgOperand(1))->getZExtValue(); return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload"); } return nullptr; } static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) { auto *ConstMask = dyn_cast(II.getArgOperand(3)); if (!ConstMask) return nullptr; // If the mask is all zeros, this instruction does nothing. if (ConstMask->isNullValue()) return IC.eraseInstFromFunction(II); // If the mask is all ones, this is a plain vector store of the 1st argument. if (ConstMask->isAllOnesValue()) { Value *StorePtr = II.getArgOperand(1); unsigned Alignment = cast(II.getArgOperand(2))->getZExtValue(); return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); } return nullptr; } static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) { // If the mask is all zeros, return the "passthru" argument of the gather. auto *ConstMask = dyn_cast(II.getArgOperand(2)); if (ConstMask && ConstMask->isNullValue()) return IC.replaceInstUsesWith(II, II.getArgOperand(3)); return nullptr; } static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) { // If the mask is all zeros, a scatter does nothing. auto *ConstMask = dyn_cast(II.getArgOperand(3)); if (ConstMask && ConstMask->isNullValue()) return IC.eraseInstFromFunction(II); return nullptr; } static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) { assert((II.getIntrinsicID() == Intrinsic::cttz || II.getIntrinsicID() == Intrinsic::ctlz) && "Expected cttz or ctlz intrinsic"); Value *Op0 = II.getArgOperand(0); KnownBits Known = IC.computeKnownBits(Op0, 0, &II); // Create a mask for bits above (ctlz) or below (cttz) the first known one. bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() : Known.countMaxLeadingZeros(); unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() : Known.countMinLeadingZeros(); // If all bits above (ctlz) or below (cttz) the first known one are known // zero, this value is constant. // FIXME: This should be in InstSimplify because we're replacing an // instruction with a constant. if (PossibleZeros == DefiniteZeros) { auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); return IC.replaceInstUsesWith(II, C); } // If the input to cttz/ctlz is known to be non-zero, // then change the 'ZeroIsUndef' parameter to 'true' // because we know the zero behavior can't affect the result. if (!Known.One.isNullValue() || isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, &IC.getDominatorTree())) { if (!match(II.getArgOperand(1), m_One())) { II.setOperand(1, IC.Builder->getTrue()); return &II; } } // Add range metadata since known bits can't completely reflect what we know. // TODO: Handle splat vectors. auto *IT = dyn_cast(Op0->getType()); if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { Metadata *LowAndHigh[] = { ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)), ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))}; II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), LowAndHigh)); return &II; } return nullptr; } static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) { assert(II.getIntrinsicID() == Intrinsic::ctpop && "Expected ctpop intrinsic"); Value *Op0 = II.getArgOperand(0); // FIXME: Try to simplify vectors of integers. auto *IT = dyn_cast(Op0->getType()); if (!IT) return nullptr; unsigned BitWidth = IT->getBitWidth(); KnownBits Known(BitWidth); IC.computeKnownBits(Op0, Known, 0, &II); unsigned MinCount = Known.countMinPopulation(); unsigned MaxCount = Known.countMaxPopulation(); // Add range metadata since known bits can't completely reflect what we know. if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { Metadata *LowAndHigh[] = { ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)), ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))}; II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), LowAndHigh)); return &II; } return nullptr; } // TODO: If the x86 backend knew how to convert a bool vector mask back to an // XMM register mask efficiently, we could transform all x86 masked intrinsics // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) { Value *Ptr = II.getOperand(0); Value *Mask = II.getOperand(1); Constant *ZeroVec = Constant::getNullValue(II.getType()); // Special case a zero mask since that's not a ConstantDataVector. // This masked load instruction creates a zero vector. if (isa(Mask)) return IC.replaceInstUsesWith(II, ZeroVec); auto *ConstMask = dyn_cast(Mask); if (!ConstMask) return nullptr; // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic // to allow target-independent optimizations. // First, cast the x86 intrinsic scalar pointer to a vector pointer to match // the LLVM intrinsic definition for the pointer argument. unsigned AddrSpace = cast(Ptr->getType())->getAddressSpace(); PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace); Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec"); // Second, convert the x86 XMM integer vector mask to a vector of bools based // on each element's most significant bit (the sign bit). Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); // The pass-through vector for an x86 masked load is a zero vector. CallInst *NewMaskedLoad = IC.Builder->CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec); return IC.replaceInstUsesWith(II, NewMaskedLoad); } // TODO: If the x86 backend knew how to convert a bool vector mask back to an // XMM register mask efficiently, we could transform all x86 masked intrinsics // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) { Value *Ptr = II.getOperand(0); Value *Mask = II.getOperand(1); Value *Vec = II.getOperand(2); // Special case a zero mask since that's not a ConstantDataVector: // this masked store instruction does nothing. if (isa(Mask)) { IC.eraseInstFromFunction(II); return true; } // The SSE2 version is too weird (eg, unaligned but non-temporal) to do // anything else at this level. if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu) return false; auto *ConstMask = dyn_cast(Mask); if (!ConstMask) return false; // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic // to allow target-independent optimizations. // First, cast the x86 intrinsic scalar pointer to a vector pointer to match // the LLVM intrinsic definition for the pointer argument. unsigned AddrSpace = cast(Ptr->getType())->getAddressSpace(); PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace); Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec"); // Second, convert the x86 XMM integer vector mask to a vector of bools based // on each element's most significant bit (the sign bit). Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); IC.Builder->CreateMaskedStore(Vec, PtrCast, 1, BoolMask); // 'Replace uses' doesn't work for stores. Erase the original masked store. IC.eraseInstFromFunction(II); return true; } // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. // // A single NaN input is folded to minnum, so we rely on that folding for // handling NaNs. static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, const APFloat &Src2) { APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); APFloat::cmpResult Cmp0 = Max3.compare(Src0); assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); if (Cmp0 == APFloat::cmpEqual) return maxnum(Src1, Src2); APFloat::cmpResult Cmp1 = Max3.compare(Src1); assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); if (Cmp1 == APFloat::cmpEqual) return maxnum(Src0, Src2); return maxnum(Src0, Src1); } // Returns true iff the 2 intrinsics have the same operands, limiting the // comparison to the first NumOperands. static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, unsigned NumOperands) { assert(I.getNumArgOperands() >= NumOperands && "Not enough operands"); assert(E.getNumArgOperands() >= NumOperands && "Not enough operands"); for (unsigned i = 0; i < NumOperands; i++) if (I.getArgOperand(i) != E.getArgOperand(i)) return false; return true; } // Remove trivially empty start/end intrinsic ranges, i.e. a start // immediately followed by an end (ignoring debuginfo or other // start/end intrinsics in between). As this handles only the most trivial // cases, tracking the nesting level is not needed: // // call @llvm.foo.start(i1 0) ; &I // call @llvm.foo.start(i1 0) // call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed // call @llvm.foo.end(i1 0) static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID, unsigned EndID, InstCombiner &IC) { assert(I.getIntrinsicID() == StartID && "Start intrinsic does not have expected ID"); BasicBlock::iterator BI(I), BE(I.getParent()->end()); for (++BI; BI != BE; ++BI) { if (auto *E = dyn_cast(BI)) { if (isa(E) || E->getIntrinsicID() == StartID) continue; if (E->getIntrinsicID() == EndID && haveSameOperands(I, *E, E->getNumArgOperands())) { IC.eraseInstFromFunction(*E); IC.eraseInstFromFunction(I); return true; } } break; } return false; } // Convert NVVM intrinsics to target-generic LLVM code where possible. static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) { // Each NVVM intrinsic we can simplify can be replaced with one of: // // * an LLVM intrinsic, // * an LLVM cast operation, // * an LLVM binary operation, or // * ad-hoc LLVM IR for the particular operation. // Some transformations are only valid when the module's // flush-denormals-to-zero (ftz) setting is true/false, whereas other // transformations are valid regardless of the module's ftz setting. enum FtzRequirementTy { FTZ_Any, // Any ftz setting is ok. FTZ_MustBeOn, // Transformation is valid only if ftz is on. FTZ_MustBeOff, // Transformation is valid only if ftz is off. }; // Classes of NVVM intrinsics that can't be replaced one-to-one with a // target-generic intrinsic, cast op, or binary op but that we can nonetheless // simplify. enum SpecialCase { SPC_Reciprocal, }; // SimplifyAction is a poor-man's variant (plus an additional flag) that // represents how to replace an NVVM intrinsic with target-generic LLVM IR. struct SimplifyAction { // Invariant: At most one of these Optionals has a value. Optional IID; Optional CastOp; Optional BinaryOp; Optional Special; FtzRequirementTy FtzRequirement = FTZ_Any; SimplifyAction() = default; SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq) : IID(IID), FtzRequirement(FtzReq) {} // Cast operations don't have anything to do with FTZ, so we skip that // argument. SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {} SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq) : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {} SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq) : Special(Special), FtzRequirement(FtzReq) {} }; // Try to generate a SimplifyAction describing how to replace our // IntrinsicInstr with target-generic LLVM IR. const SimplifyAction Action = [II]() -> SimplifyAction { switch (II->getIntrinsicID()) { // NVVM intrinsics that map directly to LLVM intrinsics. case Intrinsic::nvvm_ceil_d: return {Intrinsic::ceil, FTZ_Any}; case Intrinsic::nvvm_ceil_f: return {Intrinsic::ceil, FTZ_MustBeOff}; case Intrinsic::nvvm_ceil_ftz_f: return {Intrinsic::ceil, FTZ_MustBeOn}; case Intrinsic::nvvm_fabs_d: return {Intrinsic::fabs, FTZ_Any}; case Intrinsic::nvvm_fabs_f: return {Intrinsic::fabs, FTZ_MustBeOff}; case Intrinsic::nvvm_fabs_ftz_f: return {Intrinsic::fabs, FTZ_MustBeOn}; case Intrinsic::nvvm_floor_d: return {Intrinsic::floor, FTZ_Any}; case Intrinsic::nvvm_floor_f: return {Intrinsic::floor, FTZ_MustBeOff}; case Intrinsic::nvvm_floor_ftz_f: return {Intrinsic::floor, FTZ_MustBeOn}; case Intrinsic::nvvm_fma_rn_d: return {Intrinsic::fma, FTZ_Any}; case Intrinsic::nvvm_fma_rn_f: return {Intrinsic::fma, FTZ_MustBeOff}; case Intrinsic::nvvm_fma_rn_ftz_f: return {Intrinsic::fma, FTZ_MustBeOn}; case Intrinsic::nvvm_fmax_d: return {Intrinsic::maxnum, FTZ_Any}; case Intrinsic::nvvm_fmax_f: return {Intrinsic::maxnum, FTZ_MustBeOff}; case Intrinsic::nvvm_fmax_ftz_f: return {Intrinsic::maxnum, FTZ_MustBeOn}; case Intrinsic::nvvm_fmin_d: return {Intrinsic::minnum, FTZ_Any}; case Intrinsic::nvvm_fmin_f: return {Intrinsic::minnum, FTZ_MustBeOff}; case Intrinsic::nvvm_fmin_ftz_f: return {Intrinsic::minnum, FTZ_MustBeOn}; case Intrinsic::nvvm_round_d: return {Intrinsic::round, FTZ_Any}; case Intrinsic::nvvm_round_f: return {Intrinsic::round, FTZ_MustBeOff}; case Intrinsic::nvvm_round_ftz_f: return {Intrinsic::round, FTZ_MustBeOn}; case Intrinsic::nvvm_sqrt_rn_d: return {Intrinsic::sqrt, FTZ_Any}; case Intrinsic::nvvm_sqrt_f: // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are // the versions with explicit ftz-ness. return {Intrinsic::sqrt, FTZ_Any}; case Intrinsic::nvvm_sqrt_rn_f: return {Intrinsic::sqrt, FTZ_MustBeOff}; case Intrinsic::nvvm_sqrt_rn_ftz_f: return {Intrinsic::sqrt, FTZ_MustBeOn}; case Intrinsic::nvvm_trunc_d: return {Intrinsic::trunc, FTZ_Any}; case Intrinsic::nvvm_trunc_f: return {Intrinsic::trunc, FTZ_MustBeOff}; case Intrinsic::nvvm_trunc_ftz_f: return {Intrinsic::trunc, FTZ_MustBeOn}; // NVVM intrinsics that map to LLVM cast operations. // // Note that llvm's target-generic conversion operators correspond to the rz // (round to zero) versions of the nvvm conversion intrinsics, even though // most everything else here uses the rn (round to nearest even) nvvm ops. case Intrinsic::nvvm_d2i_rz: case Intrinsic::nvvm_f2i_rz: case Intrinsic::nvvm_d2ll_rz: case Intrinsic::nvvm_f2ll_rz: return {Instruction::FPToSI}; case Intrinsic::nvvm_d2ui_rz: case Intrinsic::nvvm_f2ui_rz: case Intrinsic::nvvm_d2ull_rz: case Intrinsic::nvvm_f2ull_rz: return {Instruction::FPToUI}; case Intrinsic::nvvm_i2d_rz: case Intrinsic::nvvm_i2f_rz: case Intrinsic::nvvm_ll2d_rz: case Intrinsic::nvvm_ll2f_rz: return {Instruction::SIToFP}; case Intrinsic::nvvm_ui2d_rz: case Intrinsic::nvvm_ui2f_rz: case Intrinsic::nvvm_ull2d_rz: case Intrinsic::nvvm_ull2f_rz: return {Instruction::UIToFP}; // NVVM intrinsics that map to LLVM binary ops. case Intrinsic::nvvm_add_rn_d: return {Instruction::FAdd, FTZ_Any}; case Intrinsic::nvvm_add_rn_f: return {Instruction::FAdd, FTZ_MustBeOff}; case Intrinsic::nvvm_add_rn_ftz_f: return {Instruction::FAdd, FTZ_MustBeOn}; case Intrinsic::nvvm_mul_rn_d: return {Instruction::FMul, FTZ_Any}; case Intrinsic::nvvm_mul_rn_f: return {Instruction::FMul, FTZ_MustBeOff}; case Intrinsic::nvvm_mul_rn_ftz_f: return {Instruction::FMul, FTZ_MustBeOn}; case Intrinsic::nvvm_div_rn_d: return {Instruction::FDiv, FTZ_Any}; case Intrinsic::nvvm_div_rn_f: return {Instruction::FDiv, FTZ_MustBeOff}; case Intrinsic::nvvm_div_rn_ftz_f: return {Instruction::FDiv, FTZ_MustBeOn}; // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but // need special handling. // // We seem to be mising intrinsics for rcp.approx.{ftz.}f32, which is just // as well. case Intrinsic::nvvm_rcp_rn_d: return {SPC_Reciprocal, FTZ_Any}; case Intrinsic::nvvm_rcp_rn_f: return {SPC_Reciprocal, FTZ_MustBeOff}; case Intrinsic::nvvm_rcp_rn_ftz_f: return {SPC_Reciprocal, FTZ_MustBeOn}; // We do not currently simplify intrinsics that give an approximate answer. // These include: // // - nvvm_cos_approx_{f,ftz_f} // - nvvm_ex2_approx_{d,f,ftz_f} // - nvvm_lg2_approx_{d,f,ftz_f} // - nvvm_sin_approx_{f,ftz_f} // - nvvm_sqrt_approx_{f,ftz_f} // - nvvm_rsqrt_approx_{d,f,ftz_f} // - nvvm_div_approx_{ftz_d,ftz_f,f} // - nvvm_rcp_approx_ftz_d // // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast" // means that fastmath is enabled in the intrinsic. Unfortunately only // binary operators (currently) have a fastmath bit in SelectionDAG, so this // information gets lost and we can't select on it. // // TODO: div and rcp are lowered to a binary op, so these we could in theory // lower them to "fast fdiv". default: return {}; } }(); // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we // can bail out now. (Notice that in the case that IID is not an NVVM // intrinsic, we don't have to look up any module metadata, as // FtzRequirementTy will be FTZ_Any.) if (Action.FtzRequirement != FTZ_Any) { bool FtzEnabled = II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() == "true"; if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn)) return nullptr; } // Simplify to target-generic intrinsic. if (Action.IID) { SmallVector Args(II->arg_operands()); // All the target-generic intrinsics currently of interest to us have one // type argument, equal to that of the nvvm intrinsic's argument. Type *Tys[] = {II->getArgOperand(0)->getType()}; return CallInst::Create( Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args); } // Simplify to target-generic binary op. if (Action.BinaryOp) return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0), II->getArgOperand(1), II->getName()); // Simplify to target-generic cast op. if (Action.CastOp) return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(), II->getName()); // All that's left are the special cases. if (!Action.Special) return nullptr; switch (*Action.Special) { case SPC_Reciprocal: // Simplify reciprocal. return BinaryOperator::Create( Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1), II->getArgOperand(0), II->getName()); } llvm_unreachable("All SpecialCase enumerators should be handled in switch."); } Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) { removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this); return nullptr; } Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) { removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this); return nullptr; } /// CallInst simplification. This mostly only handles folding of intrinsic /// instructions. For normal calls, it allows visitCallSite to do the heavy /// lifting. Instruction *InstCombiner::visitCallInst(CallInst &CI) { auto Args = CI.arg_operands(); if (Value *V = SimplifyCall(&CI, CI.getCalledValue(), Args.begin(), Args.end(), SQ.getWithInstruction(&CI))) return replaceInstUsesWith(CI, V); if (isFreeCall(&CI, &TLI)) return visitFree(CI); // If the caller function is nounwind, mark the call as nounwind, even if the // callee isn't. if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { CI.setDoesNotThrow(); return &CI; } IntrinsicInst *II = dyn_cast(&CI); if (!II) return visitCallSite(&CI); // Intrinsics cannot occur in an invoke, so handle them here instead of in // visitCallSite. if (MemIntrinsic *MI = dyn_cast(II)) { bool Changed = false; // memmove/cpy/set of zero bytes is a noop. if (Constant *NumBytes = dyn_cast(MI->getLength())) { if (NumBytes->isNullValue()) return eraseInstFromFunction(CI); if (ConstantInt *CI = dyn_cast(NumBytes)) if (CI->getZExtValue() == 1) { // Replace the instruction with just byte operations. We would // transform other cases to loads/stores, but we don't know if // alignment is sufficient. } } // No other transformations apply to volatile transfers. if (MI->isVolatile()) return nullptr; // If we have a memmove and the source operation is a constant global, // then the source and dest pointers can't alias, so we can change this // into a call to memcpy. if (MemMoveInst *MMI = dyn_cast(MI)) { if (GlobalVariable *GVSrc = dyn_cast(MMI->getSource())) if (GVSrc->isConstant()) { Module *M = CI.getModule(); Intrinsic::ID MemCpyID = Intrinsic::memcpy; Type *Tys[3] = { CI.getArgOperand(0)->getType(), CI.getArgOperand(1)->getType(), CI.getArgOperand(2)->getType() }; CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); Changed = true; } } if (MemTransferInst *MTI = dyn_cast(MI)) { // memmove(x,x,size) -> noop. if (MTI->getSource() == MTI->getDest()) return eraseInstFromFunction(CI); } // If we can determine a pointer alignment that is bigger than currently // set, update the alignment. if (isa(MI)) { if (Instruction *I = SimplifyMemTransfer(MI)) return I; } else if (MemSetInst *MSI = dyn_cast(MI)) { if (Instruction *I = SimplifyMemSet(MSI)) return I; } if (Changed) return II; } if (auto *AMI = dyn_cast(II)) { if (Constant *C = dyn_cast(AMI->getLength())) if (C->isNullValue()) return eraseInstFromFunction(*AMI); if (Instruction *I = SimplifyElementUnorderedAtomicMemCpy(AMI)) return I; } if (Instruction *I = SimplifyNVVMIntrinsic(II, *this)) return I; auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width, unsigned DemandedWidth) { APInt UndefElts(Width, 0); APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth); return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts); }; switch (II->getIntrinsicID()) { default: break; case Intrinsic::objectsize: if (ConstantInt *N = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false)) return replaceInstUsesWith(CI, N); return nullptr; case Intrinsic::bswap: { Value *IIOperand = II->getArgOperand(0); Value *X = nullptr; // bswap(bswap(x)) -> x if (match(IIOperand, m_BSwap(m_Value(X)))) return replaceInstUsesWith(CI, X); // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { unsigned C = X->getType()->getPrimitiveSizeInBits() - IIOperand->getType()->getPrimitiveSizeInBits(); Value *CV = ConstantInt::get(X->getType(), C); Value *V = Builder->CreateLShr(X, CV); return new TruncInst(V, IIOperand->getType()); } break; } case Intrinsic::bitreverse: { Value *IIOperand = II->getArgOperand(0); Value *X = nullptr; // bitreverse(bitreverse(x)) -> x if (match(IIOperand, m_BitReverse(m_Value(X)))) return replaceInstUsesWith(CI, X); break; } case Intrinsic::masked_load: if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, *Builder)) return replaceInstUsesWith(CI, SimplifiedMaskedOp); break; case Intrinsic::masked_store: return simplifyMaskedStore(*II, *this); case Intrinsic::masked_gather: return simplifyMaskedGather(*II, *this); case Intrinsic::masked_scatter: return simplifyMaskedScatter(*II, *this); case Intrinsic::powi: if (ConstantInt *Power = dyn_cast(II->getArgOperand(1))) { // powi(x, 0) -> 1.0 if (Power->isZero()) return replaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0)); // powi(x, 1) -> x if (Power->isOne()) return replaceInstUsesWith(CI, II->getArgOperand(0)); // powi(x, -1) -> 1/x if (Power->isAllOnesValue()) return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), II->getArgOperand(0)); } break; case Intrinsic::cttz: case Intrinsic::ctlz: if (auto *I = foldCttzCtlz(*II, *this)) return I; break; case Intrinsic::ctpop: if (auto *I = foldCtpop(*II, *this)) return I; break; case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: if (isa(II->getArgOperand(0)) && !isa(II->getArgOperand(1))) { // Canonicalize constants into the RHS. Value *LHS = II->getArgOperand(0); II->setArgOperand(0, II->getArgOperand(1)); II->setArgOperand(1, LHS); return II; } LLVM_FALLTHROUGH; case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: { OverflowCheckFlavor OCF = IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID()); assert(OCF != OCF_INVALID && "unexpected!"); Value *OperationResult = nullptr; Constant *OverflowResult = nullptr; if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1), *II, OperationResult, OverflowResult)) return CreateOverflowTuple(II, OperationResult, OverflowResult); break; } case Intrinsic::minnum: case Intrinsic::maxnum: { Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); // Canonicalize constants to the RHS. if (isa(Arg0) && !isa(Arg1)) { II->setArgOperand(0, Arg1); II->setArgOperand(1, Arg0); return II; } if (Value *V = simplifyMinnumMaxnum(*II)) return replaceInstUsesWith(*II, V); break; } case Intrinsic::fmuladd: { // Canonicalize fast fmuladd to the separate fmul + fadd. if (II->hasUnsafeAlgebra()) { BuilderTy::FastMathFlagGuard Guard(*Builder); Builder->setFastMathFlags(II->getFastMathFlags()); Value *Mul = Builder->CreateFMul(II->getArgOperand(0), II->getArgOperand(1)); Value *Add = Builder->CreateFAdd(Mul, II->getArgOperand(2)); Add->takeName(II); return replaceInstUsesWith(*II, Add); } LLVM_FALLTHROUGH; } case Intrinsic::fma: { Value *Src0 = II->getArgOperand(0); Value *Src1 = II->getArgOperand(1); // Canonicalize constants into the RHS. if (isa(Src0) && !isa(Src1)) { II->setArgOperand(0, Src1); II->setArgOperand(1, Src0); std::swap(Src0, Src1); } Value *LHS = nullptr; Value *RHS = nullptr; // fma fneg(x), fneg(y), z -> fma x, y, z if (match(Src0, m_FNeg(m_Value(LHS))) && match(Src1, m_FNeg(m_Value(RHS)))) { II->setArgOperand(0, LHS); II->setArgOperand(1, RHS); return II; } // fma fabs(x), fabs(x), z -> fma x, x, z if (match(Src0, m_Intrinsic(m_Value(LHS))) && match(Src1, m_Intrinsic(m_Value(RHS))) && LHS == RHS) { II->setArgOperand(0, LHS); II->setArgOperand(1, RHS); return II; } // fma x, 1, z -> fadd x, z if (match(Src1, m_FPOne())) { Instruction *RI = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2)); RI->copyFastMathFlags(II); return RI; } break; } case Intrinsic::fabs: { Value *Cond; Constant *LHS, *RHS; if (match(II->getArgOperand(0), m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) { CallInst *Call0 = Builder->CreateCall(II->getCalledFunction(), {LHS}); CallInst *Call1 = Builder->CreateCall(II->getCalledFunction(), {RHS}); return SelectInst::Create(Cond, Call0, Call1); } LLVM_FALLTHROUGH; } case Intrinsic::ceil: case Intrinsic::floor: case Intrinsic::round: case Intrinsic::nearbyint: case Intrinsic::rint: case Intrinsic::trunc: { Value *ExtSrc; if (match(II->getArgOperand(0), m_FPExt(m_Value(ExtSrc))) && II->getArgOperand(0)->hasOneUse()) { // fabs (fpext x) -> fpext (fabs x) Value *F = Intrinsic::getDeclaration(II->getModule(), II->getIntrinsicID(), { ExtSrc->getType() }); CallInst *NewFabs = Builder->CreateCall(F, ExtSrc); NewFabs->copyFastMathFlags(II); NewFabs->takeName(II); return new FPExtInst(NewFabs, II->getType()); } break; } case Intrinsic::cos: case Intrinsic::amdgcn_cos: { Value *SrcSrc; Value *Src = II->getArgOperand(0); if (match(Src, m_FNeg(m_Value(SrcSrc))) || match(Src, m_Intrinsic(m_Value(SrcSrc)))) { // cos(-x) -> cos(x) // cos(fabs(x)) -> cos(x) II->setArgOperand(0, SrcSrc); return II; } break; } case Intrinsic::ppc_altivec_lvx: case Intrinsic::ppc_altivec_lvxl: // Turn PPC lvx -> load if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, &DT) >= 16) { Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(II->getType())); return new LoadInst(Ptr); } break; case Intrinsic::ppc_vsx_lxvw4x: case Intrinsic::ppc_vsx_lxvd2x: { // Turn PPC VSX loads into normal loads. Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(II->getType())); return new LoadInst(Ptr, Twine(""), false, 1); } case Intrinsic::ppc_altivec_stvx: case Intrinsic::ppc_altivec_stvxl: // Turn stvx -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, &DT) >= 16) { Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(II->getArgOperand(0), Ptr); } break; case Intrinsic::ppc_vsx_stxvw4x: case Intrinsic::ppc_vsx_stxvd2x: { // Turn PPC VSX stores into normal stores. Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(II->getArgOperand(0), Ptr, false, 1); } case Intrinsic::ppc_qpx_qvlfs: // Turn PPC QPX qvlfs -> load if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, &DT) >= 16) { Type *VTy = VectorType::get(Builder->getFloatTy(), II->getType()->getVectorNumElements()); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(VTy)); Value *Load = Builder->CreateLoad(Ptr); return new FPExtInst(Load, II->getType()); } break; case Intrinsic::ppc_qpx_qvlfd: // Turn PPC QPX qvlfd -> load if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC, &DT) >= 32) { Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(II->getType())); return new LoadInst(Ptr); } break; case Intrinsic::ppc_qpx_qvstfs: // Turn PPC QPX qvstfs -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, &DT) >= 16) { Type *VTy = VectorType::get(Builder->getFloatTy(), II->getArgOperand(0)->getType()->getVectorNumElements()); Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy); Type *OpPtrTy = PointerType::getUnqual(VTy); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(TOp, Ptr); } break; case Intrinsic::ppc_qpx_qvstfd: // Turn PPC QPX qvstfd -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC, &DT) >= 32) { Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(II->getArgOperand(0), Ptr); } break; case Intrinsic::x86_vcvtph2ps_128: case Intrinsic::x86_vcvtph2ps_256: { auto Arg = II->getArgOperand(0); auto ArgType = cast(Arg->getType()); auto RetType = cast(II->getType()); unsigned ArgWidth = ArgType->getNumElements(); unsigned RetWidth = RetType->getNumElements(); assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths"); assert(ArgType->isIntOrIntVectorTy() && ArgType->getScalarSizeInBits() == 16 && "CVTPH2PS input type should be 16-bit integer vector"); assert(RetType->getScalarType()->isFloatTy() && "CVTPH2PS output type should be 32-bit float vector"); // Constant folding: Convert to generic half to single conversion. if (isa(Arg)) return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType)); if (isa(Arg)) { auto VectorHalfAsShorts = Arg; if (RetWidth < ArgWidth) { SmallVector SubVecMask; for (unsigned i = 0; i != RetWidth; ++i) SubVecMask.push_back((int)i); VectorHalfAsShorts = Builder->CreateShuffleVector( Arg, UndefValue::get(ArgType), SubVecMask); } auto VectorHalfType = VectorType::get(Type::getHalfTy(II->getContext()), RetWidth); auto VectorHalfs = Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType); auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType); return replaceInstUsesWith(*II, VectorFloats); } // We only use the lowest lanes of the argument. if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_sse_cvtss2si: case Intrinsic::x86_sse_cvtss2si64: case Intrinsic::x86_sse_cvttss2si: case Intrinsic::x86_sse_cvttss2si64: case Intrinsic::x86_sse2_cvtsd2si: case Intrinsic::x86_sse2_cvtsd2si64: case Intrinsic::x86_sse2_cvttsd2si: case Intrinsic::x86_sse2_cvttsd2si64: case Intrinsic::x86_avx512_vcvtss2si32: case Intrinsic::x86_avx512_vcvtss2si64: case Intrinsic::x86_avx512_vcvtss2usi32: case Intrinsic::x86_avx512_vcvtss2usi64: case Intrinsic::x86_avx512_vcvtsd2si32: case Intrinsic::x86_avx512_vcvtsd2si64: case Intrinsic::x86_avx512_vcvtsd2usi32: case Intrinsic::x86_avx512_vcvtsd2usi64: case Intrinsic::x86_avx512_cvttss2si: case Intrinsic::x86_avx512_cvttss2si64: case Intrinsic::x86_avx512_cvttss2usi: case Intrinsic::x86_avx512_cvttss2usi64: case Intrinsic::x86_avx512_cvttsd2si: case Intrinsic::x86_avx512_cvttsd2si64: case Intrinsic::x86_avx512_cvttsd2usi: case Intrinsic::x86_avx512_cvttsd2usi64: { // These intrinsics only demand the 0th element of their input vectors. If // we can simplify the input based on that, do so now. Value *Arg = II->getArgOperand(0); unsigned VWidth = Arg->getType()->getVectorNumElements(); if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_mmx_pmovmskb: case Intrinsic::x86_sse_movmsk_ps: case Intrinsic::x86_sse2_movmsk_pd: case Intrinsic::x86_sse2_pmovmskb_128: case Intrinsic::x86_avx_movmsk_pd_256: case Intrinsic::x86_avx_movmsk_ps_256: case Intrinsic::x86_avx2_pmovmskb: { if (Value *V = simplifyX86movmsk(*II, *Builder)) return replaceInstUsesWith(*II, V); break; } case Intrinsic::x86_sse_comieq_ss: case Intrinsic::x86_sse_comige_ss: case Intrinsic::x86_sse_comigt_ss: case Intrinsic::x86_sse_comile_ss: case Intrinsic::x86_sse_comilt_ss: case Intrinsic::x86_sse_comineq_ss: case Intrinsic::x86_sse_ucomieq_ss: case Intrinsic::x86_sse_ucomige_ss: case Intrinsic::x86_sse_ucomigt_ss: case Intrinsic::x86_sse_ucomile_ss: case Intrinsic::x86_sse_ucomilt_ss: case Intrinsic::x86_sse_ucomineq_ss: case Intrinsic::x86_sse2_comieq_sd: case Intrinsic::x86_sse2_comige_sd: case Intrinsic::x86_sse2_comigt_sd: case Intrinsic::x86_sse2_comile_sd: case Intrinsic::x86_sse2_comilt_sd: case Intrinsic::x86_sse2_comineq_sd: case Intrinsic::x86_sse2_ucomieq_sd: case Intrinsic::x86_sse2_ucomige_sd: case Intrinsic::x86_sse2_ucomigt_sd: case Intrinsic::x86_sse2_ucomile_sd: case Intrinsic::x86_sse2_ucomilt_sd: case Intrinsic::x86_sse2_ucomineq_sd: case Intrinsic::x86_avx512_vcomi_ss: case Intrinsic::x86_avx512_vcomi_sd: case Intrinsic::x86_avx512_mask_cmp_ss: case Intrinsic::x86_avx512_mask_cmp_sd: { // These intrinsics only demand the 0th element of their input vectors. If // we can simplify the input based on that, do so now. bool MadeChange = false; Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); unsigned VWidth = Arg0->getType()->getVectorNumElements(); if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) { II->setArgOperand(0, V); MadeChange = true; } if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { II->setArgOperand(1, V); MadeChange = true; } if (MadeChange) return II; break; } case Intrinsic::x86_avx512_mask_cmp_pd_128: case Intrinsic::x86_avx512_mask_cmp_pd_256: case Intrinsic::x86_avx512_mask_cmp_pd_512: case Intrinsic::x86_avx512_mask_cmp_ps_128: case Intrinsic::x86_avx512_mask_cmp_ps_256: case Intrinsic::x86_avx512_mask_cmp_ps_512: { // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a) Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); bool Arg0IsZero = match(Arg0, m_Zero()); if (Arg0IsZero) std::swap(Arg0, Arg1); Value *A, *B; // This fold requires only the NINF(not +/- inf) since inf minus // inf is nan. // NSZ(No Signed Zeros) is not needed because zeros of any sign are // equal for both compares. // NNAN is not needed because nans compare the same for both compares. // The compare intrinsic uses the above assumptions and therefore // doesn't require additional flags. if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) && match(Arg1, m_Zero()) && cast(Arg0)->getFastMathFlags().noInfs())) { if (Arg0IsZero) std::swap(A, B); II->setArgOperand(0, A); II->setArgOperand(1, B); return II; } break; } case Intrinsic::x86_avx512_mask_add_ps_512: case Intrinsic::x86_avx512_mask_div_ps_512: case Intrinsic::x86_avx512_mask_mul_ps_512: case Intrinsic::x86_avx512_mask_sub_ps_512: case Intrinsic::x86_avx512_mask_add_pd_512: case Intrinsic::x86_avx512_mask_div_pd_512: case Intrinsic::x86_avx512_mask_mul_pd_512: case Intrinsic::x86_avx512_mask_sub_pd_512: // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular // IR operations. if (auto *R = dyn_cast(II->getArgOperand(4))) { if (R->getValue() == 4) { Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); Value *V; switch (II->getIntrinsicID()) { default: llvm_unreachable("Case stmts out of sync!"); case Intrinsic::x86_avx512_mask_add_ps_512: case Intrinsic::x86_avx512_mask_add_pd_512: V = Builder->CreateFAdd(Arg0, Arg1); break; case Intrinsic::x86_avx512_mask_sub_ps_512: case Intrinsic::x86_avx512_mask_sub_pd_512: V = Builder->CreateFSub(Arg0, Arg1); break; case Intrinsic::x86_avx512_mask_mul_ps_512: case Intrinsic::x86_avx512_mask_mul_pd_512: V = Builder->CreateFMul(Arg0, Arg1); break; case Intrinsic::x86_avx512_mask_div_ps_512: case Intrinsic::x86_avx512_mask_div_pd_512: V = Builder->CreateFDiv(Arg0, Arg1); break; } // Create a select for the masking. V = emitX86MaskSelect(II->getArgOperand(3), V, II->getArgOperand(2), *Builder); return replaceInstUsesWith(*II, V); } } break; case Intrinsic::x86_avx512_mask_add_ss_round: case Intrinsic::x86_avx512_mask_div_ss_round: case Intrinsic::x86_avx512_mask_mul_ss_round: case Intrinsic::x86_avx512_mask_sub_ss_round: case Intrinsic::x86_avx512_mask_add_sd_round: case Intrinsic::x86_avx512_mask_div_sd_round: case Intrinsic::x86_avx512_mask_mul_sd_round: case Intrinsic::x86_avx512_mask_sub_sd_round: // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular // IR operations. if (auto *R = dyn_cast(II->getArgOperand(4))) { if (R->getValue() == 4) { // Extract the element as scalars. Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); Value *LHS = Builder->CreateExtractElement(Arg0, (uint64_t)0); Value *RHS = Builder->CreateExtractElement(Arg1, (uint64_t)0); Value *V; switch (II->getIntrinsicID()) { default: llvm_unreachable("Case stmts out of sync!"); case Intrinsic::x86_avx512_mask_add_ss_round: case Intrinsic::x86_avx512_mask_add_sd_round: V = Builder->CreateFAdd(LHS, RHS); break; case Intrinsic::x86_avx512_mask_sub_ss_round: case Intrinsic::x86_avx512_mask_sub_sd_round: V = Builder->CreateFSub(LHS, RHS); break; case Intrinsic::x86_avx512_mask_mul_ss_round: case Intrinsic::x86_avx512_mask_mul_sd_round: V = Builder->CreateFMul(LHS, RHS); break; case Intrinsic::x86_avx512_mask_div_ss_round: case Intrinsic::x86_avx512_mask_div_sd_round: V = Builder->CreateFDiv(LHS, RHS); break; } // Handle the masking aspect of the intrinsic. Value *Mask = II->getArgOperand(3); auto *C = dyn_cast(Mask); // We don't need a select if we know the mask bit is a 1. if (!C || !C->getValue()[0]) { // Cast the mask to an i1 vector and then extract the lowest element. auto *MaskTy = VectorType::get(Builder->getInt1Ty(), cast(Mask->getType())->getBitWidth()); Mask = Builder->CreateBitCast(Mask, MaskTy); Mask = Builder->CreateExtractElement(Mask, (uint64_t)0); // Extract the lowest element from the passthru operand. Value *Passthru = Builder->CreateExtractElement(II->getArgOperand(2), (uint64_t)0); V = Builder->CreateSelect(Mask, V, Passthru); } // Insert the result back into the original argument 0. V = Builder->CreateInsertElement(Arg0, V, (uint64_t)0); return replaceInstUsesWith(*II, V); } } LLVM_FALLTHROUGH; // X86 scalar intrinsics simplified with SimplifyDemandedVectorElts. case Intrinsic::x86_avx512_mask_max_ss_round: case Intrinsic::x86_avx512_mask_min_ss_round: case Intrinsic::x86_avx512_mask_max_sd_round: case Intrinsic::x86_avx512_mask_min_sd_round: case Intrinsic::x86_avx512_mask_vfmadd_ss: case Intrinsic::x86_avx512_mask_vfmadd_sd: case Intrinsic::x86_avx512_maskz_vfmadd_ss: case Intrinsic::x86_avx512_maskz_vfmadd_sd: case Intrinsic::x86_avx512_mask3_vfmadd_ss: case Intrinsic::x86_avx512_mask3_vfmadd_sd: case Intrinsic::x86_avx512_mask3_vfmsub_ss: case Intrinsic::x86_avx512_mask3_vfmsub_sd: case Intrinsic::x86_avx512_mask3_vfnmsub_ss: case Intrinsic::x86_avx512_mask3_vfnmsub_sd: case Intrinsic::x86_fma_vfmadd_ss: case Intrinsic::x86_fma_vfmsub_ss: case Intrinsic::x86_fma_vfnmadd_ss: case Intrinsic::x86_fma_vfnmsub_ss: case Intrinsic::x86_fma_vfmadd_sd: case Intrinsic::x86_fma_vfmsub_sd: case Intrinsic::x86_fma_vfnmadd_sd: case Intrinsic::x86_fma_vfnmsub_sd: case Intrinsic::x86_sse_cmp_ss: case Intrinsic::x86_sse_min_ss: case Intrinsic::x86_sse_max_ss: case Intrinsic::x86_sse2_cmp_sd: case Intrinsic::x86_sse2_min_sd: case Intrinsic::x86_sse2_max_sd: case Intrinsic::x86_sse41_round_ss: case Intrinsic::x86_sse41_round_sd: case Intrinsic::x86_xop_vfrcz_ss: case Intrinsic::x86_xop_vfrcz_sd: { unsigned VWidth = II->getType()->getVectorNumElements(); APInt UndefElts(VWidth, 0); APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) { if (V != II) return replaceInstUsesWith(*II, V); return II; } break; } // Constant fold ashr( , Ci ). // Constant fold lshr( , Ci ). // Constant fold shl( , Ci ). case Intrinsic::x86_sse2_psrai_d: case Intrinsic::x86_sse2_psrai_w: case Intrinsic::x86_avx2_psrai_d: case Intrinsic::x86_avx2_psrai_w: case Intrinsic::x86_avx512_psrai_q_128: case Intrinsic::x86_avx512_psrai_q_256: case Intrinsic::x86_avx512_psrai_d_512: case Intrinsic::x86_avx512_psrai_q_512: case Intrinsic::x86_avx512_psrai_w_512: case Intrinsic::x86_sse2_psrli_d: case Intrinsic::x86_sse2_psrli_q: case Intrinsic::x86_sse2_psrli_w: case Intrinsic::x86_avx2_psrli_d: case Intrinsic::x86_avx2_psrli_q: case Intrinsic::x86_avx2_psrli_w: case Intrinsic::x86_avx512_psrli_d_512: case Intrinsic::x86_avx512_psrli_q_512: case Intrinsic::x86_avx512_psrli_w_512: case Intrinsic::x86_sse2_pslli_d: case Intrinsic::x86_sse2_pslli_q: case Intrinsic::x86_sse2_pslli_w: case Intrinsic::x86_avx2_pslli_d: case Intrinsic::x86_avx2_pslli_q: case Intrinsic::x86_avx2_pslli_w: case Intrinsic::x86_avx512_pslli_d_512: case Intrinsic::x86_avx512_pslli_q_512: case Intrinsic::x86_avx512_pslli_w_512: if (Value *V = simplifyX86immShift(*II, *Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse2_psra_d: case Intrinsic::x86_sse2_psra_w: case Intrinsic::x86_avx2_psra_d: case Intrinsic::x86_avx2_psra_w: case Intrinsic::x86_avx512_psra_q_128: case Intrinsic::x86_avx512_psra_q_256: case Intrinsic::x86_avx512_psra_d_512: case Intrinsic::x86_avx512_psra_q_512: case Intrinsic::x86_avx512_psra_w_512: case Intrinsic::x86_sse2_psrl_d: case Intrinsic::x86_sse2_psrl_q: case Intrinsic::x86_sse2_psrl_w: case Intrinsic::x86_avx2_psrl_d: case Intrinsic::x86_avx2_psrl_q: case Intrinsic::x86_avx2_psrl_w: case Intrinsic::x86_avx512_psrl_d_512: case Intrinsic::x86_avx512_psrl_q_512: case Intrinsic::x86_avx512_psrl_w_512: case Intrinsic::x86_sse2_psll_d: case Intrinsic::x86_sse2_psll_q: case Intrinsic::x86_sse2_psll_w: case Intrinsic::x86_avx2_psll_d: case Intrinsic::x86_avx2_psll_q: case Intrinsic::x86_avx2_psll_w: case Intrinsic::x86_avx512_psll_d_512: case Intrinsic::x86_avx512_psll_q_512: case Intrinsic::x86_avx512_psll_w_512: { if (Value *V = simplifyX86immShift(*II, *Builder)) return replaceInstUsesWith(*II, V); // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector // operand to compute the shift amount. Value *Arg1 = II->getArgOperand(1); assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 && "Unexpected packed shift size"); unsigned VWidth = Arg1->getType()->getVectorNumElements(); if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) { II->setArgOperand(1, V); return II; } break; } case Intrinsic::x86_avx2_psllv_d: case Intrinsic::x86_avx2_psllv_d_256: case Intrinsic::x86_avx2_psllv_q: case Intrinsic::x86_avx2_psllv_q_256: case Intrinsic::x86_avx512_psllv_d_512: case Intrinsic::x86_avx512_psllv_q_512: case Intrinsic::x86_avx512_psllv_w_128: case Intrinsic::x86_avx512_psllv_w_256: case Intrinsic::x86_avx512_psllv_w_512: case Intrinsic::x86_avx2_psrav_d: case Intrinsic::x86_avx2_psrav_d_256: case Intrinsic::x86_avx512_psrav_q_128: case Intrinsic::x86_avx512_psrav_q_256: case Intrinsic::x86_avx512_psrav_d_512: case Intrinsic::x86_avx512_psrav_q_512: case Intrinsic::x86_avx512_psrav_w_128: case Intrinsic::x86_avx512_psrav_w_256: case Intrinsic::x86_avx512_psrav_w_512: case Intrinsic::x86_avx2_psrlv_d: case Intrinsic::x86_avx2_psrlv_d_256: case Intrinsic::x86_avx2_psrlv_q: case Intrinsic::x86_avx2_psrlv_q_256: case Intrinsic::x86_avx512_psrlv_d_512: case Intrinsic::x86_avx512_psrlv_q_512: case Intrinsic::x86_avx512_psrlv_w_128: case Intrinsic::x86_avx512_psrlv_w_256: case Intrinsic::x86_avx512_psrlv_w_512: if (Value *V = simplifyX86varShift(*II, *Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse2_pmulu_dq: case Intrinsic::x86_sse41_pmuldq: case Intrinsic::x86_avx2_pmul_dq: case Intrinsic::x86_avx2_pmulu_dq: case Intrinsic::x86_avx512_pmul_dq_512: case Intrinsic::x86_avx512_pmulu_dq_512: { if (Value *V = simplifyX86muldq(*II, *Builder)) return replaceInstUsesWith(*II, V); unsigned VWidth = II->getType()->getVectorNumElements(); APInt UndefElts(VWidth, 0); APInt DemandedElts = APInt::getAllOnesValue(VWidth); if (Value *V = SimplifyDemandedVectorElts(II, DemandedElts, UndefElts)) { if (V != II) return replaceInstUsesWith(*II, V); return II; } break; } case Intrinsic::x86_sse2_packssdw_128: case Intrinsic::x86_sse2_packsswb_128: case Intrinsic::x86_avx2_packssdw: case Intrinsic::x86_avx2_packsswb: case Intrinsic::x86_avx512_packssdw_512: case Intrinsic::x86_avx512_packsswb_512: if (Value *V = simplifyX86pack(*II, *this, *Builder, true)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse2_packuswb_128: case Intrinsic::x86_sse41_packusdw: case Intrinsic::x86_avx2_packusdw: case Intrinsic::x86_avx2_packuswb: case Intrinsic::x86_avx512_packusdw_512: case Intrinsic::x86_avx512_packuswb_512: if (Value *V = simplifyX86pack(*II, *this, *Builder, false)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_pclmulqdq: { if (auto *C = dyn_cast(II->getArgOperand(2))) { unsigned Imm = C->getZExtValue(); bool MadeChange = false; Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); unsigned VWidth = Arg0->getType()->getVectorNumElements(); APInt DemandedElts(VWidth, 0); APInt UndefElts1(VWidth, 0); DemandedElts = (Imm & 0x01) ? 2 : 1; if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts, UndefElts1)) { II->setArgOperand(0, V); MadeChange = true; } APInt UndefElts2(VWidth, 0); DemandedElts = (Imm & 0x10) ? 2 : 1; if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts, UndefElts2)) { II->setArgOperand(1, V); MadeChange = true; } // If both input elements are undef, the result is undef. if (UndefElts1[(Imm & 0x01) ? 1 : 0] || UndefElts2[(Imm & 0x10) ? 1 : 0]) return replaceInstUsesWith(*II, ConstantAggregateZero::get(II->getType())); if (MadeChange) return II; } break; } case Intrinsic::x86_sse41_insertps: if (Value *V = simplifyX86insertps(*II, *Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse4a_extrq: { Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); unsigned VWidth0 = Op0->getType()->getVectorNumElements(); unsigned VWidth1 = Op1->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && VWidth1 == 16 && "Unexpected operand sizes"); // See if we're dealing with constant values. Constant *C1 = dyn_cast(Op1); ConstantInt *CILength = C1 ? dyn_cast_or_null(C1->getAggregateElement((unsigned)0)) : nullptr; ConstantInt *CIIndex = C1 ? dyn_cast_or_null(C1->getAggregateElement((unsigned)1)) : nullptr; // Attempt to simplify to a constant, shuffle vector or EXTRQI call. if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder)) return replaceInstUsesWith(*II, V); // EXTRQ only uses the lowest 64-bits of the first 128-bit vector // operands and the lowest 16-bits of the second. bool MadeChange = false; if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { II->setArgOperand(0, V); MadeChange = true; } if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) { II->setArgOperand(1, V); MadeChange = true; } if (MadeChange) return II; break; } case Intrinsic::x86_sse4a_extrqi: { // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining // bits of the lower 64-bits. The upper 64-bits are undefined. Value *Op0 = II->getArgOperand(0); unsigned VWidth = Op0->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && "Unexpected operand size"); // See if we're dealing with constant values. ConstantInt *CILength = dyn_cast(II->getArgOperand(1)); ConstantInt *CIIndex = dyn_cast(II->getArgOperand(2)); // Attempt to simplify to a constant or shuffle vector. if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder)) return replaceInstUsesWith(*II, V); // EXTRQI only uses the lowest 64-bits of the first 128-bit vector // operand. if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_sse4a_insertq: { Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); unsigned VWidth = Op0->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && Op1->getType()->getVectorNumElements() == 2 && "Unexpected operand size"); // See if we're dealing with constant values. Constant *C1 = dyn_cast(Op1); ConstantInt *CI11 = C1 ? dyn_cast_or_null(C1->getAggregateElement((unsigned)1)) : nullptr; // Attempt to simplify to a constant, shuffle vector or INSERTQI call. if (CI11) { const APInt &V11 = CI11->getValue(); APInt Len = V11.zextOrTrunc(6); APInt Idx = V11.lshr(8).zextOrTrunc(6); if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder)) return replaceInstUsesWith(*II, V); } // INSERTQ only uses the lowest 64-bits of the first 128-bit vector // operand. if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_sse4a_insertqi: { // INSERTQI: Extract lowest Length bits from lower half of second source and // insert over first source starting at Index bit. The upper 64-bits are // undefined. Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); unsigned VWidth0 = Op0->getType()->getVectorNumElements(); unsigned VWidth1 = Op1->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && VWidth1 == 2 && "Unexpected operand sizes"); // See if we're dealing with constant values. ConstantInt *CILength = dyn_cast(II->getArgOperand(2)); ConstantInt *CIIndex = dyn_cast(II->getArgOperand(3)); // Attempt to simplify to a constant or shuffle vector. if (CILength && CIIndex) { APInt Len = CILength->getValue().zextOrTrunc(6); APInt Idx = CIIndex->getValue().zextOrTrunc(6); if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder)) return replaceInstUsesWith(*II, V); } // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector // operands. bool MadeChange = false; if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { II->setArgOperand(0, V); MadeChange = true; } if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) { II->setArgOperand(1, V); MadeChange = true; } if (MadeChange) return II; break; } case Intrinsic::x86_sse41_pblendvb: case Intrinsic::x86_sse41_blendvps: case Intrinsic::x86_sse41_blendvpd: case Intrinsic::x86_avx_blendv_ps_256: case Intrinsic::x86_avx_blendv_pd_256: case Intrinsic::x86_avx2_pblendvb: { // Convert blendv* to vector selects if the mask is constant. // This optimization is convoluted because the intrinsic is defined as // getting a vector of floats or doubles for the ps and pd versions. // FIXME: That should be changed. Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); Value *Mask = II->getArgOperand(2); // fold (blend A, A, Mask) -> A if (Op0 == Op1) return replaceInstUsesWith(CI, Op0); // Zero Mask - select 1st argument. if (isa(Mask)) return replaceInstUsesWith(CI, Op0); // Constant Mask - select 1st/2nd argument lane based on top bit of mask. if (auto *ConstantMask = dyn_cast(Mask)) { Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask); return SelectInst::Create(NewSelector, Op1, Op0, "blendv"); } break; } case Intrinsic::x86_ssse3_pshuf_b_128: case Intrinsic::x86_avx2_pshuf_b: case Intrinsic::x86_avx512_pshuf_b_512: if (Value *V = simplifyX86pshufb(*II, *Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_avx_vpermilvar_ps: case Intrinsic::x86_avx_vpermilvar_ps_256: case Intrinsic::x86_avx512_vpermilvar_ps_512: case Intrinsic::x86_avx_vpermilvar_pd: case Intrinsic::x86_avx_vpermilvar_pd_256: case Intrinsic::x86_avx512_vpermilvar_pd_512: if (Value *V = simplifyX86vpermilvar(*II, *Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_avx2_permd: case Intrinsic::x86_avx2_permps: if (Value *V = simplifyX86vpermv(*II, *Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_avx512_mask_permvar_df_256: case Intrinsic::x86_avx512_mask_permvar_df_512: case Intrinsic::x86_avx512_mask_permvar_di_256: case Intrinsic::x86_avx512_mask_permvar_di_512: case Intrinsic::x86_avx512_mask_permvar_hi_128: case Intrinsic::x86_avx512_mask_permvar_hi_256: case Intrinsic::x86_avx512_mask_permvar_hi_512: case Intrinsic::x86_avx512_mask_permvar_qi_128: case Intrinsic::x86_avx512_mask_permvar_qi_256: case Intrinsic::x86_avx512_mask_permvar_qi_512: case Intrinsic::x86_avx512_mask_permvar_sf_256: case Intrinsic::x86_avx512_mask_permvar_sf_512: case Intrinsic::x86_avx512_mask_permvar_si_256: case Intrinsic::x86_avx512_mask_permvar_si_512: if (Value *V = simplifyX86vpermv(*II, *Builder)) { // We simplified the permuting, now create a select for the masking. V = emitX86MaskSelect(II->getArgOperand(3), V, II->getArgOperand(2), *Builder); return replaceInstUsesWith(*II, V); } break; case Intrinsic::x86_avx_vperm2f128_pd_256: case Intrinsic::x86_avx_vperm2f128_ps_256: case Intrinsic::x86_avx_vperm2f128_si_256: case Intrinsic::x86_avx2_vperm2i128: if (Value *V = simplifyX86vperm2(*II, *Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_avx_maskload_ps: case Intrinsic::x86_avx_maskload_pd: case Intrinsic::x86_avx_maskload_ps_256: case Intrinsic::x86_avx_maskload_pd_256: case Intrinsic::x86_avx2_maskload_d: case Intrinsic::x86_avx2_maskload_q: case Intrinsic::x86_avx2_maskload_d_256: case Intrinsic::x86_avx2_maskload_q_256: if (Instruction *I = simplifyX86MaskedLoad(*II, *this)) return I; break; case Intrinsic::x86_sse2_maskmov_dqu: case Intrinsic::x86_avx_maskstore_ps: case Intrinsic::x86_avx_maskstore_pd: case Intrinsic::x86_avx_maskstore_ps_256: case Intrinsic::x86_avx_maskstore_pd_256: case Intrinsic::x86_avx2_maskstore_d: case Intrinsic::x86_avx2_maskstore_q: case Intrinsic::x86_avx2_maskstore_d_256: case Intrinsic::x86_avx2_maskstore_q_256: if (simplifyX86MaskedStore(*II, *this)) return nullptr; break; case Intrinsic::x86_xop_vpcomb: case Intrinsic::x86_xop_vpcomd: case Intrinsic::x86_xop_vpcomq: case Intrinsic::x86_xop_vpcomw: if (Value *V = simplifyX86vpcom(*II, *Builder, true)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_xop_vpcomub: case Intrinsic::x86_xop_vpcomud: case Intrinsic::x86_xop_vpcomuq: case Intrinsic::x86_xop_vpcomuw: if (Value *V = simplifyX86vpcom(*II, *Builder, false)) return replaceInstUsesWith(*II, V); break; case Intrinsic::ppc_altivec_vperm: // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. // Note that ppc_altivec_vperm has a big-endian bias, so when creating // a vectorshuffle for little endian, we must undo the transformation // performed on vec_perm in altivec.h. That is, we must complement // the permutation mask with respect to 31 and reverse the order of // V1 and V2. if (Constant *Mask = dyn_cast(II->getArgOperand(2))) { assert(Mask->getType()->getVectorNumElements() == 16 && "Bad type for intrinsic!"); // Check that all of the elements are integer constants or undefs. bool AllEltsOk = true; for (unsigned i = 0; i != 16; ++i) { Constant *Elt = Mask->getAggregateElement(i); if (!Elt || !(isa(Elt) || isa(Elt))) { AllEltsOk = false; break; } } if (AllEltsOk) { // Cast the input vectors to byte vectors. Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0), Mask->getType()); Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1), Mask->getType()); Value *Result = UndefValue::get(Op0->getType()); // Only extract each element once. Value *ExtractedElts[32]; memset(ExtractedElts, 0, sizeof(ExtractedElts)); for (unsigned i = 0; i != 16; ++i) { if (isa(Mask->getAggregateElement(i))) continue; unsigned Idx = cast(Mask->getAggregateElement(i))->getZExtValue(); Idx &= 31; // Match the hardware behavior. if (DL.isLittleEndian()) Idx = 31 - Idx; if (!ExtractedElts[Idx]) { Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; ExtractedElts[Idx] = Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse, Builder->getInt32(Idx&15)); } // Insert this value into the result vector. Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx], Builder->getInt32(i)); } return CastInst::Create(Instruction::BitCast, Result, CI.getType()); } } break; case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: { unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT); unsigned AlignArg = II->getNumArgOperands() - 1; ConstantInt *IntrAlign = dyn_cast(II->getArgOperand(AlignArg)); if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) { II->setArgOperand(AlignArg, ConstantInt::get(Type::getInt32Ty(II->getContext()), MemAlign, false)); return II; } break; } case Intrinsic::arm_neon_vmulls: case Intrinsic::arm_neon_vmullu: case Intrinsic::aarch64_neon_smull: case Intrinsic::aarch64_neon_umull: { Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); // Handle mul by zero first: if (isa(Arg0) || isa(Arg1)) { return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); } // Check for constant LHS & RHS - in this case we just simplify. bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu || II->getIntrinsicID() == Intrinsic::aarch64_neon_umull); VectorType *NewVT = cast(II->getType()); if (Constant *CV0 = dyn_cast(Arg0)) { if (Constant *CV1 = dyn_cast(Arg1)) { CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); } // Couldn't simplify - canonicalize constant to the RHS. std::swap(Arg0, Arg1); } // Handle mul by one: if (Constant *CV1 = dyn_cast(Arg1)) if (ConstantInt *Splat = dyn_cast_or_null(CV1->getSplatValue())) if (Splat->isOne()) return CastInst::CreateIntegerCast(Arg0, II->getType(), /*isSigned=*/!Zext); break; } case Intrinsic::amdgcn_rcp: { Value *Src = II->getArgOperand(0); // TODO: Move to ConstantFolding/InstSimplify? if (isa(Src)) return replaceInstUsesWith(CI, Src); if (const ConstantFP *C = dyn_cast(Src)) { const APFloat &ArgVal = C->getValueAPF(); APFloat Val(ArgVal.getSemantics(), 1.0); APFloat::opStatus Status = Val.divide(ArgVal, APFloat::rmNearestTiesToEven); // Only do this if it was exact and therefore not dependent on the // rounding mode. if (Status == APFloat::opOK) return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val)); } break; } case Intrinsic::amdgcn_rsq: { Value *Src = II->getArgOperand(0); // TODO: Move to ConstantFolding/InstSimplify? if (isa(Src)) return replaceInstUsesWith(CI, Src); break; } case Intrinsic::amdgcn_frexp_mant: case Intrinsic::amdgcn_frexp_exp: { Value *Src = II->getArgOperand(0); if (const ConstantFP *C = dyn_cast(Src)) { int Exp; APFloat Significand = frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) { return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Significand)); } // Match instruction special case behavior. if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) Exp = 0; return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp)); } if (isa(Src)) return replaceInstUsesWith(CI, UndefValue::get(II->getType())); break; } case Intrinsic::amdgcn_class: { enum { S_NAN = 1 << 0, // Signaling NaN Q_NAN = 1 << 1, // Quiet NaN N_INFINITY = 1 << 2, // Negative infinity N_NORMAL = 1 << 3, // Negative normal N_SUBNORMAL = 1 << 4, // Negative subnormal N_ZERO = 1 << 5, // Negative zero P_ZERO = 1 << 6, // Positive zero P_SUBNORMAL = 1 << 7, // Positive subnormal P_NORMAL = 1 << 8, // Positive normal P_INFINITY = 1 << 9 // Positive infinity }; const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL | N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY; Value *Src0 = II->getArgOperand(0); Value *Src1 = II->getArgOperand(1); const ConstantInt *CMask = dyn_cast(Src1); if (!CMask) { if (isa(Src0)) return replaceInstUsesWith(*II, UndefValue::get(II->getType())); if (isa(Src1)) return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); break; } uint32_t Mask = CMask->getZExtValue(); // If all tests are made, it doesn't matter what the value is. if ((Mask & FullMask) == FullMask) return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true)); if ((Mask & FullMask) == 0) return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); if (Mask == (S_NAN | Q_NAN)) { // Equivalent of isnan. Replace with standard fcmp. Value *FCmp = Builder->CreateFCmpUNO(Src0, Src0); FCmp->takeName(II); return replaceInstUsesWith(*II, FCmp); } const ConstantFP *CVal = dyn_cast(Src0); if (!CVal) { if (isa(Src0)) return replaceInstUsesWith(*II, UndefValue::get(II->getType())); // Clamp mask to used bits if ((Mask & FullMask) != Mask) { CallInst *NewCall = Builder->CreateCall(II->getCalledFunction(), { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) } ); NewCall->takeName(II); return replaceInstUsesWith(*II, NewCall); } break; } const APFloat &Val = CVal->getValueAPF(); bool Result = ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) || ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) || ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) || ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) || ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) || ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) || ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) || ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) || ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) || ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative()); return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result)); } case Intrinsic::amdgcn_cvt_pkrtz: { Value *Src0 = II->getArgOperand(0); Value *Src1 = II->getArgOperand(1); if (const ConstantFP *C0 = dyn_cast(Src0)) { if (const ConstantFP *C1 = dyn_cast(Src1)) { const fltSemantics &HalfSem = II->getType()->getScalarType()->getFltSemantics(); bool LosesInfo; APFloat Val0 = C0->getValueAPF(); APFloat Val1 = C1->getValueAPF(); Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); Constant *Folded = ConstantVector::get({ ConstantFP::get(II->getContext(), Val0), ConstantFP::get(II->getContext(), Val1) }); return replaceInstUsesWith(*II, Folded); } } if (isa(Src0) && isa(Src1)) return replaceInstUsesWith(*II, UndefValue::get(II->getType())); break; } case Intrinsic::amdgcn_ubfe: case Intrinsic::amdgcn_sbfe: { // Decompose simple cases into standard shifts. Value *Src = II->getArgOperand(0); if (isa(Src)) return replaceInstUsesWith(*II, Src); unsigned Width; Type *Ty = II->getType(); unsigned IntSize = Ty->getIntegerBitWidth(); ConstantInt *CWidth = dyn_cast(II->getArgOperand(2)); if (CWidth) { Width = CWidth->getZExtValue(); if ((Width & (IntSize - 1)) == 0) return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty)); if (Width >= IntSize) { // Hardware ignores high bits, so remove those. II->setArgOperand(2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); return II; } } unsigned Offset; ConstantInt *COffset = dyn_cast(II->getArgOperand(1)); if (COffset) { Offset = COffset->getZExtValue(); if (Offset >= IntSize) { II->setArgOperand(1, ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); return II; } } bool Signed = II->getIntrinsicID() == Intrinsic::amdgcn_sbfe; // TODO: Also emit sub if only width is constant. if (!CWidth && COffset && Offset == 0) { Constant *KSize = ConstantInt::get(COffset->getType(), IntSize); Value *ShiftVal = Builder->CreateSub(KSize, II->getArgOperand(2)); ShiftVal = Builder->CreateZExt(ShiftVal, II->getType()); Value *Shl = Builder->CreateShl(Src, ShiftVal); Value *RightShift = Signed ? Builder->CreateAShr(Shl, ShiftVal) : Builder->CreateLShr(Shl, ShiftVal); RightShift->takeName(II); return replaceInstUsesWith(*II, RightShift); } if (!CWidth || !COffset) break; // TODO: This allows folding to undef when the hardware has specific // behavior? if (Offset + Width < IntSize) { Value *Shl = Builder->CreateShl(Src, IntSize - Offset - Width); Value *RightShift = Signed ? Builder->CreateAShr(Shl, IntSize - Width) : Builder->CreateLShr(Shl, IntSize - Width); RightShift->takeName(II); return replaceInstUsesWith(*II, RightShift); } Value *RightShift = Signed ? Builder->CreateAShr(Src, Offset) : Builder->CreateLShr(Src, Offset); RightShift->takeName(II); return replaceInstUsesWith(*II, RightShift); } case Intrinsic::amdgcn_exp: case Intrinsic::amdgcn_exp_compr: { ConstantInt *En = dyn_cast(II->getArgOperand(1)); if (!En) // Illegal. break; unsigned EnBits = En->getZExtValue(); if (EnBits == 0xf) break; // All inputs enabled. bool IsCompr = II->getIntrinsicID() == Intrinsic::amdgcn_exp_compr; bool Changed = false; for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { if ((!IsCompr && (EnBits & (1 << I)) == 0) || (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { Value *Src = II->getArgOperand(I + 2); if (!isa(Src)) { II->setArgOperand(I + 2, UndefValue::get(Src->getType())); Changed = true; } } } if (Changed) return II; break; } case Intrinsic::amdgcn_fmed3: { // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled // for the shader. Value *Src0 = II->getArgOperand(0); Value *Src1 = II->getArgOperand(1); Value *Src2 = II->getArgOperand(2); bool Swap = false; // Canonicalize constants to RHS operands. // // fmed3(c0, x, c1) -> fmed3(x, c0, c1) if (isa(Src0) && !isa(Src1)) { std::swap(Src0, Src1); Swap = true; } if (isa(Src1) && !isa(Src2)) { std::swap(Src1, Src2); Swap = true; } if (isa(Src0) && !isa(Src1)) { std::swap(Src0, Src1); Swap = true; } if (Swap) { II->setArgOperand(0, Src0); II->setArgOperand(1, Src1); II->setArgOperand(2, Src2); return II; } if (match(Src2, m_NaN()) || isa(Src2)) { CallInst *NewCall = Builder->CreateMinNum(Src0, Src1); NewCall->copyFastMathFlags(II); NewCall->takeName(II); return replaceInstUsesWith(*II, NewCall); } if (const ConstantFP *C0 = dyn_cast(Src0)) { if (const ConstantFP *C1 = dyn_cast(Src1)) { if (const ConstantFP *C2 = dyn_cast(Src2)) { APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), C2->getValueAPF()); return replaceInstUsesWith(*II, ConstantFP::get(Builder->getContext(), Result)); } } } break; } case Intrinsic::amdgcn_icmp: case Intrinsic::amdgcn_fcmp: { const ConstantInt *CC = dyn_cast(II->getArgOperand(2)); if (!CC) break; // Guard against invalid arguments. int64_t CCVal = CC->getZExtValue(); bool IsInteger = II->getIntrinsicID() == Intrinsic::amdgcn_icmp; if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || CCVal > CmpInst::LAST_ICMP_PREDICATE)) || (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || CCVal > CmpInst::LAST_FCMP_PREDICATE))) break; Value *Src0 = II->getArgOperand(0); Value *Src1 = II->getArgOperand(1); if (auto *CSrc0 = dyn_cast(Src0)) { if (auto *CSrc1 = dyn_cast(Src1)) { Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); if (CCmp->isNullValue()) { return replaceInstUsesWith( *II, ConstantExpr::getSExt(CCmp, II->getType())); } // The result of V_ICMP/V_FCMP assembly instructions (which this // intrinsic exposes) is one bit per thread, masked with the EXEC // register (which contains the bitmask of live threads). So a // comparison that always returns true is the same as a read of the // EXEC register. Value *NewF = Intrinsic::getDeclaration( II->getModule(), Intrinsic::read_register, II->getType()); Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")}; MDNode *MD = MDNode::get(II->getContext(), MDArgs); Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)}; CallInst *NewCall = Builder->CreateCall(NewF, Args); NewCall->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent); NewCall->takeName(II); return replaceInstUsesWith(*II, NewCall); } // Canonicalize constants to RHS. CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(static_cast(CCVal)); II->setArgOperand(0, Src1); II->setArgOperand(1, Src0); II->setArgOperand(2, ConstantInt::get(CC->getType(), static_cast(SwapPred))); return II; } if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) break; // Canonicalize compare eq with true value to compare != 0 // llvm.amdgcn.icmp(zext (i1 x), 1, eq) // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) // llvm.amdgcn.icmp(sext (i1 x), -1, eq) // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) Value *ExtSrc; if (CCVal == CmpInst::ICMP_EQ && ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) || (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) && ExtSrc->getType()->isIntegerTy(1)) { II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType())); II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); return II; } CmpInst::Predicate SrcPred; Value *SrcLHS; Value *SrcRHS; // Fold compare eq/ne with 0 from a compare result as the predicate to the // intrinsic. The typical use is a wave vote function in the library, which // will be fed from a user code condition compared with 0. Fold in the // redundant compare. // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) // -> llvm.amdgcn.[if]cmp(a, b, pred) // // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) // -> llvm.amdgcn.[if]cmp(a, b, inv pred) if (match(Src1, m_Zero()) && match(Src0, m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) { if (CCVal == CmpInst::ICMP_EQ) SrcPred = CmpInst::getInversePredicate(SrcPred); Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ? Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp; Value *NewF = Intrinsic::getDeclaration(II->getModule(), NewIID, SrcLHS->getType()); Value *Args[] = { SrcLHS, SrcRHS, ConstantInt::get(CC->getType(), SrcPred) }; CallInst *NewCall = Builder->CreateCall(NewF, Args); NewCall->takeName(II); return replaceInstUsesWith(*II, NewCall); } break; } case Intrinsic::stackrestore: { // If the save is right next to the restore, remove the restore. This can // happen when variable allocas are DCE'd. if (IntrinsicInst *SS = dyn_cast(II->getArgOperand(0))) { if (SS->getIntrinsicID() == Intrinsic::stacksave) { if (&*++SS->getIterator() == II) return eraseInstFromFunction(CI); } } // Scan down this block to see if there is another stack restore in the // same block without an intervening call/alloca. BasicBlock::iterator BI(II); TerminatorInst *TI = II->getParent()->getTerminator(); bool CannotRemove = false; for (++BI; &*BI != TI; ++BI) { if (isa(BI)) { CannotRemove = true; break; } if (CallInst *BCI = dyn_cast(BI)) { if (IntrinsicInst *II = dyn_cast(BCI)) { // If there is a stackrestore below this one, remove this one. if (II->getIntrinsicID() == Intrinsic::stackrestore) return eraseInstFromFunction(CI); // Bail if we cross over an intrinsic with side effects, such as // llvm.stacksave, llvm.read_register, or llvm.setjmp. if (II->mayHaveSideEffects()) { CannotRemove = true; break; } } else { // If we found a non-intrinsic call, we can't remove the stack // restore. CannotRemove = true; break; } } } // If the stack restore is in a return, resume, or unwind block and if there // are no allocas or calls between the restore and the return, nuke the // restore. if (!CannotRemove && (isa(TI) || isa(TI))) return eraseInstFromFunction(CI); break; } case Intrinsic::lifetime_start: // Asan needs to poison memory to detect invalid access which is possible // even for empty lifetime range. if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) break; if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start, Intrinsic::lifetime_end, *this)) return nullptr; break; case Intrinsic::assume: { Value *IIOperand = II->getArgOperand(0); // Remove an assume if it is immediately followed by an identical assume. if (match(II->getNextNode(), m_Intrinsic(m_Specific(IIOperand)))) return eraseInstFromFunction(CI); // Canonicalize assume(a && b) -> assume(a); assume(b); // Note: New assumption intrinsics created here are registered by // the InstCombineIRInserter object. Value *AssumeIntrinsic = II->getCalledValue(), *A, *B; if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) { Builder->CreateCall(AssumeIntrinsic, A, II->getName()); Builder->CreateCall(AssumeIntrinsic, B, II->getName()); return eraseInstFromFunction(*II); } // assume(!(a || b)) -> assume(!a); assume(!b); if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) { Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A), II->getName()); Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B), II->getName()); return eraseInstFromFunction(*II); } // assume( (load addr) != null ) -> add 'nonnull' metadata to load // (if assume is valid at the load) CmpInst::Predicate Pred; Instruction *LHS; if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && LHS->getType()->isPointerTy() && isValidAssumeForContext(II, LHS, &DT)) { MDNode *MD = MDNode::get(II->getContext(), None); LHS->setMetadata(LLVMContext::MD_nonnull, MD); return eraseInstFromFunction(*II); // TODO: apply nonnull return attributes to calls and invokes // TODO: apply range metadata for range check patterns? } // If there is a dominating assume with the same condition as this one, // then this one is redundant, and should be removed. KnownBits Known(1); computeKnownBits(IIOperand, Known, 0, II); if (Known.isAllOnes()) return eraseInstFromFunction(*II); // Update the cache of affected values for this assumption (we might be // here because we just simplified the condition). AC.updateAffectedValues(II); break; } case Intrinsic::experimental_gc_relocate: { // Translate facts known about a pointer before relocating into // facts about the relocate value, while being careful to // preserve relocation semantics. Value *DerivedPtr = cast(II)->getDerivedPtr(); // Remove the relocation if unused, note that this check is required // to prevent the cases below from looping forever. if (II->use_empty()) return eraseInstFromFunction(*II); // Undef is undef, even after relocation. // TODO: provide a hook for this in GCStrategy. This is clearly legal for // most practical collectors, but there was discussion in the review thread // about whether it was legal for all possible collectors. if (isa(DerivedPtr)) // Use undef of gc_relocate's type to replace it. return replaceInstUsesWith(*II, UndefValue::get(II->getType())); if (auto *PT = dyn_cast(II->getType())) { // The relocation of null will be null for most any collector. // TODO: provide a hook for this in GCStrategy. There might be some // weird collector this property does not hold for. if (isa(DerivedPtr)) // Use null-pointer of gc_relocate's type to replace it. return replaceInstUsesWith(*II, ConstantPointerNull::get(PT)); // isKnownNonNull -> nonnull attribute if (isKnownNonNullAt(DerivedPtr, II, &DT)) II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); } // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) // Canonicalize on the type from the uses to the defs // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) break; } case Intrinsic::experimental_guard: { // Is this guard followed by another guard? Instruction *NextInst = II->getNextNode(); Value *NextCond = nullptr; if (match(NextInst, m_Intrinsic(m_Value(NextCond)))) { Value *CurrCond = II->getArgOperand(0); // Remove a guard that it is immediately preceded by an identical guard. if (CurrCond == NextCond) return eraseInstFromFunction(*NextInst); // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). II->setArgOperand(0, Builder->CreateAnd(CurrCond, NextCond)); return eraseInstFromFunction(*NextInst); } break; } } return visitCallSite(II); } // Fence instruction simplification Instruction *InstCombiner::visitFenceInst(FenceInst &FI) { // Remove identical consecutive fences. if (auto *NFI = dyn_cast(FI.getNextNode())) if (FI.isIdenticalTo(NFI)) return eraseInstFromFunction(FI); return nullptr; } // InvokeInst simplification // Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { return visitCallSite(&II); } /// If this cast does not affect the value passed through the varargs area, we /// can eliminate the use of the cast. static bool isSafeToEliminateVarargsCast(const CallSite CS, const DataLayout &DL, const CastInst *const CI, const int ix) { if (!CI->isLosslessCast()) return false; // If this is a GC intrinsic, avoid munging types. We need types for // statepoint reconstruction in SelectionDAG. // TODO: This is probably something which should be expanded to all // intrinsics since the entire point of intrinsics is that // they are understandable by the optimizer. if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)) return false; // The size of ByVal or InAlloca arguments is derived from the type, so we // can't change to a type with a different size. If the size were // passed explicitly we could avoid this check. if (!CS.isByValOrInAllocaArgument(ix)) return true; Type* SrcTy = cast(CI->getOperand(0)->getType())->getElementType(); Type* DstTy = cast(CI->getType())->getElementType(); if (!SrcTy->isSized() || !DstTy->isSized()) return false; if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy)) return false; return true; } Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) { if (!CI->getCalledFunction()) return nullptr; auto InstCombineRAUW = [this](Instruction *From, Value *With) { replaceInstUsesWith(*From, With); }; LibCallSimplifier Simplifier(DL, &TLI, InstCombineRAUW); if (Value *With = Simplifier.optimizeCall(CI)) { ++NumSimplified; return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); } return nullptr; } static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { // Strip off at most one level of pointer casts, looking for an alloca. This // is good enough in practice and simpler than handling any number of casts. Value *Underlying = TrampMem->stripPointerCasts(); if (Underlying != TrampMem && (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) return nullptr; if (!isa(Underlying)) return nullptr; IntrinsicInst *InitTrampoline = nullptr; for (User *U : TrampMem->users()) { IntrinsicInst *II = dyn_cast(U); if (!II) return nullptr; if (II->getIntrinsicID() == Intrinsic::init_trampoline) { if (InitTrampoline) // More than one init_trampoline writes to this value. Give up. return nullptr; InitTrampoline = II; continue; } if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) // Allow any number of calls to adjust.trampoline. continue; return nullptr; } // No call to init.trampoline found. if (!InitTrampoline) return nullptr; // Check that the alloca is being used in the expected way. if (InitTrampoline->getOperand(0) != TrampMem) return nullptr; return InitTrampoline; } static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, Value *TrampMem) { // Visit all the previous instructions in the basic block, and try to find a // init.trampoline which has a direct path to the adjust.trampoline. for (BasicBlock::iterator I = AdjustTramp->getIterator(), E = AdjustTramp->getParent()->begin(); I != E;) { Instruction *Inst = &*--I; if (IntrinsicInst *II = dyn_cast(I)) if (II->getIntrinsicID() == Intrinsic::init_trampoline && II->getOperand(0) == TrampMem) return II; if (Inst->mayWriteToMemory()) return nullptr; } return nullptr; } // Given a call to llvm.adjust.trampoline, find and return the corresponding // call to llvm.init.trampoline if the call to the trampoline can be optimized // to a direct call to a function. Otherwise return NULL. // static IntrinsicInst *findInitTrampoline(Value *Callee) { Callee = Callee->stripPointerCasts(); IntrinsicInst *AdjustTramp = dyn_cast(Callee); if (!AdjustTramp || AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) return nullptr; Value *TrampMem = AdjustTramp->getOperand(0); if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) return IT; if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) return IT; return nullptr; } /// Improvements for call and invoke instructions. Instruction *InstCombiner::visitCallSite(CallSite CS) { if (isAllocLikeFn(CS.getInstruction(), &TLI)) return visitAllocSite(*CS.getInstruction()); bool Changed = false; // Mark any parameters that are known to be non-null with the nonnull // attribute. This is helpful for inlining calls to functions with null // checks on their arguments. SmallVector ArgNos; unsigned ArgNo = 0; for (Value *V : CS.args()) { if (V->getType()->isPointerTy() && !CS.paramHasAttr(ArgNo, Attribute::NonNull) && isKnownNonNullAt(V, CS.getInstruction(), &DT)) ArgNos.push_back(ArgNo); ArgNo++; } assert(ArgNo == CS.arg_size() && "sanity check"); if (!ArgNos.empty()) { AttributeList AS = CS.getAttributes(); LLVMContext &Ctx = CS.getInstruction()->getContext(); AS = AS.addParamAttribute(Ctx, ArgNos, Attribute::get(Ctx, Attribute::NonNull)); CS.setAttributes(AS); Changed = true; } // If the callee is a pointer to a function, attempt to move any casts to the // arguments of the call/invoke. Value *Callee = CS.getCalledValue(); if (!isa(Callee) && transformConstExprCastCall(CS)) return nullptr; if (Function *CalleeF = dyn_cast(Callee)) { // Remove the convergent attr on calls when the callee is not convergent. if (CS.isConvergent() && !CalleeF->isConvergent() && !CalleeF->isIntrinsic()) { DEBUG(dbgs() << "Removing convergent attr from instr " << CS.getInstruction() << "\n"); CS.setNotConvergent(); return CS.getInstruction(); } // If the call and callee calling conventions don't match, this call must // be unreachable, as the call is undefined. if (CalleeF->getCallingConv() != CS.getCallingConv() && // Only do this for calls to a function with a body. A prototype may // not actually end up matching the implementation's calling conv for a // variety of reasons (e.g. it may be written in assembly). !CalleeF->isDeclaration()) { Instruction *OldCall = CS.getInstruction(); new StoreInst(ConstantInt::getTrue(Callee->getContext()), UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), OldCall); // If OldCall does not return void then replaceAllUsesWith undef. // This allows ValueHandlers and custom metadata to adjust itself. if (!OldCall->getType()->isVoidTy()) replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType())); if (isa(OldCall)) return eraseInstFromFunction(*OldCall); // We cannot remove an invoke, because it would change the CFG, just // change the callee to a null pointer. cast(OldCall)->setCalledFunction( Constant::getNullValue(CalleeF->getType())); return nullptr; } } if (isa(Callee) || isa(Callee)) { // If CS does not return void then replaceAllUsesWith undef. // This allows ValueHandlers and custom metadata to adjust itself. if (!CS.getInstruction()->getType()->isVoidTy()) replaceInstUsesWith(*CS.getInstruction(), UndefValue::get(CS.getInstruction()->getType())); if (isa(CS.getInstruction())) { // Can't remove an invoke because we cannot change the CFG. return nullptr; } // This instruction is not reachable, just remove it. We insert a store to // undef so that we know that this code is not reachable, despite the fact // that we can't modify the CFG here. new StoreInst(ConstantInt::getTrue(Callee->getContext()), UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), CS.getInstruction()); return eraseInstFromFunction(*CS.getInstruction()); } if (IntrinsicInst *II = findInitTrampoline(Callee)) return transformCallThroughTrampoline(CS, II); PointerType *PTy = cast(Callee->getType()); FunctionType *FTy = cast(PTy->getElementType()); if (FTy->isVarArg()) { int ix = FTy->getNumParams(); // See if we can optimize any arguments passed through the varargs area of // the call. for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(), E = CS.arg_end(); I != E; ++I, ++ix) { CastInst *CI = dyn_cast(*I); if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) { *I = CI->getOperand(0); Changed = true; } } } if (isa(Callee) && !CS.doesNotThrow()) { // Inline asm calls cannot throw - mark them 'nounwind'. CS.setDoesNotThrow(); Changed = true; } // Try to optimize the call if possible, we require DataLayout for most of // this. None of these calls are seen as possibly dead so go ahead and // delete the instruction now. if (CallInst *CI = dyn_cast(CS.getInstruction())) { Instruction *I = tryOptimizeCall(CI); // If we changed something return the result, etc. Otherwise let // the fallthrough check. if (I) return eraseInstFromFunction(*I); } return Changed ? CS.getInstruction() : nullptr; } /// If the callee is a constexpr cast of a function, attempt to move the cast to /// the arguments of the call/invoke. bool InstCombiner::transformConstExprCastCall(CallSite CS) { auto *Callee = dyn_cast(CS.getCalledValue()->stripPointerCasts()); if (!Callee) return false; // The prototype of a thunk is a lie. Don't directly call such a function. if (Callee->hasFnAttribute("thunk")) return false; Instruction *Caller = CS.getInstruction(); const AttributeList &CallerPAL = CS.getAttributes(); // Okay, this is a cast from a function to a different type. Unless doing so // would cause a type conversion of one of our arguments, change this call to // be a direct call with arguments casted to the appropriate types. // FunctionType *FT = Callee->getFunctionType(); Type *OldRetTy = Caller->getType(); Type *NewRetTy = FT->getReturnType(); // Check to see if we are changing the return type... if (OldRetTy != NewRetTy) { if (NewRetTy->isStructTy()) return false; // TODO: Handle multiple return values. if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { if (Callee->isDeclaration()) return false; // Cannot transform this return value. if (!Caller->use_empty() && // void -> non-void is handled specially !NewRetTy->isVoidTy()) return false; // Cannot transform this return value. } if (!CallerPAL.isEmpty() && !Caller->use_empty()) { AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) return false; // Attribute not compatible with transformed value. } // If the callsite is an invoke instruction, and the return value is used by // a PHI node in a successor, we cannot change the return type of the call // because there is no place to put the cast instruction (without breaking // the critical edge). Bail out in this case. if (!Caller->use_empty()) if (InvokeInst *II = dyn_cast(Caller)) for (User *U : II->users()) if (PHINode *PN = dyn_cast(U)) if (PN->getParent() == II->getNormalDest() || PN->getParent() == II->getUnwindDest()) return false; } unsigned NumActualArgs = CS.arg_size(); unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); // Prevent us turning: // declare void @takes_i32_inalloca(i32* inalloca) // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) // // into: // call void @takes_i32_inalloca(i32* null) // // Similarly, avoid folding away bitcasts of byval calls. if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) return false; CallSite::arg_iterator AI = CS.arg_begin(); for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { Type *ParamTy = FT->getParamType(i); Type *ActTy = (*AI)->getType(); if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) return false; // Cannot transform this parameter value. if (AttrBuilder(CallerPAL.getParamAttributes(i)) .overlaps(AttributeFuncs::typeIncompatible(ParamTy))) return false; // Attribute not compatible with transformed value. if (CS.isInAllocaArgument(i)) return false; // Cannot transform to and from inalloca. // If the parameter is passed as a byval argument, then we have to have a // sized type and the sized type has to have the same size as the old type. if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { PointerType *ParamPTy = dyn_cast(ParamTy); if (!ParamPTy || !ParamPTy->getElementType()->isSized()) return false; Type *CurElTy = ActTy->getPointerElementType(); if (DL.getTypeAllocSize(CurElTy) != DL.getTypeAllocSize(ParamPTy->getElementType())) return false; } } if (Callee->isDeclaration()) { // Do not delete arguments unless we have a function body. if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) return false; // If the callee is just a declaration, don't change the varargsness of the // call. We don't want to introduce a varargs call where one doesn't // already exist. PointerType *APTy = cast(CS.getCalledValue()->getType()); if (FT->isVarArg()!=cast(APTy->getElementType())->isVarArg()) return false; // If both the callee and the cast type are varargs, we still have to make // sure the number of fixed parameters are the same or we have the same // ABI issues as if we introduce a varargs call. if (FT->isVarArg() && cast(APTy->getElementType())->isVarArg() && FT->getNumParams() != cast(APTy->getElementType())->getNumParams()) return false; } if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && !CallerPAL.isEmpty()) { // In this case we have more arguments than the new function type, but we // won't be dropping them. Check that these extra arguments have attributes // that are compatible with being a vararg call argument. unsigned SRetIdx; if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && SRetIdx > FT->getNumParams()) return false; } // Okay, we decided that this is a safe thing to do: go ahead and start // inserting cast instructions as necessary. SmallVector Args; SmallVector ArgAttrs; Args.reserve(NumActualArgs); ArgAttrs.reserve(NumActualArgs); // Get any return attributes. AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); // If the return value is not being used, the type may not be compatible // with the existing attributes. Wipe out any problematic attributes. RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); AI = CS.arg_begin(); for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { Type *ParamTy = FT->getParamType(i); Value *NewArg = *AI; if ((*AI)->getType() != ParamTy) NewArg = Builder->CreateBitOrPointerCast(*AI, ParamTy); Args.push_back(NewArg); // Add any parameter attributes. ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); } // If the function takes more arguments than the call was taking, add them // now. for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { Args.push_back(Constant::getNullValue(FT->getParamType(i))); ArgAttrs.push_back(AttributeSet()); } // If we are removing arguments to the function, emit an obnoxious warning. if (FT->getNumParams() < NumActualArgs) { // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 if (FT->isVarArg()) { // Add all of the arguments in their promoted form to the arg list. for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { Type *PTy = getPromotedType((*AI)->getType()); Value *NewArg = *AI; if (PTy != (*AI)->getType()) { // Must promote to pass through va_arg area! Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, PTy, false); NewArg = Builder->CreateCast(opcode, *AI, PTy); } Args.push_back(NewArg); // Add any parameter attributes. ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); } } } AttributeSet FnAttrs = CallerPAL.getFnAttributes(); if (NewRetTy->isVoidTy()) Caller->setName(""); // Void type should not have a name. assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && "missing argument attributes"); LLVMContext &Ctx = Callee->getContext(); AttributeList NewCallerPAL = AttributeList::get( Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); SmallVector OpBundles; CS.getOperandBundlesAsDefs(OpBundles); CallSite NewCS; if (InvokeInst *II = dyn_cast(Caller)) { NewCS = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(), Args, OpBundles); } else { NewCS = Builder->CreateCall(Callee, Args, OpBundles); cast(NewCS.getInstruction()) ->setTailCallKind(cast(Caller)->getTailCallKind()); } NewCS->takeName(Caller); NewCS.setCallingConv(CS.getCallingConv()); NewCS.setAttributes(NewCallerPAL); // Preserve the weight metadata for the new call instruction. The metadata // is used by SamplePGO to check callsite's hotness. uint64_t W; if (Caller->extractProfTotalWeight(W)) NewCS->setProfWeight(W); // Insert a cast of the return type as necessary. Instruction *NC = NewCS.getInstruction(); Value *NV = NC; if (OldRetTy != NV->getType() && !Caller->use_empty()) { if (!NV->getType()->isVoidTy()) { NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); NC->setDebugLoc(Caller->getDebugLoc()); // If this is an invoke instruction, we should insert it after the first // non-phi, instruction in the normal successor block. if (InvokeInst *II = dyn_cast(Caller)) { BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); InsertNewInstBefore(NC, *I); } else { // Otherwise, it's a call, just insert cast right after the call. InsertNewInstBefore(NC, *Caller); } Worklist.AddUsersToWorkList(*Caller); } else { NV = UndefValue::get(Caller->getType()); } } if (!Caller->use_empty()) replaceInstUsesWith(*Caller, NV); else if (Caller->hasValueHandle()) { if (OldRetTy == NV->getType()) ValueHandleBase::ValueIsRAUWd(Caller, NV); else // We cannot call ValueIsRAUWd with a different type, and the // actual tracked value will disappear. ValueHandleBase::ValueIsDeleted(Caller); } eraseInstFromFunction(*Caller); return true; } /// Turn a call to a function created by init_trampoline / adjust_trampoline /// intrinsic pair into a direct call to the underlying function. Instruction * InstCombiner::transformCallThroughTrampoline(CallSite CS, IntrinsicInst *Tramp) { Value *Callee = CS.getCalledValue(); PointerType *PTy = cast(Callee->getType()); FunctionType *FTy = cast(PTy->getElementType()); AttributeList Attrs = CS.getAttributes(); // If the call already has the 'nest' attribute somewhere then give up - // otherwise 'nest' would occur twice after splicing in the chain. if (Attrs.hasAttrSomewhere(Attribute::Nest)) return nullptr; assert(Tramp && "transformCallThroughTrampoline called with incorrect CallSite."); Function *NestF =cast(Tramp->getArgOperand(1)->stripPointerCasts()); FunctionType *NestFTy = cast(NestF->getValueType()); AttributeList NestAttrs = NestF->getAttributes(); if (!NestAttrs.isEmpty()) { unsigned NestArgNo = 0; Type *NestTy = nullptr; AttributeSet NestAttr; // Look for a parameter marked with the 'nest' attribute. for (FunctionType::param_iterator I = NestFTy->param_begin(), E = NestFTy->param_end(); I != E; ++NestArgNo, ++I) { AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo); if (AS.hasAttribute(Attribute::Nest)) { // Record the parameter type and any other attributes. NestTy = *I; NestAttr = AS; break; } } if (NestTy) { Instruction *Caller = CS.getInstruction(); std::vector NewArgs; std::vector NewArgAttrs; NewArgs.reserve(CS.arg_size() + 1); NewArgAttrs.reserve(CS.arg_size()); // Insert the nest argument into the call argument list, which may // mean appending it. Likewise for attributes. { unsigned ArgNo = 0; CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); do { if (ArgNo == NestArgNo) { // Add the chain argument and attributes. Value *NestVal = Tramp->getArgOperand(2); if (NestVal->getType() != NestTy) NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest"); NewArgs.push_back(NestVal); NewArgAttrs.push_back(NestAttr); } if (I == E) break; // Add the original argument and attributes. NewArgs.push_back(*I); NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); ++ArgNo; ++I; } while (true); } // The trampoline may have been bitcast to a bogus type (FTy). // Handle this by synthesizing a new function type, equal to FTy // with the chain parameter inserted. std::vector NewTypes; NewTypes.reserve(FTy->getNumParams()+1); // Insert the chain's type into the list of parameter types, which may // mean appending it. { unsigned ArgNo = 0; FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); do { if (ArgNo == NestArgNo) // Add the chain's type. NewTypes.push_back(NestTy); if (I == E) break; // Add the original type. NewTypes.push_back(*I); ++ArgNo; ++I; } while (true); } // Replace the trampoline call with a direct call. Let the generic // code sort out any function type mismatches. FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg()); Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ? NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy)); AttributeList NewPAL = AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(), Attrs.getRetAttributes(), NewArgAttrs); SmallVector OpBundles; CS.getOperandBundlesAsDefs(OpBundles); Instruction *NewCaller; if (InvokeInst *II = dyn_cast(Caller)) { NewCaller = InvokeInst::Create(NewCallee, II->getNormalDest(), II->getUnwindDest(), NewArgs, OpBundles); cast(NewCaller)->setCallingConv(II->getCallingConv()); cast(NewCaller)->setAttributes(NewPAL); } else { NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles); cast(NewCaller)->setTailCallKind( cast(Caller)->getTailCallKind()); cast(NewCaller)->setCallingConv( cast(Caller)->getCallingConv()); cast(NewCaller)->setAttributes(NewPAL); } return NewCaller; } } // Replace the trampoline call with a direct call. Since there is no 'nest' // parameter, there is no need to adjust the argument list. Let the generic // code sort out any function type mismatches. Constant *NewCallee = NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy); CS.setCalledFunction(NewCallee); return CS.getInstruction(); }