//===- InstCombineSelect.cpp ----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the visitSelect function. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/PatternMatch.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "instcombine" static SelectPatternFlavor getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) { switch (SPF) { default: llvm_unreachable("unhandled!"); case SPF_SMIN: return SPF_SMAX; case SPF_UMIN: return SPF_UMAX; case SPF_SMAX: return SPF_SMIN; case SPF_UMAX: return SPF_UMIN; } } static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF, bool Ordered=false) { switch (SPF) { default: llvm_unreachable("unhandled!"); case SPF_SMIN: return ICmpInst::ICMP_SLT; case SPF_UMIN: return ICmpInst::ICMP_ULT; case SPF_SMAX: return ICmpInst::ICMP_SGT; case SPF_UMAX: return ICmpInst::ICMP_UGT; case SPF_FMINNUM: return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; case SPF_FMAXNUM: return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; } } static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder, SelectPatternFlavor SPF, Value *A, Value *B) { CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF); assert(CmpInst::isIntPredicate(Pred)); return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B); } /// We want to turn code that looks like this: /// %C = or %A, %B /// %D = select %cond, %C, %A /// into: /// %C = select %cond, %B, 0 /// %D = or %A, %C /// /// Assuming that the specified instruction is an operand to the select, return /// a bitmask indicating which operands of this instruction are foldable if they /// equal the other incoming value of the select. /// static unsigned getSelectFoldableOperands(Instruction *I) { switch (I->getOpcode()) { case Instruction::Add: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: return 3; // Can fold through either operand. case Instruction::Sub: // Can only fold on the amount subtracted. case Instruction::Shl: // Can only fold on the shift amount. case Instruction::LShr: case Instruction::AShr: return 1; default: return 0; // Cannot fold } } /// For the same transformation as the previous function, return the identity /// constant that goes into the select. static Constant *getSelectFoldableConstant(Instruction *I) { switch (I->getOpcode()) { default: llvm_unreachable("This cannot happen!"); case Instruction::Add: case Instruction::Sub: case Instruction::Or: case Instruction::Xor: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: return Constant::getNullValue(I->getType()); case Instruction::And: return Constant::getAllOnesValue(I->getType()); case Instruction::Mul: return ConstantInt::get(I->getType(), 1); } } /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI) { // If this is a cast from the same type, merge. if (TI->getNumOperands() == 1 && TI->isCast()) { Type *FIOpndTy = FI->getOperand(0)->getType(); if (TI->getOperand(0)->getType() != FIOpndTy) return nullptr; // The select condition may be a vector. We may only change the operand // type if the vector width remains the same (and matches the condition). Type *CondTy = SI.getCondition()->getType(); if (CondTy->isVectorTy()) { if (!FIOpndTy->isVectorTy()) return nullptr; if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) return nullptr; // TODO: If the backend knew how to deal with casts better, we could // remove this limitation. For now, there's too much potential to create // worse codegen by promoting the select ahead of size-altering casts // (PR28160). // // Note that ValueTracking's matchSelectPattern() looks through casts // without checking 'hasOneUse' when it matches min/max patterns, so this // transform may end up happening anyway. if (TI->getOpcode() != Instruction::BitCast && (!TI->hasOneUse() || !FI->hasOneUse())) return nullptr; } else if (!TI->hasOneUse() || !FI->hasOneUse()) { // TODO: The one-use restrictions for a scalar select could be eased if // the fold of a select in visitLoadInst() was enhanced to match a pattern // that includes a cast. return nullptr; } // Fold this by inserting a select from the input values. Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0), FI->getOperand(0), SI.getName() + ".v", &SI); return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, TI->getType()); } // Only handle binary operators with one-use here. As with the cast case // above, it may be possible to relax the one-use constraint, but that needs // be examined carefully since it may not reduce the total number of // instructions. BinaryOperator *BO = dyn_cast(TI); if (!BO || !TI->hasOneUse() || !FI->hasOneUse()) return nullptr; // Figure out if the operations have any operands in common. Value *MatchOp, *OtherOpT, *OtherOpF; bool MatchIsOpZero; if (TI->getOperand(0) == FI->getOperand(0)) { MatchOp = TI->getOperand(0); OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(1); MatchIsOpZero = true; } else if (TI->getOperand(1) == FI->getOperand(1)) { MatchOp = TI->getOperand(1); OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(0); MatchIsOpZero = false; } else if (!TI->isCommutative()) { return nullptr; } else if (TI->getOperand(0) == FI->getOperand(1)) { MatchOp = TI->getOperand(0); OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(0); MatchIsOpZero = true; } else if (TI->getOperand(1) == FI->getOperand(0)) { MatchOp = TI->getOperand(1); OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(1); MatchIsOpZero = true; } else { return nullptr; } // If we reach here, they do have operations in common. Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, SI.getName() + ".v", &SI); Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; return BinaryOperator::Create(BO->getOpcode(), Op0, Op1); } static bool isSelect01(Constant *C1, Constant *C2) { ConstantInt *C1I = dyn_cast(C1); if (!C1I) return false; ConstantInt *C2I = dyn_cast(C2); if (!C2I) return false; if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. return false; return C1I->isOne() || C1I->isAllOnesValue() || C2I->isOne() || C2I->isAllOnesValue(); } /// Try to fold the select into one of the operands to allow further /// optimization. Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, Value *FalseVal) { // See the comment above GetSelectFoldableOperands for a description of the // transformation we are doing here. if (Instruction *TVI = dyn_cast(TrueVal)) { if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && !isa(FalseVal)) { if (unsigned SFO = getSelectFoldableOperands(TVI)) { unsigned OpToFold = 0; if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = getSelectFoldableConstant(TVI); Value *OOp = TVI->getOperand(2-OpToFold); // Avoid creating select between 2 constants unless it's selecting // between 0, 1 and -1. if (!isa(OOp) || isSelect01(C, cast(OOp))) { Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C); NewSel->takeName(TVI); BinaryOperator *TVI_BO = cast(TVI); BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), FalseVal, NewSel); BO->copyIRFlags(TVI_BO); return BO; } } } } } if (Instruction *FVI = dyn_cast(FalseVal)) { if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && !isa(TrueVal)) { if (unsigned SFO = getSelectFoldableOperands(FVI)) { unsigned OpToFold = 0; if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = getSelectFoldableConstant(FVI); Value *OOp = FVI->getOperand(2-OpToFold); // Avoid creating select between 2 constants unless it's selecting // between 0, 1 and -1. if (!isa(OOp) || isSelect01(C, cast(OOp))) { Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp); NewSel->takeName(FVI); BinaryOperator *FVI_BO = cast(FVI); BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), TrueVal, NewSel); BO->copyIRFlags(FVI_BO); return BO; } } } } } return nullptr; } /// We want to turn: /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) /// into: /// (or (shl (and X, C1), C3), y) /// iff: /// C1 and C2 are both powers of 2 /// where: /// C3 = Log(C2) - Log(C1) /// /// This transform handles cases where: /// 1. The icmp predicate is inverted /// 2. The select operands are reversed /// 3. The magnitude of C2 and C1 are flipped static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy *Builder) { const ICmpInst *IC = dyn_cast(SI.getCondition()); if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) return nullptr; Value *CmpLHS = IC->getOperand(0); Value *CmpRHS = IC->getOperand(1); if (!match(CmpRHS, m_Zero())) return nullptr; Value *X; const APInt *C1; if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1)))) return nullptr; const APInt *C2; bool OrOnTrueVal = false; bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); if (!OrOnFalseVal) OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); if (!OrOnFalseVal && !OrOnTrueVal) return nullptr; Value *V = CmpLHS; Value *Y = OrOnFalseVal ? TrueVal : FalseVal; unsigned C1Log = C1->logBase2(); unsigned C2Log = C2->logBase2(); if (C2Log > C1Log) { V = Builder->CreateZExtOrTrunc(V, Y->getType()); V = Builder->CreateShl(V, C2Log - C1Log); } else if (C1Log > C2Log) { V = Builder->CreateLShr(V, C1Log - C2Log); V = Builder->CreateZExtOrTrunc(V, Y->getType()); } else V = Builder->CreateZExtOrTrunc(V, Y->getType()); ICmpInst::Predicate Pred = IC->getPredicate(); if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) || (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal)) V = Builder->CreateXor(V, *C2); return Builder->CreateOr(V, Y); } /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single /// call to cttz/ctlz with flag 'is_zero_undef' cleared. /// /// For example, we can fold the following code sequence: /// \code /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) /// %1 = icmp ne i32 %x, 0 /// %2 = select i1 %1, i32 %0, i32 32 /// \code /// /// into: /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy *Builder) { ICmpInst::Predicate Pred = ICI->getPredicate(); Value *CmpLHS = ICI->getOperand(0); Value *CmpRHS = ICI->getOperand(1); // Check if the condition value compares a value for equality against zero. if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) return nullptr; Value *Count = FalseVal; Value *ValueOnZero = TrueVal; if (Pred == ICmpInst::ICMP_NE) std::swap(Count, ValueOnZero); // Skip zero extend/truncate. Value *V = nullptr; if (match(Count, m_ZExt(m_Value(V))) || match(Count, m_Trunc(m_Value(V)))) Count = V; // Check if the value propagated on zero is a constant number equal to the // sizeof in bits of 'Count'. unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) return nullptr; // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the // input to the cttz/ctlz is used as LHS for the compare instruction. if (match(Count, m_Intrinsic(m_Specific(CmpLHS))) || match(Count, m_Intrinsic(m_Specific(CmpLHS)))) { IntrinsicInst *II = cast(Count); IRBuilder<> Builder(II); // Explicitly clear the 'undef_on_zero' flag. IntrinsicInst *NewI = cast(II->clone()); Type *Ty = NewI->getArgOperand(1)->getType(); NewI->setArgOperand(1, Constant::getNullValue(Ty)); Builder.Insert(NewI); return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); } return nullptr; } /// Return true if we find and adjust an icmp+select pattern where the compare /// is with a constant that can be incremented or decremented to match the /// minimum or maximum idiom. static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { ICmpInst::Predicate Pred = Cmp.getPredicate(); Value *CmpLHS = Cmp.getOperand(0); Value *CmpRHS = Cmp.getOperand(1); Value *TrueVal = Sel.getTrueValue(); Value *FalseVal = Sel.getFalseValue(); // We may move or edit the compare, so make sure the select is the only user. const APInt *CmpC; if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) return false; // These transforms only work for selects of integers or vector selects of // integer vectors. Type *SelTy = Sel.getType(); auto *SelEltTy = dyn_cast(SelTy->getScalarType()); if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) return false; Constant *AdjustedRHS; if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); else return false; // X > C ? X : C+1 --> X < C+1 ? C+1 : X // X < C ? X : C-1 --> X > C-1 ? C-1 : X if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { ; // Nothing to do here. Values match without any sign/zero extension. } // Types do not match. Instead of calculating this with mixed types, promote // all to the larger type. This enables scalar evolution to analyze this // expression. else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); // X = sext x; x >s c ? X : C+1 --> X = sext x; X X = sext x; X >s C-1 ? C-1 : X // X = sext x; x >u c ? X : C+1 --> X = sext x; X X = sext x; X >u C-1 ? C-1 : X if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { CmpLHS = TrueVal; AdjustedRHS = SextRHS; } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == TrueVal) { CmpLHS = FalseVal; AdjustedRHS = SextRHS; } else if (Cmp.isUnsigned()) { Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); // X = zext x; x >u c ? X : C+1 --> X = zext x; X X = zext x; X >u C-1 ? C-1 : X // zext + signed compare cannot be changed: // 0xff s 0x0000 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { CmpLHS = TrueVal; AdjustedRHS = ZextRHS; } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == TrueVal) { CmpLHS = FalseVal; AdjustedRHS = ZextRHS; } else { return false; } } else { return false; } } else { return false; } Pred = ICmpInst::getSwappedPredicate(Pred); CmpRHS = AdjustedRHS; std::swap(FalseVal, TrueVal); Cmp.setPredicate(Pred); Cmp.setOperand(0, CmpLHS); Cmp.setOperand(1, CmpRHS); Sel.setOperand(1, TrueVal); Sel.setOperand(2, FalseVal); Sel.swapProfMetadata(); // Move the compare instruction right before the select instruction. Otherwise // the sext/zext value may be defined after the compare instruction uses it. Cmp.moveBefore(&Sel); return true; } /// If this is an integer min/max where the select's 'true' operand is a /// constant, canonicalize that constant to the 'false' operand: /// select (icmp Pred X, C), C, X --> select (icmp Pred' X, C), X, C static Instruction * canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, InstCombiner::BuilderTy &Builder) { // TODO: We should also canonicalize min/max when the select has a different // constant value than the cmp constant, but we need to fix the backend first. if (!Cmp.hasOneUse() || !isa(Cmp.getOperand(1)) || !isa(Sel.getTrueValue()) || isa(Sel.getFalseValue()) || Cmp.getOperand(1) != Sel.getTrueValue()) return nullptr; // Canonicalize the compare predicate based on whether we have min or max. Value *LHS, *RHS; ICmpInst::Predicate NewPred; SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); switch (SPR.Flavor) { case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break; case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break; case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break; case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break; default: return nullptr; } // Canonicalize the constant to the right side. if (isa(LHS)) std::swap(LHS, RHS); Value *NewCmp = Builder.CreateICmp(NewPred, LHS, RHS); SelectInst *NewSel = SelectInst::Create(NewCmp, LHS, RHS, "", nullptr, &Sel); // We swapped the select operands, so swap the metadata too. NewSel->swapProfMetadata(); return NewSel; } /// Visit a SelectInst that has an ICmpInst as its first operand. Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI) { if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *Builder)) return NewSel; bool Changed = adjustMinMax(SI, *ICI); ICmpInst::Predicate Pred = ICI->getPredicate(); Value *CmpLHS = ICI->getOperand(0); Value *CmpRHS = ICI->getOperand(1); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 // and (X ((X >>s 31) & (C2 - C1)) + C1 // FIXME: Type and constness constraints could be lifted, but we have to // watch code size carefully. We should consider xor instead of // sub/add when we decide to do that. if (IntegerType *Ty = dyn_cast(CmpLHS->getType())) { if (TrueVal->getType() == Ty) { if (ConstantInt *Cmp = dyn_cast(CmpRHS)) { ConstantInt *C1 = nullptr, *C2 = nullptr; if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) { C1 = dyn_cast(TrueVal); C2 = dyn_cast(FalseVal); } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) { C1 = dyn_cast(FalseVal); C2 = dyn_cast(TrueVal); } if (C1 && C2) { // This shift results in either -1 or 0. Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1); // Check if we can express the operation with a single or. if (C2->isAllOnesValue()) return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1)); Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue()); return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1)); } } } } // NOTE: if we wanted to, this is where to detect integer MIN/MAX if (CmpRHS != CmpLHS && isa(CmpRHS)) { if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { // Transform (X == C) ? X : Y -> (X == C) ? C : Y SI.setOperand(1, CmpRHS); Changed = true; } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { // Transform (X != C) ? Y : X -> (X != C) ? Y : C SI.setOperand(2, CmpRHS); Changed = true; } } // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring // decomposeBitTestICmp() might help. { unsigned BitWidth = DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); APInt MinSignedValue = APInt::getSignBit(BitWidth); Value *X; const APInt *Y, *C; bool TrueWhenUnset; bool IsBitTest = false; if (ICmpInst::isEquality(Pred) && match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && match(CmpRHS, m_Zero())) { IsBitTest = true; TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { X = CmpLHS; Y = &MinSignedValue; IsBitTest = true; TrueWhenUnset = false; } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { X = CmpLHS; Y = &MinSignedValue; IsBitTest = true; TrueWhenUnset = true; } if (IsBitTest) { Value *V = nullptr; // (X & Y) == 0 ? X : X ^ Y --> X & ~Y if (TrueWhenUnset && TrueVal == X && match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) V = Builder->CreateAnd(X, ~(*Y)); // (X & Y) != 0 ? X ^ Y : X --> X & ~Y else if (!TrueWhenUnset && FalseVal == X && match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) V = Builder->CreateAnd(X, ~(*Y)); // (X & Y) == 0 ? X ^ Y : X --> X | Y else if (TrueWhenUnset && FalseVal == X && match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) V = Builder->CreateOr(X, *Y); // (X & Y) != 0 ? X : X ^ Y --> X | Y else if (!TrueWhenUnset && TrueVal == X && match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) V = Builder->CreateOr(X, *Y); if (V) return replaceInstUsesWith(SI, V); } } if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder)) return replaceInstUsesWith(SI, V); if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) return replaceInstUsesWith(SI, V); return Changed ? &SI : nullptr; } /// SI is a select whose condition is a PHI node (but the two may be in /// different blocks). See if the true/false values (V) are live in all of the /// predecessor blocks of the PHI. For example, cases like this can't be mapped: /// /// X = phi [ C1, BB1], [C2, BB2] /// Y = add /// Z = select X, Y, 0 /// /// because Y is not live in BB1/BB2. /// static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, const SelectInst &SI) { // If the value is a non-instruction value like a constant or argument, it // can always be mapped. const Instruction *I = dyn_cast(V); if (!I) return true; // If V is a PHI node defined in the same block as the condition PHI, we can // map the arguments. const PHINode *CondPHI = cast(SI.getCondition()); if (const PHINode *VP = dyn_cast(I)) if (VP->getParent() == CondPHI->getParent()) return true; // Otherwise, if the PHI and select are defined in the same block and if V is // defined in a different block, then we can transform it. if (SI.getParent() == CondPHI->getParent() && I->getParent() != CondPHI->getParent()) return true; // Otherwise we have a 'hard' case and we can't tell without doing more // detailed dominator based analysis, punt. return false; } /// We have an SPF (e.g. a min or max) of an SPF of the form: /// SPF2(SPF1(A, B), C) Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C) { if (Outer.getType() != Inner->getType()) return nullptr; if (C == A || C == B) { // MAX(MAX(A, B), B) -> MAX(A, B) // MIN(MIN(a, b), a) -> MIN(a, b) if (SPF1 == SPF2) return replaceInstUsesWith(Outer, Inner); // MAX(MIN(a, b), a) -> a // MIN(MAX(a, b), a) -> a if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) return replaceInstUsesWith(Outer, C); } if (SPF1 == SPF2) { const APInt *CB, *CC; if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { // MIN(MIN(A, 23), 97) -> MIN(A, 23) // MAX(MAX(A, 97), 23) -> MAX(A, 97) if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || (SPF1 == SPF_SMIN && CB->sle(*CC)) || (SPF1 == SPF_UMAX && CB->uge(*CC)) || (SPF1 == SPF_SMAX && CB->sge(*CC))) return replaceInstUsesWith(Outer, Inner); // MIN(MIN(A, 97), 23) -> MIN(A, 23) // MAX(MAX(A, 23), 97) -> MAX(A, 97) if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || (SPF1 == SPF_SMIN && CB->sgt(*CC)) || (SPF1 == SPF_UMAX && CB->ult(*CC)) || (SPF1 == SPF_SMAX && CB->slt(*CC))) { Outer.replaceUsesOfWith(Inner, A); return &Outer; } } } // ABS(ABS(X)) -> ABS(X) // NABS(NABS(X)) -> NABS(X) if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { return replaceInstUsesWith(Outer, Inner); } // ABS(NABS(X)) -> ABS(X) // NABS(ABS(X)) -> NABS(X) if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { SelectInst *SI = cast(Inner); Value *NewSI = Builder->CreateSelect(SI->getCondition(), SI->getFalseValue(), SI->getTrueValue(), SI->getName(), SI); return replaceInstUsesWith(Outer, NewSI); } auto IsFreeOrProfitableToInvert = [&](Value *V, Value *&NotV, bool &ElidesXor) { if (match(V, m_Not(m_Value(NotV)))) { // If V has at most 2 uses then we can get rid of the xor operation // entirely. ElidesXor |= !V->hasNUsesOrMore(3); return true; } if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { NotV = nullptr; return true; } return false; }; Value *NotA, *NotB, *NotC; bool ElidesXor = false; // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) // // This transform is performance neutral if we can elide at least one xor from // the set of three operands, since we'll be tacking on an xor at the very // end. if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { if (!NotA) NotA = Builder->CreateNot(A); if (!NotB) NotB = Builder->CreateNot(B); if (!NotC) NotC = Builder->CreateNot(C); Value *NewInner = generateMinMaxSelectPattern( Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB); Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern( Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC)); return replaceInstUsesWith(Outer, NewOuter); } return nullptr; } /// If one of the constants is zero (we know they can't both be) and we have an /// icmp instruction with zero, and we have an 'and' with the non-constant value /// and a power of two we can turn the select into a shift on the result of the /// 'and'. static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, ConstantInt *FalseVal, InstCombiner::BuilderTy *Builder) { const ICmpInst *IC = dyn_cast(SI.getCondition()); if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) return nullptr; if (!match(IC->getOperand(1), m_Zero())) return nullptr; ConstantInt *AndRHS; Value *LHS = IC->getOperand(0); if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) return nullptr; // If both select arms are non-zero see if we have a select of the form // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic // for 'x ? 2^n : 0' and fix the thing up at the end. ConstantInt *Offset = nullptr; if (!TrueVal->isZero() && !FalseVal->isZero()) { if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2()) Offset = FalseVal; else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2()) Offset = TrueVal; else return nullptr; // Adjust TrueVal and FalseVal to the offset. TrueVal = ConstantInt::get(Builder->getContext(), TrueVal->getValue() - Offset->getValue()); FalseVal = ConstantInt::get(Builder->getContext(), FalseVal->getValue() - Offset->getValue()); } // Make sure the mask in the 'and' and one of the select arms is a power of 2. if (!AndRHS->getValue().isPowerOf2() || (!TrueVal->getValue().isPowerOf2() && !FalseVal->getValue().isPowerOf2())) return nullptr; // Determine which shift is needed to transform result of the 'and' into the // desired result. ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal; unsigned ValZeros = ValC->getValue().logBase2(); unsigned AndZeros = AndRHS->getValue().logBase2(); // If types don't match we can still convert the select by introducing a zext // or a trunc of the 'and'. The trunc case requires that all of the truncated // bits are zero, we can figure that out by looking at the 'and' mask. if (AndZeros >= ValC->getBitWidth()) return nullptr; Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType()); if (ValZeros > AndZeros) V = Builder->CreateShl(V, ValZeros - AndZeros); else if (ValZeros < AndZeros) V = Builder->CreateLShr(V, AndZeros - ValZeros); // Okay, now we know that everything is set up, we just don't know whether we // have a icmp_ne or icmp_eq and whether the true or false val is the zero. bool ShouldNotVal = !TrueVal->isZero(); ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; if (ShouldNotVal) V = Builder->CreateXor(V, ValC); // Apply an offset if needed. if (Offset) V = Builder->CreateAdd(V, Offset); return V; } /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). /// This is even legal for FP. static Instruction *foldAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); auto *TI = dyn_cast(TrueVal); auto *FI = dyn_cast(FalseVal); if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) return nullptr; Instruction *AddOp = nullptr, *SubOp = nullptr; if ((TI->getOpcode() == Instruction::Sub && FI->getOpcode() == Instruction::Add) || (TI->getOpcode() == Instruction::FSub && FI->getOpcode() == Instruction::FAdd)) { AddOp = FI; SubOp = TI; } else if ((FI->getOpcode() == Instruction::Sub && TI->getOpcode() == Instruction::Add) || (FI->getOpcode() == Instruction::FSub && TI->getOpcode() == Instruction::FAdd)) { AddOp = TI; SubOp = FI; } if (AddOp) { Value *OtherAddOp = nullptr; if (SubOp->getOperand(0) == AddOp->getOperand(0)) { OtherAddOp = AddOp->getOperand(1); } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { OtherAddOp = AddOp->getOperand(0); } if (OtherAddOp) { // So at this point we know we have (Y -> OtherAddOp): // select C, (add X, Y), (sub X, Z) Value *NegVal; // Compute -Z if (SI.getType()->isFPOrFPVectorTy()) { NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); if (Instruction *NegInst = dyn_cast(NegVal)) { FastMathFlags Flags = AddOp->getFastMathFlags(); Flags &= SubOp->getFastMathFlags(); NegInst->setFastMathFlags(Flags); } } else { NegVal = Builder.CreateNeg(SubOp->getOperand(1)); } Value *NewTrueOp = OtherAddOp; Value *NewFalseOp = NegVal; if (AddOp != TI) std::swap(NewTrueOp, NewFalseOp); Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, SI.getName() + ".p", &SI); if (SI.getType()->isFPOrFPVectorTy()) { Instruction *RI = BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); FastMathFlags Flags = AddOp->getFastMathFlags(); Flags &= SubOp->getFastMathFlags(); RI->setFastMathFlags(Flags); return RI; } else return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); } } return nullptr; } Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { Instruction *ExtInst; if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && !match(Sel.getFalseValue(), m_Instruction(ExtInst))) return nullptr; auto ExtOpcode = ExtInst->getOpcode(); if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) return nullptr; // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too. Value *X = ExtInst->getOperand(0); Type *SmallType = X->getType(); if (!SmallType->getScalarType()->isIntegerTy(1)) return nullptr; Constant *C; if (!match(Sel.getTrueValue(), m_Constant(C)) && !match(Sel.getFalseValue(), m_Constant(C))) return nullptr; // If the constant is the same after truncation to the smaller type and // extension to the original type, we can narrow the select. Value *Cond = Sel.getCondition(); Type *SelType = Sel.getType(); Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); if (ExtC == C) { Value *TruncCVal = cast(TruncC); if (ExtInst == Sel.getFalseValue()) std::swap(X, TruncCVal); // select Cond, (ext X), C --> ext(select Cond, X, C') // select Cond, C, (ext X) --> ext(select Cond, C', X) Value *NewSel = Builder->CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); } // If one arm of the select is the extend of the condition, replace that arm // with the extension of the appropriate known bool value. if (Cond == X) { if (ExtInst == Sel.getTrueValue()) { // select X, (sext X), C --> select X, -1, C // select X, (zext X), C --> select X, 1, C Constant *One = ConstantInt::getTrue(SmallType); Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); } else { // select X, C, (sext X) --> select X, C, 0 // select X, C, (zext X) --> select X, C, 0 Constant *Zero = ConstantInt::getNullValue(SelType); return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); } } return nullptr; } /// Try to transform a vector select with a constant condition vector into a /// shuffle for easier combining with other shuffles and insert/extract. static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { Value *CondVal = SI.getCondition(); Constant *CondC; if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) return nullptr; unsigned NumElts = CondVal->getType()->getVectorNumElements(); SmallVector Mask; Mask.reserve(NumElts); Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = CondC->getAggregateElement(i); if (!Elt) return nullptr; if (Elt->isOneValue()) { // If the select condition element is true, choose from the 1st vector. Mask.push_back(ConstantInt::get(Int32Ty, i)); } else if (Elt->isNullValue()) { // If the select condition element is false, choose from the 2nd vector. Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); } else if (isa(Elt)) { // If the select condition element is undef, the shuffle mask is undef. Mask.push_back(UndefValue::get(Int32Ty)); } else { // Bail out on a constant expression. return nullptr; } } return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), ConstantVector::get(Mask)); } /// Reuse bitcasted operands between a compare and select: /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { Value *Cond = Sel.getCondition(); Value *TVal = Sel.getTrueValue(); Value *FVal = Sel.getFalseValue(); CmpInst::Predicate Pred; Value *A, *B; if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) return nullptr; // The select condition is a compare instruction. If the select's true/false // values are already the same as the compare operands, there's nothing to do. if (TVal == A || TVal == B || FVal == A || FVal == B) return nullptr; Value *C, *D; if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) return nullptr; // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) Value *TSrc, *FSrc; if (!match(TVal, m_BitCast(m_Value(TSrc))) || !match(FVal, m_BitCast(m_Value(FSrc)))) return nullptr; // If the select true/false values are *different bitcasts* of the same source // operands, make the select operands the same as the compare operands and // cast the result. This is the canonical select form for min/max. Value *NewSel; if (TSrc == C && FSrc == D) { // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> // bitcast (select (cmp A, B), A, B) NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); } else if (TSrc == D && FSrc == C) { // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> // bitcast (select (cmp A, B), B, A) NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); } else { return nullptr; } return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); } Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); Type *SelType = SI.getType(); if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, &TLI, &DT, &AC)) return replaceInstUsesWith(SI, V); if (Instruction *I = canonicalizeSelectToShuffle(SI)) return I; if (SelType->getScalarType()->isIntegerTy(1) && TrueVal->getType() == CondVal->getType()) { if (match(TrueVal, m_One())) { // Change: A = select B, true, C --> A = or B, C return BinaryOperator::CreateOr(CondVal, FalseVal); } if (match(TrueVal, m_Zero())) { // Change: A = select B, false, C --> A = and !B, C Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); return BinaryOperator::CreateAnd(NotCond, FalseVal); } if (match(FalseVal, m_Zero())) { // Change: A = select B, C, false --> A = and B, C return BinaryOperator::CreateAnd(CondVal, TrueVal); } if (match(FalseVal, m_One())) { // Change: A = select B, C, true --> A = or !B, C Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); return BinaryOperator::CreateOr(NotCond, TrueVal); } // select a, a, b -> a | b // select a, b, a -> a & b if (CondVal == TrueVal) return BinaryOperator::CreateOr(CondVal, FalseVal); if (CondVal == FalseVal) return BinaryOperator::CreateAnd(CondVal, TrueVal); // select a, ~a, b -> (~a) & b // select a, b, ~a -> (~a) | b if (match(TrueVal, m_Not(m_Specific(CondVal)))) return BinaryOperator::CreateAnd(TrueVal, FalseVal); if (match(FalseVal, m_Not(m_Specific(CondVal)))) return BinaryOperator::CreateOr(TrueVal, FalseVal); } // Selecting between two integer or vector splat integer constants? // // Note that we don't handle a scalar select of vectors: // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> // because that may need 3 instructions to splat the condition value: // extend, insertelement, shufflevector. if (CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { // select C, 1, 0 -> zext C to int if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) return new ZExtInst(CondVal, SelType); // select C, -1, 0 -> sext C to int if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) return new SExtInst(CondVal, SelType); // select C, 0, 1 -> zext !C to int if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); return new ZExtInst(NotCond, SelType); } // select C, 0, -1 -> sext !C to int if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); return new SExtInst(NotCond, SelType); } } if (ConstantInt *TrueValC = dyn_cast(TrueVal)) if (ConstantInt *FalseValC = dyn_cast(FalseVal)) if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder)) return replaceInstUsesWith(SI, V); // See if we are selecting two values based on a comparison of the two values. if (FCmpInst *FCI = dyn_cast(CondVal)) { if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { // Transform (X == Y) ? X : Y -> Y if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { // This is not safe in general for floating point: // consider X== -0, Y== +0. // It becomes safe if either operand is a nonzero constant. ConstantFP *CFPt, *CFPf; if (((CFPt = dyn_cast(TrueVal)) && !CFPt->getValueAPF().isZero()) || ((CFPf = dyn_cast(FalseVal)) && !CFPf->getValueAPF().isZero())) return replaceInstUsesWith(SI, FalseVal); } // Transform (X une Y) ? X : Y -> X if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { // This is not safe in general for floating point: // consider X== -0, Y== +0. // It becomes safe if either operand is a nonzero constant. ConstantFP *CFPt, *CFPf; if (((CFPt = dyn_cast(TrueVal)) && !CFPt->getValueAPF().isZero()) || ((CFPf = dyn_cast(FalseVal)) && !CFPf->getValueAPF().isZero())) return replaceInstUsesWith(SI, TrueVal); } // Canonicalize to use ordered comparisons by swapping the select // operands. // // e.g. // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { FCmpInst::Predicate InvPred = FCI->getInversePredicate(); IRBuilder<>::FastMathFlagGuard FMFG(*Builder); Builder->setFastMathFlags(FCI->getFastMathFlags()); Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal, FCI->getName() + ".inv"); return SelectInst::Create(NewCond, FalseVal, TrueVal, SI.getName() + ".p"); } // NOTE: if we wanted to, this is where to detect MIN/MAX } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ // Transform (X == Y) ? Y : X -> X if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { // This is not safe in general for floating point: // consider X== -0, Y== +0. // It becomes safe if either operand is a nonzero constant. ConstantFP *CFPt, *CFPf; if (((CFPt = dyn_cast(TrueVal)) && !CFPt->getValueAPF().isZero()) || ((CFPf = dyn_cast(FalseVal)) && !CFPf->getValueAPF().isZero())) return replaceInstUsesWith(SI, FalseVal); } // Transform (X une Y) ? Y : X -> Y if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { // This is not safe in general for floating point: // consider X== -0, Y== +0. // It becomes safe if either operand is a nonzero constant. ConstantFP *CFPt, *CFPf; if (((CFPt = dyn_cast(TrueVal)) && !CFPt->getValueAPF().isZero()) || ((CFPf = dyn_cast(FalseVal)) && !CFPf->getValueAPF().isZero())) return replaceInstUsesWith(SI, TrueVal); } // Canonicalize to use ordered comparisons by swapping the select // operands. // // e.g. // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { FCmpInst::Predicate InvPred = FCI->getInversePredicate(); IRBuilder<>::FastMathFlagGuard FMFG(*Builder); Builder->setFastMathFlags(FCI->getFastMathFlags()); Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal, FCI->getName() + ".inv"); return SelectInst::Create(NewCond, FalseVal, TrueVal, SI.getName() + ".p"); } // NOTE: if we wanted to, this is where to detect MIN/MAX } // NOTE: if we wanted to, this is where to detect ABS } // See if we are selecting two values based on a comparison of the two values. if (ICmpInst *ICI = dyn_cast(CondVal)) if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) return Result; if (Instruction *Add = foldAddSubSelect(SI, *Builder)) return Add; // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) auto *TI = dyn_cast(TrueVal); auto *FI = dyn_cast(FalseVal); if (TI && FI && TI->getOpcode() == FI->getOpcode()) if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) return IV; if (Instruction *I = foldSelectExtConst(SI)) return I; // See if we can fold the select into one of our operands. if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) return FoldI; Value *LHS, *RHS, *LHS2, *RHS2; Instruction::CastOps CastOp; SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); auto SPF = SPR.Flavor; if (SelectPatternResult::isMinOrMax(SPF)) { // Canonicalize so that type casts are outside select patterns. if (LHS->getType()->getPrimitiveSizeInBits() != SelType->getPrimitiveSizeInBits()) { CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered); Value *Cmp; if (CmpInst::isIntPredicate(Pred)) { Cmp = Builder->CreateICmp(Pred, LHS, RHS); } else { IRBuilder<>::FastMathFlagGuard FMFG(*Builder); auto FMF = cast(SI.getCondition())->getFastMathFlags(); Builder->setFastMathFlags(FMF); Cmp = Builder->CreateFCmp(Pred, LHS, RHS); } Value *NewSI = Builder->CreateCast( CastOp, Builder->CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI), SelType); return replaceInstUsesWith(SI, NewSI); } } if (SPF) { // MAX(MAX(a, b), a) -> MAX(a, b) // MIN(MIN(a, b), a) -> MIN(a, b) // MAX(MIN(a, b), a) -> a // MIN(MAX(a, b), a) -> a // ABS(ABS(a)) -> ABS(a) // NABS(NABS(a)) -> NABS(a) if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) if (Instruction *R = foldSPFofSPF(cast(LHS),SPF2,LHS2,RHS2, SI, SPF, RHS)) return R; if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) if (Instruction *R = foldSPFofSPF(cast(RHS),SPF2,LHS2,RHS2, SI, SPF, LHS)) return R; } // MAX(~a, ~b) -> ~MIN(a, b) if ((SPF == SPF_SMAX || SPF == SPF_UMAX) && IsFreeToInvert(LHS, LHS->hasNUses(2)) && IsFreeToInvert(RHS, RHS->hasNUses(2))) { // For this transform to be profitable, we need to eliminate at least two // 'not' instructions if we're going to add one 'not' instruction. int NumberOfNots = (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) + (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) + (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value()))); if (NumberOfNots >= 2) { Value *NewLHS = Builder->CreateNot(LHS); Value *NewRHS = Builder->CreateNot(RHS); Value *NewCmp = SPF == SPF_SMAX ? Builder->CreateICmpSLT(NewLHS, NewRHS) : Builder->CreateICmpULT(NewLHS, NewRHS); Value *NewSI = Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS)); return replaceInstUsesWith(SI, NewSI); } } // TODO. // ABS(-X) -> ABS(X) } // See if we can fold the select into a phi node if the condition is a select. if (isa(SI.getCondition())) // The true/false values have to be live in the PHI predecessor's blocks. if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) if (Instruction *NV = FoldOpIntoPhi(SI)) return NV; if (SelectInst *TrueSI = dyn_cast(TrueVal)) { if (TrueSI->getCondition()->getType() == CondVal->getType()) { // select(C, select(C, a, b), c) -> select(C, a, c) if (TrueSI->getCondition() == CondVal) { if (SI.getTrueValue() == TrueSI->getTrueValue()) return nullptr; SI.setOperand(1, TrueSI->getTrueValue()); return &SI; } // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) // We choose this as normal form to enable folding on the And and shortening // paths for the values (this helps GetUnderlyingObjects() for example). if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition()); SI.setOperand(0, And); SI.setOperand(1, TrueSI->getTrueValue()); return &SI; } } } if (SelectInst *FalseSI = dyn_cast(FalseVal)) { if (FalseSI->getCondition()->getType() == CondVal->getType()) { // select(C, a, select(C, b, c)) -> select(C, a, c) if (FalseSI->getCondition() == CondVal) { if (SI.getFalseValue() == FalseSI->getFalseValue()) return nullptr; SI.setOperand(2, FalseSI->getFalseValue()); return &SI; } // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition()); SI.setOperand(0, Or); SI.setOperand(2, FalseSI->getFalseValue()); return &SI; } } } if (BinaryOperator::isNot(CondVal)) { SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); SI.setOperand(1, FalseVal); SI.setOperand(2, TrueVal); return &SI; } if (VectorType *VecTy = dyn_cast(SelType)) { unsigned VWidth = VecTy->getNumElements(); APInt UndefElts(VWidth, 0); APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { if (V != &SI) return replaceInstUsesWith(SI, V); return &SI; } if (isa(CondVal)) { return replaceInstUsesWith(SI, FalseVal); } } // See if we can determine the result of this select based on a dominating // condition. BasicBlock *Parent = SI.getParent(); if (BasicBlock *Dom = Parent->getSinglePredecessor()) { auto *PBI = dyn_cast_or_null(Dom->getTerminator()); if (PBI && PBI->isConditional() && PBI->getSuccessor(0) != PBI->getSuccessor(1) && (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { bool CondIsFalse = PBI->getSuccessor(1) == Parent; Optional Implication = isImpliedCondition( PBI->getCondition(), SI.getCondition(), DL, CondIsFalse); if (Implication) { Value *V = *Implication ? TrueVal : FalseVal; return replaceInstUsesWith(SI, V); } } } if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, *Builder)) return BitCastSel; return nullptr; }