//===- InstCombineSimplifyDemanded.cpp ------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains logic for simplifying instructions based on information // about how they are used. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/KnownBits.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "instcombine" /// Check to see if the specified operand of the specified instruction is a /// constant integer. If so, check to see if there are any bits set in the /// constant that are not demanded. If so, shrink the constant and return true. static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded) { assert(I && "No instruction?"); assert(OpNo < I->getNumOperands() && "Operand index too large"); // The operand must be a constant integer or splat integer. Value *Op = I->getOperand(OpNo); const APInt *C; if (!match(Op, m_APInt(C))) return false; // If there are no bits set that aren't demanded, nothing to do. if (C->isSubsetOf(Demanded)) return false; // This instruction is producing bits that are not demanded. Shrink the RHS. I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); return true; } /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if /// the instruction has any properties that allow us to simplify its operands. bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); KnownBits Known(BitWidth); APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 0, &Inst); if (!V) return false; if (V == &Inst) return true; replaceInstUsesWith(Inst, V); return true; } /// This form of SimplifyDemandedBits simplifies the specified instruction /// operand if possible, updating it in place. It returns true if it made any /// change and false otherwise. bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, const APInt &DemandedMask, KnownBits &Known, unsigned Depth) { Use &U = I->getOperandUse(OpNo); Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, Depth, I); if (!NewVal) return false; U = NewVal; return true; } /// This function attempts to replace V with a simpler value based on the /// demanded bits. When this function is called, it is known that only the bits /// set in DemandedMask of the result of V are ever used downstream. /// Consequently, depending on the mask and V, it may be possible to replace V /// with a constant or one of its operands. In such cases, this function does /// the replacement and returns true. In all other cases, it returns false after /// analyzing the expression and setting KnownOne and known to be one in the /// expression. Known.Zero contains all the bits that are known to be zero in /// the expression. These are provided to potentially allow the caller (which /// might recursively be SimplifyDemandedBits itself) to simplify the /// expression. /// Known.One and Known.Zero always follow the invariant that: /// Known.One & Known.Zero == 0. /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and /// Known.Zero may only be accurate for those bits set in DemandedMask. Note /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all /// be the same. /// /// This returns null if it did not change anything and it permits no /// simplification. This returns V itself if it did some simplification of V's /// operands based on the information about what bits are demanded. This returns /// some other non-null value if it found out that V is equal to another value /// in the context where the specified bits are demanded, but not for all users. Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known, unsigned Depth, Instruction *CxtI) { assert(V != nullptr && "Null pointer of Value???"); assert(Depth <= 6 && "Limit Search Depth"); uint32_t BitWidth = DemandedMask.getBitWidth(); Type *VTy = V->getType(); assert( (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && Known.getBitWidth() == BitWidth && "Value *V, DemandedMask and Known must have same BitWidth"); if (isa(V)) { computeKnownBits(V, Known, Depth, CxtI); return nullptr; } Known.resetAll(); if (DemandedMask == 0) // Not demanding any bits from V. return UndefValue::get(VTy); if (Depth == 6) // Limit search depth. return nullptr; Instruction *I = dyn_cast(V); if (!I) { computeKnownBits(V, Known, Depth, CxtI); return nullptr; // Only analyze instructions. } // If there are multiple uses of this value and we aren't at the root, then // we can't do any simplifications of the operands, because DemandedMask // only reflects the bits demanded by *one* of the users. if (Depth != 0 && !I->hasOneUse()) return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); // If this is the root being simplified, allow it to have multiple uses, // just set the DemandedMask to all bits so that we can try to simplify the // operands. This allows visitTruncInst (for example) to simplify the // operand of a trunc without duplicating all the logic below. if (Depth == 0 && !V->hasOneUse()) DemandedMask.setAllBits(); switch (I->getOpcode()) { default: computeKnownBits(I, Known, Depth, CxtI); break; case Instruction::And: { // If either the LHS or the RHS are Zero, the result is zero. if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, Depth + 1)) return I; assert(!(RHSKnown.Zero & RHSKnown.One) && "Bits known to be one AND zero?"); assert(!(LHSKnown.Zero & LHSKnown.One) && "Bits known to be one AND zero?"); // Output known-0 are known to be clear if zero in either the LHS | RHS. APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; // Output known-1 bits are only known if set in both the LHS & RHS. APInt IKnownOne = RHSKnown.One & LHSKnown.One; // If the client is only demanding bits that we know, return the known // constant. if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) return Constant::getIntegerValue(VTy, IKnownOne); // If all of the demanded bits are known 1 on one side, return the other. // These bits cannot contribute to the result of the 'and'. if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) return I->getOperand(0); if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) return I->getOperand(1); // If the RHS is a constant, see if we can simplify it. if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) return I; Known.Zero = std::move(IKnownZero); Known.One = std::move(IKnownOne); break; } case Instruction::Or: { // If either the LHS or the RHS are One, the result is One. if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, Depth + 1)) return I; assert(!(RHSKnown.Zero & RHSKnown.One) && "Bits known to be one AND zero?"); assert(!(LHSKnown.Zero & LHSKnown.One) && "Bits known to be one AND zero?"); // Output known-0 bits are only known if clear in both the LHS & RHS. APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; // Output known-1 are known. to be set if s.et in either the LHS | RHS. APInt IKnownOne = RHSKnown.One | LHSKnown.One; // If the client is only demanding bits that we know, return the known // constant. if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) return Constant::getIntegerValue(VTy, IKnownOne); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'or'. if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) return I->getOperand(0); if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) return I->getOperand(1); // If the RHS is a constant, see if we can simplify it. if (ShrinkDemandedConstant(I, 1, DemandedMask)) return I; Known.Zero = std::move(IKnownZero); Known.One = std::move(IKnownOne); break; } case Instruction::Xor: { if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) return I; assert(!(RHSKnown.Zero & RHSKnown.One) && "Bits known to be one AND zero?"); assert(!(LHSKnown.Zero & LHSKnown.One) && "Bits known to be one AND zero?"); // Output known-0 bits are known if clear or set in both the LHS & RHS. APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | (RHSKnown.One & LHSKnown.One); // Output known-1 are known to be set if set in only one of the LHS, RHS. APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | (RHSKnown.One & LHSKnown.Zero); // If the client is only demanding bits that we know, return the known // constant. if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) return Constant::getIntegerValue(VTy, IKnownOne); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'xor'. if (DemandedMask.isSubsetOf(RHSKnown.Zero)) return I->getOperand(0); if (DemandedMask.isSubsetOf(LHSKnown.Zero)) return I->getOperand(1); // If all of the demanded bits are known to be zero on one side or the // other, turn this into an *inclusive* or. // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { Instruction *Or = BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), I->getName()); return InsertNewInstWith(Or, *I); } // If all of the demanded bits on one side are known, and all of the set // bits on that side are also known to be set on the other side, turn this // into an AND, as we know the bits will be cleared. // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && RHSKnown.One.isSubsetOf(LHSKnown.One)) { Constant *AndC = Constant::getIntegerValue(VTy, ~RHSKnown.One & DemandedMask); Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); return InsertNewInstWith(And, *I); } // If the RHS is a constant, see if we can simplify it. // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. if (ShrinkDemandedConstant(I, 1, DemandedMask)) return I; // If our LHS is an 'and' and if it has one use, and if any of the bits we // are flipping are known to be set, then the xor is just resetting those // bits to zero. We can just knock out bits from the 'and' and the 'xor', // simplifying both of them. if (Instruction *LHSInst = dyn_cast(I->getOperand(0))) if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && isa(I->getOperand(1)) && isa(LHSInst->getOperand(1)) && (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { ConstantInt *AndRHS = cast(LHSInst->getOperand(1)); ConstantInt *XorRHS = cast(I->getOperand(1)); APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); Constant *AndC = ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); InsertNewInstWith(NewAnd, *I); Constant *XorC = ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); return InsertNewInstWith(NewXor, *I); } // Output known-0 bits are known if clear or set in both the LHS & RHS. Known.Zero = std::move(IKnownZero); // Output known-1 are known to be set if set in only one of the LHS, RHS. Known.One = std::move(IKnownOne); break; } case Instruction::Select: // If this is a select as part of a min/max pattern, don't simplify any // further in case we break the structure. Value *LHS, *RHS; if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN) return nullptr; if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) return I; assert(!(RHSKnown.Zero & RHSKnown.One) && "Bits known to be one AND zero?"); assert(!(LHSKnown.Zero & LHSKnown.One) && "Bits known to be one AND zero?"); // If the operands are constants, see if we can simplify them. if (ShrinkDemandedConstant(I, 1, DemandedMask) || ShrinkDemandedConstant(I, 2, DemandedMask)) return I; // Only known if known in both the LHS and RHS. Known.One = RHSKnown.One & LHSKnown.One; Known.Zero = RHSKnown.Zero & LHSKnown.Zero; break; case Instruction::Trunc: { unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); DemandedMask = DemandedMask.zext(truncBf); Known = Known.zext(truncBf); if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) return I; DemandedMask = DemandedMask.trunc(BitWidth); Known = Known.trunc(BitWidth); assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); break; } case Instruction::BitCast: if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) return nullptr; // vector->int or fp->int? if (VectorType *DstVTy = dyn_cast(I->getType())) { if (VectorType *SrcVTy = dyn_cast(I->getOperand(0)->getType())) { if (DstVTy->getNumElements() != SrcVTy->getNumElements()) // Don't touch a bitcast between vectors of different element counts. return nullptr; } else // Don't touch a scalar-to-vector bitcast. return nullptr; } else if (I->getOperand(0)->getType()->isVectorTy()) // Don't touch a vector-to-scalar bitcast. return nullptr; if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) return I; assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); break; case Instruction::ZExt: { // Compute the bits in the result that are not present in the input. unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); DemandedMask = DemandedMask.trunc(SrcBitWidth); Known = Known.trunc(SrcBitWidth); if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) return I; DemandedMask = DemandedMask.zext(BitWidth); Known = Known.zext(BitWidth); assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); // The top bits are known to be zero. Known.Zero.setBitsFrom(SrcBitWidth); break; } case Instruction::SExt: { // Compute the bits in the result that are not present in the input. unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); APInt InputDemandedBits = DemandedMask & APInt::getLowBitsSet(BitWidth, SrcBitWidth); APInt NewBits(APInt::getBitsSetFrom(BitWidth, SrcBitWidth)); // If any of the sign extended bits are demanded, we know that the sign // bit is demanded. if ((NewBits & DemandedMask) != 0) InputDemandedBits.setBit(SrcBitWidth-1); InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); Known = Known.trunc(SrcBitWidth); if (SimplifyDemandedBits(I, 0, InputDemandedBits, Known, Depth + 1)) return I; InputDemandedBits = InputDemandedBits.zext(BitWidth); Known = Known.zext(BitWidth); assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. // If the input sign bit is known zero, or if the NewBits are not demanded // convert this into a zero extension. if (Known.Zero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { // Convert to ZExt cast CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); return InsertNewInstWith(NewCast, *I); } else if (Known.One[SrcBitWidth-1]) { // Input sign bit known set Known.One |= NewBits; } break; } case Instruction::Add: case Instruction::Sub: { /// If the high-bits of an ADD/SUB are not demanded, then we do not care /// about the high bits of the operands. unsigned NLZ = DemandedMask.countLeadingZeros(); if (NLZ > 0) { // Right fill the mask of bits for this ADD/SUB to demand the most // significant bit and all those below it. APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || ShrinkDemandedConstant(I, 1, DemandedFromOps) || SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { // Disable the nsw and nuw flags here: We can no longer guarantee that // we won't wrap after simplification. Removing the nsw/nuw flags is // legal here because the top bit is not demanded. BinaryOperator &BinOP = *cast(I); BinOP.setHasNoSignedWrap(false); BinOP.setHasNoUnsignedWrap(false); return I; } // If we are known to be adding/subtracting zeros to every bit below // the highest demanded bit, we just return the other side. if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) return I->getOperand(0); // We can't do this with the LHS for subtraction. if (I->getOpcode() == Instruction::Add && DemandedFromOps.isSubsetOf(LHSKnown.Zero)) return I->getOperand(1); } // Otherwise just hand the add/sub off to computeKnownBits to fill in // the known zeros and ones. computeKnownBits(V, Known, Depth, CxtI); break; } case Instruction::Shl: { const APInt *SA; if (match(I->getOperand(1), m_APInt(SA))) { const APInt *ShrAmt; if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) { Instruction *Shr = cast(I->getOperand(0)); if (Value *R = simplifyShrShlDemandedBits( Shr, *ShrAmt, I, *SA, DemandedMask, Known)) return R; } uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); // If the shift is NUW/NSW, then it does demand the high bits. ShlOperator *IOp = cast(I); if (IOp->hasNoSignedWrap()) DemandedMaskIn.setHighBits(ShiftAmt+1); else if (IOp->hasNoUnsignedWrap()) DemandedMaskIn.setHighBits(ShiftAmt); if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) return I; assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); Known.Zero <<= ShiftAmt; Known.One <<= ShiftAmt; // low bits known zero. if (ShiftAmt) Known.Zero.setLowBits(ShiftAmt); } break; } case Instruction::LShr: { const APInt *SA; if (match(I->getOperand(1), m_APInt(SA))) { uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); // Unsigned shift right. APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); // If the shift is exact, then it does demand the low bits (and knows that // they are zero). if (cast(I)->isExact()) DemandedMaskIn.setLowBits(ShiftAmt); if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) return I; assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); Known.Zero.lshrInPlace(ShiftAmt); Known.One.lshrInPlace(ShiftAmt); if (ShiftAmt) Known.Zero.setHighBits(ShiftAmt); // high bits known zero. } break; } case Instruction::AShr: { // If this is an arithmetic shift right and only the low-bit is set, we can // always convert this into a logical shr, even if the shift amount is // variable. The low bit of the shift cannot be an input sign bit unless // the shift amount is >= the size of the datatype, which is undefined. if (DemandedMask == 1) { // Perform the logical shift right. Instruction *NewVal = BinaryOperator::CreateLShr( I->getOperand(0), I->getOperand(1), I->getName()); return InsertNewInstWith(NewVal, *I); } // If the sign bit is the only bit demanded by this ashr, then there is no // need to do it, the shift doesn't change the high bit. if (DemandedMask.isSignMask()) return I->getOperand(0); const APInt *SA; if (match(I->getOperand(1), m_APInt(SA))) { uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); // Signed shift right. APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); // If any of the high bits are demanded, we should set the sign bit as // demanded. if (DemandedMask.countLeadingZeros() <= ShiftAmt) DemandedMaskIn.setSignBit(); // If the shift is exact, then it does demand the low bits (and knows that // they are zero). if (cast(I)->isExact()) DemandedMaskIn.setLowBits(ShiftAmt); if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) return I; assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); // Compute the new bits that are at the top now. APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); Known.Zero.lshrInPlace(ShiftAmt); Known.One.lshrInPlace(ShiftAmt); // Handle the sign bits. APInt SignMask(APInt::getSignMask(BitWidth)); // Adjust to where it is now in the mask. SignMask.lshrInPlace(ShiftAmt); // If the input sign bit is known to be zero, or if none of the top bits // are demanded, turn this into an unsigned shift right. if (BitWidth <= ShiftAmt || Known.Zero[BitWidth-ShiftAmt-1] || !DemandedMask.intersects(HighBits)) { BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), I->getOperand(1)); LShr->setIsExact(cast(I)->isExact()); return InsertNewInstWith(LShr, *I); } else if (Known.One.intersects(SignMask)) { // New bits are known one. Known.One |= HighBits; } } break; } case Instruction::SRem: if (ConstantInt *Rem = dyn_cast(I->getOperand(1))) { // X % -1 demands all the bits because we don't want to introduce // INT_MIN % -1 (== undef) by accident. if (Rem->isAllOnesValue()) break; APInt RA = Rem->getValue().abs(); if (RA.isPowerOf2()) { if (DemandedMask.ult(RA)) // srem won't affect demanded bits return I->getOperand(0); APInt LowBits = RA - 1; APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) return I; // The low bits of LHS are unchanged by the srem. Known.Zero = LHSKnown.Zero & LowBits; Known.One = LHSKnown.One & LowBits; // If LHS is non-negative or has all low bits zero, then the upper bits // are all zero. if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) Known.Zero |= ~LowBits; // If LHS is negative and not all low bits are zero, then the upper bits // are all one. if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) Known.One |= ~LowBits; assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); break; } } // The sign bit is the LHS's sign bit, except when the result of the // remainder is zero. if (DemandedMask.isSignBitSet()) { computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); // If it's known zero, our sign bit is also zero. if (LHSKnown.isNonNegative()) Known.makeNonNegative(); } break; case Instruction::URem: { KnownBits Known2(BitWidth); APInt AllOnes = APInt::getAllOnesValue(BitWidth); if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) return I; unsigned Leaders = Known2.Zero.countLeadingOnes(); Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; break; } case Instruction::Call: if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::bswap: { // If the only bits demanded come from one byte of the bswap result, // just shift the input byte into position to eliminate the bswap. unsigned NLZ = DemandedMask.countLeadingZeros(); unsigned NTZ = DemandedMask.countTrailingZeros(); // Round NTZ down to the next byte. If we have 11 trailing zeros, then // we need all the bits down to bit 8. Likewise, round NLZ. If we // have 14 leading zeros, round to 8. NLZ &= ~7; NTZ &= ~7; // If we need exactly one byte, we can do this transformation. if (BitWidth-NLZ-NTZ == 8) { unsigned ResultBit = NTZ; unsigned InputBit = BitWidth-NTZ-8; // Replace this with either a left or right shift to get the byte into // the right place. Instruction *NewVal; if (InputBit > ResultBit) NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), ConstantInt::get(I->getType(), InputBit-ResultBit)); else NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), ConstantInt::get(I->getType(), ResultBit-InputBit)); NewVal->takeName(I); return InsertNewInstWith(NewVal, *I); } // TODO: Could compute known zero/one bits based on the input. break; } case Intrinsic::x86_mmx_pmovmskb: case Intrinsic::x86_sse_movmsk_ps: case Intrinsic::x86_sse2_movmsk_pd: case Intrinsic::x86_sse2_pmovmskb_128: case Intrinsic::x86_avx_movmsk_ps_256: case Intrinsic::x86_avx_movmsk_pd_256: case Intrinsic::x86_avx2_pmovmskb: { // MOVMSK copies the vector elements' sign bits to the low bits // and zeros the high bits. unsigned ArgWidth; if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. } else { auto Arg = II->getArgOperand(0); auto ArgType = cast(Arg->getType()); ArgWidth = ArgType->getNumElements(); } // If we don't need any of low bits then return zero, // we know that DemandedMask is non-zero already. APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); if (DemandedElts == 0) return ConstantInt::getNullValue(VTy); // We know that the upper bits are set to zero. Known.Zero.setBitsFrom(ArgWidth); return nullptr; } case Intrinsic::x86_sse42_crc32_64_64: Known.Zero.setBitsFrom(32); return nullptr; } } computeKnownBits(V, Known, Depth, CxtI); break; } // If the client is only demanding bits that we know, return the known // constant. if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) return Constant::getIntegerValue(VTy, Known.One); return nullptr; } /// Helper routine of SimplifyDemandedUseBits. It computes Known /// bits. It also tries to handle simplifications that can be done based on /// DemandedMask, but without modifying the Instruction. Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, Instruction *CxtI) { unsigned BitWidth = DemandedMask.getBitWidth(); Type *ITy = I->getType(); KnownBits LHSKnown(BitWidth); KnownBits RHSKnown(BitWidth); // Despite the fact that we can't simplify this instruction in all User's // context, we can at least compute the known bits, and we can // do simplifications that apply to *just* the one user if we know that // this instruction has a simpler value in that context. switch (I->getOpcode()) { case Instruction::And: { // If either the LHS or the RHS are Zero, the result is zero. computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); // Output known-0 are known to be clear if zero in either the LHS | RHS. APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; // Output known-1 bits are only known if set in both the LHS & RHS. APInt IKnownOne = RHSKnown.One & LHSKnown.One; // If the client is only demanding bits that we know, return the known // constant. if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) return Constant::getIntegerValue(ITy, IKnownOne); // If all of the demanded bits are known 1 on one side, return the other. // These bits cannot contribute to the result of the 'and' in this // context. if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) return I->getOperand(0); if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) return I->getOperand(1); Known.Zero = std::move(IKnownZero); Known.One = std::move(IKnownOne); break; } case Instruction::Or: { // We can simplify (X|Y) -> X or Y in the user's context if we know that // only bits from X or Y are demanded. // If either the LHS or the RHS are One, the result is One. computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); // Output known-0 bits are only known if clear in both the LHS & RHS. APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; // Output known-1 are known to be set if set in either the LHS | RHS. APInt IKnownOne = RHSKnown.One | LHSKnown.One; // If the client is only demanding bits that we know, return the known // constant. if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) return Constant::getIntegerValue(ITy, IKnownOne); // If all of the demanded bits are known zero on one side, return the // other. These bits cannot contribute to the result of the 'or' in this // context. if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) return I->getOperand(0); if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) return I->getOperand(1); Known.Zero = std::move(IKnownZero); Known.One = std::move(IKnownOne); break; } case Instruction::Xor: { // We can simplify (X^Y) -> X or Y in the user's context if we know that // only bits from X or Y are demanded. computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); // Output known-0 bits are known if clear or set in both the LHS & RHS. APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | (RHSKnown.One & LHSKnown.One); // Output known-1 are known to be set if set in only one of the LHS, RHS. APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | (RHSKnown.One & LHSKnown.Zero); // If the client is only demanding bits that we know, return the known // constant. if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) return Constant::getIntegerValue(ITy, IKnownOne); // If all of the demanded bits are known zero on one side, return the // other. if (DemandedMask.isSubsetOf(RHSKnown.Zero)) return I->getOperand(0); if (DemandedMask.isSubsetOf(LHSKnown.Zero)) return I->getOperand(1); // Output known-0 bits are known if clear or set in both the LHS & RHS. Known.Zero = std::move(IKnownZero); // Output known-1 are known to be set if set in only one of the LHS, RHS. Known.One = std::move(IKnownOne); break; } default: // Compute the Known bits to simplify things downstream. computeKnownBits(I, Known, Depth, CxtI); // If this user is only demanding bits that we know, return the known // constant. if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) return Constant::getIntegerValue(ITy, Known.One); break; } return nullptr; } /// Helper routine of SimplifyDemandedUseBits. It tries to simplify /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign /// of "C2-C1". /// /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, /// ..., bn}, without considering the specific value X is holding. /// This transformation is legal iff one of following conditions is hold: /// 1) All the bit in S are 0, in this case E1 == E2. /// 2) We don't care those bits in S, per the input DemandedMask. /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the /// rest bits. /// /// Currently we only test condition 2). /// /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was /// not successful. Value * InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { if (!ShlOp1 || !ShrOp1) return nullptr; // No-op. Value *VarX = Shr->getOperand(0); Type *Ty = VarX->getType(); unsigned BitWidth = Ty->getScalarSizeInBits(); if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) return nullptr; // Undef. unsigned ShlAmt = ShlOp1.getZExtValue(); unsigned ShrAmt = ShrOp1.getZExtValue(); Known.One.clearAllBits(); Known.Zero.setLowBits(ShlAmt - 1); Known.Zero &= DemandedMask; APInt BitMask1(APInt::getAllOnesValue(BitWidth)); APInt BitMask2(APInt::getAllOnesValue(BitWidth)); bool isLshr = (Shr->getOpcode() == Instruction::LShr); BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : (BitMask1.ashr(ShrAmt) << ShlAmt); if (ShrAmt <= ShlAmt) { BitMask2 <<= (ShlAmt - ShrAmt); } else { BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): BitMask2.ashr(ShrAmt - ShlAmt); } // Check if condition-2 (see the comment to this function) is satified. if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { if (ShrAmt == ShlAmt) return VarX; if (!Shr->hasOneUse()) return nullptr; BinaryOperator *New; if (ShrAmt < ShlAmt) { Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); New = BinaryOperator::CreateShl(VarX, Amt); BinaryOperator *Orig = cast(Shl); New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); } else { Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : BinaryOperator::CreateAShr(VarX, Amt); if (cast(Shr)->isExact()) New->setIsExact(true); } return InsertNewInstWith(New, *Shl); } return nullptr; } /// The specified value produces a vector with any number of elements. /// DemandedElts contains the set of elements that are actually used by the /// caller. This method analyzes which elements of the operand are undef and /// returns that information in UndefElts. /// /// If the information about demanded elements can be used to simplify the /// operation, the operation is simplified, then the resultant value is /// returned. This returns null if no change was made. Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts, unsigned Depth) { unsigned VWidth = V->getType()->getVectorNumElements(); APInt EltMask(APInt::getAllOnesValue(VWidth)); assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); if (isa(V)) { // If the entire vector is undefined, just return this info. UndefElts = EltMask; return nullptr; } if (DemandedElts == 0) { // If nothing is demanded, provide undef. UndefElts = EltMask; return UndefValue::get(V->getType()); } UndefElts = 0; // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. if (Constant *C = dyn_cast(V)) { // Check if this is identity. If so, return 0 since we are not simplifying // anything. if (DemandedElts.isAllOnesValue()) return nullptr; Type *EltTy = cast(V->getType())->getElementType(); Constant *Undef = UndefValue::get(EltTy); SmallVector Elts; for (unsigned i = 0; i != VWidth; ++i) { if (!DemandedElts[i]) { // If not demanded, set to undef. Elts.push_back(Undef); UndefElts.setBit(i); continue; } Constant *Elt = C->getAggregateElement(i); if (!Elt) return nullptr; if (isa(Elt)) { // Already undef. Elts.push_back(Undef); UndefElts.setBit(i); } else { // Otherwise, defined. Elts.push_back(Elt); } } // If we changed the constant, return it. Constant *NewCV = ConstantVector::get(Elts); return NewCV != C ? NewCV : nullptr; } // Limit search depth. if (Depth == 10) return nullptr; // If multiple users are using the root value, proceed with // simplification conservatively assuming that all elements // are needed. if (!V->hasOneUse()) { // Quit if we find multiple users of a non-root value though. // They'll be handled when it's their turn to be visited by // the main instcombine process. if (Depth != 0) // TODO: Just compute the UndefElts information recursively. return nullptr; // Conservatively assume that all elements are needed. DemandedElts = EltMask; } Instruction *I = dyn_cast(V); if (!I) return nullptr; // Only analyze instructions. bool MadeChange = false; APInt UndefElts2(VWidth, 0); APInt UndefElts3(VWidth, 0); Value *TmpV; switch (I->getOpcode()) { default: break; case Instruction::InsertElement: { // If this is a variable index, we don't know which element it overwrites. // demand exactly the same input as we produce. ConstantInt *Idx = dyn_cast(I->getOperand(2)); if (!Idx) { // Note that we can't propagate undef elt info, because we don't know // which elt is getting updated. TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts2, Depth + 1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } break; } // If this is inserting an element that isn't demanded, remove this // insertelement. unsigned IdxNo = Idx->getZExtValue(); if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { Worklist.Add(I); return I->getOperand(0); } // Otherwise, the element inserted overwrites whatever was there, so the // input demanded set is simpler than the output set. APInt DemandedElts2 = DemandedElts; DemandedElts2.clearBit(IdxNo); TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, UndefElts, Depth + 1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } // The inserted element is defined. UndefElts.clearBit(IdxNo); break; } case Instruction::ShuffleVector: { ShuffleVectorInst *Shuffle = cast(I); unsigned LHSVWidth = Shuffle->getOperand(0)->getType()->getVectorNumElements(); APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); for (unsigned i = 0; i < VWidth; i++) { if (DemandedElts[i]) { unsigned MaskVal = Shuffle->getMaskValue(i); if (MaskVal != -1u) { assert(MaskVal < LHSVWidth * 2 && "shufflevector mask index out of range!"); if (MaskVal < LHSVWidth) LeftDemanded.setBit(MaskVal); else RightDemanded.setBit(MaskVal - LHSVWidth); } } } APInt LHSUndefElts(LHSVWidth, 0); TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, LHSUndefElts, Depth + 1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } APInt RHSUndefElts(LHSVWidth, 0); TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, RHSUndefElts, Depth + 1); if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } bool NewUndefElts = false; unsigned LHSIdx = -1u, LHSValIdx = -1u; unsigned RHSIdx = -1u, RHSValIdx = -1u; bool LHSUniform = true; bool RHSUniform = true; for (unsigned i = 0; i < VWidth; i++) { unsigned MaskVal = Shuffle->getMaskValue(i); if (MaskVal == -1u) { UndefElts.setBit(i); } else if (!DemandedElts[i]) { NewUndefElts = true; UndefElts.setBit(i); } else if (MaskVal < LHSVWidth) { if (LHSUndefElts[MaskVal]) { NewUndefElts = true; UndefElts.setBit(i); } else { LHSIdx = LHSIdx == -1u ? i : LHSVWidth; LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; LHSUniform = LHSUniform && (MaskVal == i); } } else { if (RHSUndefElts[MaskVal - LHSVWidth]) { NewUndefElts = true; UndefElts.setBit(i); } else { RHSIdx = RHSIdx == -1u ? i : LHSVWidth; RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); } } } // Try to transform shuffle with constant vector and single element from // this constant vector to single insertelement instruction. // shufflevector V, C, -> // insertelement V, C[ci], ci-n if (LHSVWidth == Shuffle->getType()->getNumElements()) { Value *Op = nullptr; Constant *Value = nullptr; unsigned Idx = -1u; // Find constant vector with the single element in shuffle (LHS or RHS). if (LHSIdx < LHSVWidth && RHSUniform) { if (auto *CV = dyn_cast(Shuffle->getOperand(0))) { Op = Shuffle->getOperand(1); Value = CV->getOperand(LHSValIdx); Idx = LHSIdx; } } if (RHSIdx < LHSVWidth && LHSUniform) { if (auto *CV = dyn_cast(Shuffle->getOperand(1))) { Op = Shuffle->getOperand(0); Value = CV->getOperand(RHSValIdx); Idx = RHSIdx; } } // Found constant vector with single element - convert to insertelement. if (Op && Value) { Instruction *New = InsertElementInst::Create( Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), Shuffle->getName()); InsertNewInstWith(New, *Shuffle); return New; } } if (NewUndefElts) { // Add additional discovered undefs. SmallVector Elts; for (unsigned i = 0; i < VWidth; ++i) { if (UndefElts[i]) Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); else Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), Shuffle->getMaskValue(i))); } I->setOperand(2, ConstantVector::get(Elts)); MadeChange = true; } break; } case Instruction::Select: { APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); if (ConstantVector* CV = dyn_cast(I->getOperand(0))) { for (unsigned i = 0; i < VWidth; i++) { Constant *CElt = CV->getAggregateElement(i); // Method isNullValue always returns false when called on a // ConstantExpr. If CElt is a ConstantExpr then skip it in order to // to avoid propagating incorrect information. if (isa(CElt)) continue; if (CElt->isNullValue()) LeftDemanded.clearBit(i); else RightDemanded.clearBit(i); } } TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts, Depth + 1); if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, UndefElts2, Depth + 1); if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } // Output elements are undefined if both are undefined. UndefElts &= UndefElts2; break; } case Instruction::BitCast: { // Vector->vector casts only. VectorType *VTy = dyn_cast(I->getOperand(0)->getType()); if (!VTy) break; unsigned InVWidth = VTy->getNumElements(); APInt InputDemandedElts(InVWidth, 0); UndefElts2 = APInt(InVWidth, 0); unsigned Ratio; if (VWidth == InVWidth) { // If we are converting from <4 x i32> -> <4 x f32>, we demand the same // elements as are demanded of us. Ratio = 1; InputDemandedElts = DemandedElts; } else if ((VWidth % InVWidth) == 0) { // If the number of elements in the output is a multiple of the number of // elements in the input then an input element is live if any of the // corresponding output elements are live. Ratio = VWidth / InVWidth; for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) if (DemandedElts[OutIdx]) InputDemandedElts.setBit(OutIdx / Ratio); } else if ((InVWidth % VWidth) == 0) { // If the number of elements in the input is a multiple of the number of // elements in the output then an input element is live if the // corresponding output element is live. Ratio = InVWidth / VWidth; for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) if (DemandedElts[InIdx / Ratio]) InputDemandedElts.setBit(InIdx); } else { // Unsupported so far. break; } // div/rem demand all inputs, because they don't want divide by zero. TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, UndefElts2, Depth + 1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } if (VWidth == InVWidth) { UndefElts = UndefElts2; } else if ((VWidth % InVWidth) == 0) { // If the number of elements in the output is a multiple of the number of // elements in the input then an output element is undef if the // corresponding input element is undef. for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) if (UndefElts2[OutIdx / Ratio]) UndefElts.setBit(OutIdx); } else if ((InVWidth % VWidth) == 0) { // If the number of elements in the input is a multiple of the number of // elements in the output then an output element is undef if all of the // corresponding input elements are undef. for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); if (SubUndef.countPopulation() == Ratio) UndefElts.setBit(OutIdx); } } else { llvm_unreachable("Unimp"); } break; } case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::Add: case Instruction::Sub: case Instruction::Mul: // div/rem demand all inputs, because they don't want divide by zero. TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, Depth + 1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, UndefElts2, Depth + 1); if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } // Output elements are undefined if both are undefined. Consider things // like undef&0. The result is known zero, not undef. UndefElts &= UndefElts2; break; case Instruction::FPTrunc: case Instruction::FPExt: TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, Depth + 1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } break; case Instruction::Call: { IntrinsicInst *II = dyn_cast(I); if (!II) break; switch (II->getIntrinsicID()) { default: break; case Intrinsic::x86_xop_vfrcz_ss: case Intrinsic::x86_xop_vfrcz_sd: // The instructions for these intrinsics are speced to zero upper bits not // pass them through like other scalar intrinsics. So we shouldn't just // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. // Instead we should return a zero vector. if (!DemandedElts[0]) { Worklist.Add(II); return ConstantAggregateZero::get(II->getType()); } // Only the lower element is used. DemandedElts = 1; TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, UndefElts, Depth + 1); if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } // Only the lower element is undefined. The high elements are zero. UndefElts = UndefElts[0]; break; // Unary scalar-as-vector operations that work column-wise. case Intrinsic::x86_sse_rcp_ss: case Intrinsic::x86_sse_rsqrt_ss: case Intrinsic::x86_sse_sqrt_ss: case Intrinsic::x86_sse2_sqrt_sd: TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, UndefElts, Depth + 1); if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } // If lowest element of a scalar op isn't used then use Arg0. if (!DemandedElts[0]) { Worklist.Add(II); return II->getArgOperand(0); } // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions // checks). break; // Binary scalar-as-vector operations that work column-wise. The high // elements come from operand 0. The low element is a function of both // operands. case Intrinsic::x86_sse_min_ss: case Intrinsic::x86_sse_max_ss: case Intrinsic::x86_sse_cmp_ss: case Intrinsic::x86_sse2_min_sd: case Intrinsic::x86_sse2_max_sd: case Intrinsic::x86_sse2_cmp_sd: { TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, UndefElts, Depth + 1); if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } // If lowest element of a scalar op isn't used then use Arg0. if (!DemandedElts[0]) { Worklist.Add(II); return II->getArgOperand(0); } // Only lower element is used for operand 1. DemandedElts = 1; TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, UndefElts2, Depth + 1); if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } // Lower element is undefined if both lower elements are undefined. // Consider things like undef&0. The result is known zero, not undef. if (!UndefElts2[0]) UndefElts.clearBit(0); break; } // Binary scalar-as-vector operations that work column-wise. The high // elements come from operand 0 and the low element comes from operand 1. case Intrinsic::x86_sse41_round_ss: case Intrinsic::x86_sse41_round_sd: { // Don't use the low element of operand 0. APInt DemandedElts2 = DemandedElts; DemandedElts2.clearBit(0); TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2, UndefElts, Depth + 1); if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } // If lowest element of a scalar op isn't used then use Arg0. if (!DemandedElts[0]) { Worklist.Add(II); return II->getArgOperand(0); } // Only lower element is used for operand 1. DemandedElts = 1; TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, UndefElts2, Depth + 1); if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } // Take the high undef elements from operand 0 and take the lower element // from operand 1. UndefElts.clearBit(0); UndefElts |= UndefElts2[0]; break; } // Three input scalar-as-vector operations that work column-wise. The high // elements come from operand 0 and the low element is a function of all // three inputs. case Intrinsic::x86_avx512_mask_add_ss_round: case Intrinsic::x86_avx512_mask_div_ss_round: case Intrinsic::x86_avx512_mask_mul_ss_round: case Intrinsic::x86_avx512_mask_sub_ss_round: case Intrinsic::x86_avx512_mask_max_ss_round: case Intrinsic::x86_avx512_mask_min_ss_round: case Intrinsic::x86_avx512_mask_add_sd_round: case Intrinsic::x86_avx512_mask_div_sd_round: case Intrinsic::x86_avx512_mask_mul_sd_round: case Intrinsic::x86_avx512_mask_sub_sd_round: case Intrinsic::x86_avx512_mask_max_sd_round: case Intrinsic::x86_avx512_mask_min_sd_round: case Intrinsic::x86_fma_vfmadd_ss: case Intrinsic::x86_fma_vfmsub_ss: case Intrinsic::x86_fma_vfnmadd_ss: case Intrinsic::x86_fma_vfnmsub_ss: case Intrinsic::x86_fma_vfmadd_sd: case Intrinsic::x86_fma_vfmsub_sd: case Intrinsic::x86_fma_vfnmadd_sd: case Intrinsic::x86_fma_vfnmsub_sd: case Intrinsic::x86_avx512_mask_vfmadd_ss: case Intrinsic::x86_avx512_mask_vfmadd_sd: case Intrinsic::x86_avx512_maskz_vfmadd_ss: case Intrinsic::x86_avx512_maskz_vfmadd_sd: TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, UndefElts, Depth + 1); if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } // If lowest element of a scalar op isn't used then use Arg0. if (!DemandedElts[0]) { Worklist.Add(II); return II->getArgOperand(0); } // Only lower element is used for operand 1 and 2. DemandedElts = 1; TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, UndefElts2, Depth + 1); if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, UndefElts3, Depth + 1); if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } // Lower element is undefined if all three lower elements are undefined. // Consider things like undef&0. The result is known zero, not undef. if (!UndefElts2[0] || !UndefElts3[0]) UndefElts.clearBit(0); break; case Intrinsic::x86_avx512_mask3_vfmadd_ss: case Intrinsic::x86_avx512_mask3_vfmadd_sd: case Intrinsic::x86_avx512_mask3_vfmsub_ss: case Intrinsic::x86_avx512_mask3_vfmsub_sd: case Intrinsic::x86_avx512_mask3_vfnmsub_ss: case Intrinsic::x86_avx512_mask3_vfnmsub_sd: // These intrinsics get the passthru bits from operand 2. TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, UndefElts, Depth + 1); if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } // If lowest element of a scalar op isn't used then use Arg2. if (!DemandedElts[0]) { Worklist.Add(II); return II->getArgOperand(2); } // Only lower element is used for operand 0 and 1. DemandedElts = 1; TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, UndefElts2, Depth + 1); if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, UndefElts3, Depth + 1); if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } // Lower element is undefined if all three lower elements are undefined. // Consider things like undef&0. The result is known zero, not undef. if (!UndefElts2[0] || !UndefElts3[0]) UndefElts.clearBit(0); break; case Intrinsic::x86_sse2_pmulu_dq: case Intrinsic::x86_sse41_pmuldq: case Intrinsic::x86_avx2_pmul_dq: case Intrinsic::x86_avx2_pmulu_dq: case Intrinsic::x86_avx512_pmul_dq_512: case Intrinsic::x86_avx512_pmulu_dq_512: { Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); unsigned InnerVWidth = Op0->getType()->getVectorNumElements(); assert((VWidth * 2) == InnerVWidth && "Unexpected input size"); APInt InnerDemandedElts(InnerVWidth, 0); for (unsigned i = 0; i != VWidth; ++i) if (DemandedElts[i]) InnerDemandedElts.setBit(i * 2); UndefElts2 = APInt(InnerVWidth, 0); TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2, Depth + 1); if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } UndefElts3 = APInt(InnerVWidth, 0); TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3, Depth + 1); if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } break; } case Intrinsic::x86_sse2_packssdw_128: case Intrinsic::x86_sse2_packsswb_128: case Intrinsic::x86_sse2_packuswb_128: case Intrinsic::x86_sse41_packusdw: case Intrinsic::x86_avx2_packssdw: case Intrinsic::x86_avx2_packsswb: case Intrinsic::x86_avx2_packusdw: case Intrinsic::x86_avx2_packuswb: case Intrinsic::x86_avx512_packssdw_512: case Intrinsic::x86_avx512_packsswb_512: case Intrinsic::x86_avx512_packusdw_512: case Intrinsic::x86_avx512_packuswb_512: { auto *Ty0 = II->getArgOperand(0)->getType(); unsigned InnerVWidth = Ty0->getVectorNumElements(); assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; unsigned VWidthPerLane = VWidth / NumLanes; unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; // Per lane, pack the elements of the first input and then the second. // e.g. // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) for (int OpNum = 0; OpNum != 2; ++OpNum) { APInt OpDemandedElts(InnerVWidth, 0); for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { unsigned LaneIdx = Lane * VWidthPerLane; for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; if (DemandedElts[Idx]) OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); } } // Demand elements from the operand. auto *Op = II->getArgOperand(OpNum); APInt OpUndefElts(InnerVWidth, 0); TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts, Depth + 1); if (TmpV) { II->setArgOperand(OpNum, TmpV); MadeChange = true; } // Pack the operand's UNDEF elements, one lane at a time. OpUndefElts = OpUndefElts.zext(VWidth); for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); UndefElts |= LaneElts; } } break; } // PSHUFB case Intrinsic::x86_ssse3_pshuf_b_128: case Intrinsic::x86_avx2_pshuf_b: case Intrinsic::x86_avx512_pshuf_b_512: // PERMILVAR case Intrinsic::x86_avx_vpermilvar_ps: case Intrinsic::x86_avx_vpermilvar_ps_256: case Intrinsic::x86_avx512_vpermilvar_ps_512: case Intrinsic::x86_avx_vpermilvar_pd: case Intrinsic::x86_avx_vpermilvar_pd_256: case Intrinsic::x86_avx512_vpermilvar_pd_512: // PERMV case Intrinsic::x86_avx2_permd: case Intrinsic::x86_avx2_permps: { Value *Op1 = II->getArgOperand(1); TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts, Depth + 1); if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } break; } // SSE4A instructions leave the upper 64-bits of the 128-bit result // in an undefined state. case Intrinsic::x86_sse4a_extrq: case Intrinsic::x86_sse4a_extrqi: case Intrinsic::x86_sse4a_insertq: case Intrinsic::x86_sse4a_insertqi: UndefElts.setHighBits(VWidth / 2); break; case Intrinsic::amdgcn_buffer_load: case Intrinsic::amdgcn_buffer_load_format: case Intrinsic::amdgcn_image_sample: case Intrinsic::amdgcn_image_sample_cl: case Intrinsic::amdgcn_image_sample_d: case Intrinsic::amdgcn_image_sample_d_cl: case Intrinsic::amdgcn_image_sample_l: case Intrinsic::amdgcn_image_sample_b: case Intrinsic::amdgcn_image_sample_b_cl: case Intrinsic::amdgcn_image_sample_lz: case Intrinsic::amdgcn_image_sample_cd: case Intrinsic::amdgcn_image_sample_cd_cl: case Intrinsic::amdgcn_image_sample_c: case Intrinsic::amdgcn_image_sample_c_cl: case Intrinsic::amdgcn_image_sample_c_d: case Intrinsic::amdgcn_image_sample_c_d_cl: case Intrinsic::amdgcn_image_sample_c_l: case Intrinsic::amdgcn_image_sample_c_b: case Intrinsic::amdgcn_image_sample_c_b_cl: case Intrinsic::amdgcn_image_sample_c_lz: case Intrinsic::amdgcn_image_sample_c_cd: case Intrinsic::amdgcn_image_sample_c_cd_cl: case Intrinsic::amdgcn_image_sample_o: case Intrinsic::amdgcn_image_sample_cl_o: case Intrinsic::amdgcn_image_sample_d_o: case Intrinsic::amdgcn_image_sample_d_cl_o: case Intrinsic::amdgcn_image_sample_l_o: case Intrinsic::amdgcn_image_sample_b_o: case Intrinsic::amdgcn_image_sample_b_cl_o: case Intrinsic::amdgcn_image_sample_lz_o: case Intrinsic::amdgcn_image_sample_cd_o: case Intrinsic::amdgcn_image_sample_cd_cl_o: case Intrinsic::amdgcn_image_sample_c_o: case Intrinsic::amdgcn_image_sample_c_cl_o: case Intrinsic::amdgcn_image_sample_c_d_o: case Intrinsic::amdgcn_image_sample_c_d_cl_o: case Intrinsic::amdgcn_image_sample_c_l_o: case Intrinsic::amdgcn_image_sample_c_b_o: case Intrinsic::amdgcn_image_sample_c_b_cl_o: case Intrinsic::amdgcn_image_sample_c_lz_o: case Intrinsic::amdgcn_image_sample_c_cd_o: case Intrinsic::amdgcn_image_sample_c_cd_cl_o: case Intrinsic::amdgcn_image_getlod: { if (VWidth == 1 || !DemandedElts.isMask()) return nullptr; // TODO: Handle 3 vectors when supported in code gen. unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes()); if (NewNumElts == VWidth) return nullptr; Module *M = II->getParent()->getParent()->getParent(); Type *EltTy = V->getType()->getVectorElementType(); Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); auto IID = II->getIntrinsicID(); bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load || IID == Intrinsic::amdgcn_buffer_load_format; Function *NewIntrin = IsBuffer ? Intrinsic::getDeclaration(M, IID, NewTy) : // Samplers have 3 mangled types. Intrinsic::getDeclaration(M, IID, { NewTy, II->getArgOperand(0)->getType(), II->getArgOperand(1)->getType()}); SmallVector Args; for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) Args.push_back(II->getArgOperand(I)); IRBuilderBase::InsertPointGuard Guard(*Builder); Builder->SetInsertPoint(II); CallInst *NewCall = Builder->CreateCall(NewIntrin, Args); NewCall->takeName(II); NewCall->copyMetadata(*II); if (!IsBuffer) { ConstantInt *DMask = dyn_cast(NewCall->getArgOperand(3)); if (DMask) { unsigned DMaskVal = DMask->getZExtValue() & 0xf; unsigned PopCnt = 0; unsigned NewDMask = 0; for (unsigned I = 0; I < 4; ++I) { const unsigned Bit = 1 << I; if (!!(DMaskVal & Bit)) { if (++PopCnt > NewNumElts) break; NewDMask |= Bit; } } NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask)); } } if (NewNumElts == 1) { return Builder->CreateInsertElement(UndefValue::get(V->getType()), NewCall, static_cast(0)); } SmallVector EltMask; for (unsigned I = 0; I < VWidth; ++I) EltMask.push_back(I); Value *Shuffle = Builder->CreateShuffleVector( NewCall, UndefValue::get(NewTy), EltMask); MadeChange = true; return Shuffle; } } break; } } return MadeChange ? I : nullptr; }