//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // Details of the algorithm: // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asan" #include "FunctionBlackList.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Function.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/system_error.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include "llvm/Type.h" #include #include using namespace llvm; static const uint64_t kDefaultShadowScale = 3; static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; static const size_t kMaxStackMallocSize = 1 << 16; // 64K static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; static const char *kAsanModuleCtorName = "asan.module_ctor"; static const char *kAsanModuleDtorName = "asan.module_dtor"; static const int kAsanCtorAndCtorPriority = 1; static const char *kAsanReportErrorTemplate = "__asan_report_"; static const char *kAsanRegisterGlobalsName = "__asan_register_globals"; static const char *kAsanUnregisterGlobalsName = "__asan_unregister_globals"; static const char *kAsanInitName = "__asan_init"; static const char *kAsanHandleNoReturnName = "__asan_handle_no_return"; static const char *kAsanMappingOffsetName = "__asan_mapping_offset"; static const char *kAsanMappingScaleName = "__asan_mapping_scale"; static const char *kAsanStackMallocName = "__asan_stack_malloc"; static const char *kAsanStackFreeName = "__asan_stack_free"; static const int kAsanStackLeftRedzoneMagic = 0xf1; static const int kAsanStackMidRedzoneMagic = 0xf2; static const int kAsanStackRightRedzoneMagic = 0xf3; static const int kAsanStackPartialRedzoneMagic = 0xf4; // Command-line flags. // This flag may need to be replaced with -f[no-]asan-reads. static cl::opt ClInstrumentReads("asan-instrument-reads", cl::desc("instrument read instructions"), cl::Hidden, cl::init(true)); static cl::opt ClInstrumentWrites("asan-instrument-writes", cl::desc("instrument write instructions"), cl::Hidden, cl::init(true)); // This flag may need to be replaced with -f[no]asan-stack. static cl::opt ClStack("asan-stack", cl::desc("Handle stack memory"), cl::Hidden, cl::init(true)); // This flag may need to be replaced with -f[no]asan-use-after-return. static cl::opt ClUseAfterReturn("asan-use-after-return", cl::desc("Check return-after-free"), cl::Hidden, cl::init(false)); // This flag may need to be replaced with -f[no]asan-globals. static cl::opt ClGlobals("asan-globals", cl::desc("Handle global objects"), cl::Hidden, cl::init(true)); static cl::opt ClMemIntrin("asan-memintrin", cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true)); // This flag may need to be replaced with -fasan-blacklist. static cl::opt ClBlackListFile("asan-blacklist", cl::desc("File containing the list of functions to ignore " "during instrumentation"), cl::Hidden); // These flags allow to change the shadow mapping. // The shadow mapping looks like // Shadow = (Mem >> scale) + (1 << offset_log) static cl::opt ClMappingScale("asan-mapping-scale", cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0)); static cl::opt ClMappingOffsetLog("asan-mapping-offset-log", cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1)); // Optimization flags. Not user visible, used mostly for testing // and benchmarking the tool. static cl::opt ClOpt("asan-opt", cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true)); static cl::opt ClOptSameTemp("asan-opt-same-temp", cl::desc("Instrument the same temp just once"), cl::Hidden, cl::init(true)); static cl::opt ClOptGlobals("asan-opt-globals", cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true)); // Debug flags. static cl::opt ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, cl::init(0)); static cl::opt ClDebugStack("asan-debug-stack", cl::desc("debug stack"), cl::Hidden, cl::init(0)); static cl::opt ClDebugFunc("asan-debug-func", cl::Hidden, cl::desc("Debug func")); static cl::opt ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), cl::Hidden, cl::init(-1)); static cl::opt ClDebugMax("asan-debug-max", cl::desc("Debug man inst"), cl::Hidden, cl::init(-1)); namespace { /// AddressSanitizer: instrument the code in module to find memory bugs. struct AddressSanitizer : public ModulePass { AddressSanitizer(); virtual const char *getPassName() const; void instrumentMop(Instruction *I); void instrumentAddress(Instruction *OrigIns, IRBuilder<> &IRB, Value *Addr, uint32_t TypeSize, bool IsWrite); Instruction *generateCrashCode(IRBuilder<> &IRB, Value *Addr, bool IsWrite, uint32_t TypeSize); bool instrumentMemIntrinsic(MemIntrinsic *MI); void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite); Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); bool handleFunction(Module &M, Function &F); bool maybeInsertAsanInitAtFunctionEntry(Function &F); bool poisonStackInFunction(Module &M, Function &F); virtual bool runOnModule(Module &M); bool insertGlobalRedzones(Module &M); BranchInst *splitBlockAndInsertIfThen(Instruction *SplitBefore, Value *Cmp); static char ID; // Pass identification, replacement for typeid private: uint64_t getAllocaSizeInBytes(AllocaInst *AI) { Type *Ty = AI->getAllocatedType(); uint64_t SizeInBytes = TD->getTypeAllocSize(Ty); return SizeInBytes; } uint64_t getAlignedSize(uint64_t SizeInBytes) { return ((SizeInBytes + RedzoneSize - 1) / RedzoneSize) * RedzoneSize; } uint64_t getAlignedAllocaSize(AllocaInst *AI) { uint64_t SizeInBytes = getAllocaSizeInBytes(AI); return getAlignedSize(SizeInBytes); } void PoisonStack(const ArrayRef &AllocaVec, IRBuilder<> IRB, Value *ShadowBase, bool DoPoison); bool LooksLikeCodeInBug11395(Instruction *I); Module *CurrentModule; LLVMContext *C; TargetData *TD; uint64_t MappingOffset; int MappingScale; size_t RedzoneSize; int LongSize; Type *IntptrTy; Type *IntptrPtrTy; Function *AsanCtorFunction; Function *AsanInitFunction; Instruction *CtorInsertBefore; OwningPtr BL; }; } // namespace char AddressSanitizer::ID = 0; INITIALIZE_PASS(AddressSanitizer, "asan", "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, false) AddressSanitizer::AddressSanitizer() : ModulePass(ID) { } ModulePass *llvm::createAddressSanitizerPass() { return new AddressSanitizer(); } const char *AddressSanitizer::getPassName() const { return "AddressSanitizer"; } // Create a constant for Str so that we can pass it to the run-time lib. static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) { Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); return new GlobalVariable(M, StrConst->getType(), true, GlobalValue::PrivateLinkage, StrConst, ""); } // Split the basic block and insert an if-then code. // Before: // Head // SplitBefore // Tail // After: // Head // if (Cmp) // NewBasicBlock // SplitBefore // Tail // // Returns the NewBasicBlock's terminator. BranchInst *AddressSanitizer::splitBlockAndInsertIfThen( Instruction *SplitBefore, Value *Cmp) { BasicBlock *Head = SplitBefore->getParent(); BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); TerminatorInst *HeadOldTerm = Head->getTerminator(); BasicBlock *NewBasicBlock = BasicBlock::Create(*C, "", Head->getParent()); BranchInst *HeadNewTerm = BranchInst::Create(/*ifTrue*/NewBasicBlock, /*ifFalse*/Tail, Cmp); ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); BranchInst *CheckTerm = BranchInst::Create(Tail, NewBasicBlock); return CheckTerm; } Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { // Shadow >> scale Shadow = IRB.CreateLShr(Shadow, MappingScale); if (MappingOffset == 0) return Shadow; // (Shadow >> scale) | offset return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, MappingOffset)); } void AddressSanitizer::instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) { // Check the first byte. { IRBuilder<> IRB(InsertBefore); instrumentAddress(OrigIns, IRB, Addr, 8, IsWrite); } // Check the last byte. { IRBuilder<> IRB(InsertBefore); Value *SizeMinusOne = IRB.CreateSub( Size, ConstantInt::get(Size->getType(), 1)); SizeMinusOne = IRB.CreateIntCast(SizeMinusOne, IntptrTy, false); Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); Value *AddrPlusSizeMinisOne = IRB.CreateAdd(AddrLong, SizeMinusOne); instrumentAddress(OrigIns, IRB, AddrPlusSizeMinisOne, 8, IsWrite); } } // Instrument memset/memmove/memcpy bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { Value *Dst = MI->getDest(); MemTransferInst *MemTran = dyn_cast(MI); Value *Src = MemTran ? MemTran->getSource() : NULL; Value *Length = MI->getLength(); Constant *ConstLength = dyn_cast(Length); Instruction *InsertBefore = MI; if (ConstLength) { if (ConstLength->isNullValue()) return false; } else { // The size is not a constant so it could be zero -- check at run-time. IRBuilder<> IRB(InsertBefore); Value *Cmp = IRB.CreateICmpNE(Length, Constant::getNullValue(Length->getType())); InsertBefore = splitBlockAndInsertIfThen(InsertBefore, Cmp); } instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true); if (Src) instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false); return true; } static Value *getLDSTOperand(Instruction *I) { if (LoadInst *LI = dyn_cast(I)) { return LI->getPointerOperand(); } return cast(*I).getPointerOperand(); } void AddressSanitizer::instrumentMop(Instruction *I) { int IsWrite = isa(*I); Value *Addr = getLDSTOperand(I); if (ClOpt && ClOptGlobals && isa(Addr)) { // We are accessing a global scalar variable. Nothing to catch here. return; } Type *OrigPtrTy = Addr->getType(); Type *OrigTy = cast(OrigPtrTy)->getElementType(); assert(OrigTy->isSized()); uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy); if (TypeSize != 8 && TypeSize != 16 && TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { // Ignore all unusual sizes. return; } IRBuilder<> IRB(I); instrumentAddress(I, IRB, Addr, TypeSize, IsWrite); } Instruction *AddressSanitizer::generateCrashCode( IRBuilder<> &IRB, Value *Addr, bool IsWrite, uint32_t TypeSize) { // IsWrite and TypeSize are encoded in the function name. std::string FunctionName = std::string(kAsanReportErrorTemplate) + (IsWrite ? "store" : "load") + itostr(TypeSize / 8); Value *ReportWarningFunc = CurrentModule->getOrInsertFunction( FunctionName, IRB.getVoidTy(), IntptrTy, NULL); CallInst *Call = IRB.CreateCall(ReportWarningFunc, Addr); Call->setDoesNotReturn(); return Call; } void AddressSanitizer::instrumentAddress(Instruction *OrigIns, IRBuilder<> &IRB, Value *Addr, uint32_t TypeSize, bool IsWrite) { Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); Type *ShadowTy = IntegerType::get( *C, std::max(8U, TypeSize >> MappingScale)); Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); Value *ShadowPtr = memToShadow(AddrLong, IRB); Value *CmpVal = Constant::getNullValue(ShadowTy); Value *ShadowValue = IRB.CreateLoad( IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); Instruction *CheckTerm = splitBlockAndInsertIfThen( cast(Cmp)->getNextNode(), Cmp); IRBuilder<> IRB2(CheckTerm); size_t Granularity = 1 << MappingScale; if (TypeSize < 8 * Granularity) { // Addr & (Granularity - 1) Value *Lower3Bits = IRB2.CreateAnd( AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); // (Addr & (Granularity - 1)) + size - 1 Value *LastAccessedByte = IRB2.CreateAdd( Lower3Bits, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); // (uint8_t) ((Addr & (Granularity-1)) + size - 1) LastAccessedByte = IRB2.CreateIntCast( LastAccessedByte, IRB.getInt8Ty(), false); // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue Value *Cmp2 = IRB2.CreateICmpSGE(LastAccessedByte, ShadowValue); CheckTerm = splitBlockAndInsertIfThen(CheckTerm, Cmp2); } IRBuilder<> IRB1(CheckTerm); Instruction *Crash = generateCrashCode(IRB1, AddrLong, IsWrite, TypeSize); Crash->setDebugLoc(OrigIns->getDebugLoc()); ReplaceInstWithInst(CheckTerm, new UnreachableInst(*C)); } // This function replaces all global variables with new variables that have // trailing redzones. It also creates a function that poisons // redzones and inserts this function into llvm.global_ctors. bool AddressSanitizer::insertGlobalRedzones(Module &M) { SmallVector GlobalsToChange; for (Module::GlobalListType::iterator G = M.getGlobalList().begin(), E = M.getGlobalList().end(); G != E; ++G) { Type *Ty = cast(G->getType())->getElementType(); DEBUG(dbgs() << "GLOBAL: " << *G); if (!Ty->isSized()) continue; if (!G->hasInitializer()) continue; // Touch only those globals that will not be defined in other modules. // Don't handle ODR type linkages since other modules may be built w/o asan. if (G->getLinkage() != GlobalVariable::ExternalLinkage && G->getLinkage() != GlobalVariable::PrivateLinkage && G->getLinkage() != GlobalVariable::InternalLinkage) continue; // Two problems with thread-locals: // - The address of the main thread's copy can't be computed at link-time. // - Need to poison all copies, not just the main thread's one. if (G->isThreadLocal()) continue; // For now, just ignore this Alloca if the alignment is large. if (G->getAlignment() > RedzoneSize) continue; // Ignore all the globals with the names starting with "\01L_OBJC_". // Many of those are put into the .cstring section. The linker compresses // that section by removing the spare \0s after the string terminator, so // our redzones get broken. if ((G->getName().find("\01L_OBJC_") == 0) || (G->getName().find("\01l_OBJC_") == 0)) { DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G); continue; } if (G->hasSection()) { StringRef Section(G->getSection()); // Ignore the globals from the __OBJC section. The ObjC runtime assumes // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to // them. if ((Section.find("__OBJC,") == 0) || (Section.find("__DATA, __objc_") == 0)) { DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G); continue; } // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 // Constant CFString instances are compiled in the following way: // -- the string buffer is emitted into // __TEXT,__cstring,cstring_literals // -- the constant NSConstantString structure referencing that buffer // is placed into __DATA,__cfstring // Therefore there's no point in placing redzones into __DATA,__cfstring. // Moreover, it causes the linker to crash on OS X 10.7 if (Section.find("__DATA,__cfstring") == 0) { DEBUG(dbgs() << "Ignoring CFString: " << *G); continue; } } GlobalsToChange.push_back(G); } size_t n = GlobalsToChange.size(); if (n == 0) return false; // A global is described by a structure // size_t beg; // size_t size; // size_t size_with_redzone; // const char *name; // We initialize an array of such structures and pass it to a run-time call. StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, NULL); SmallVector Initializers(n); IRBuilder<> IRB(CtorInsertBefore); for (size_t i = 0; i < n; i++) { GlobalVariable *G = GlobalsToChange[i]; PointerType *PtrTy = cast(G->getType()); Type *Ty = PtrTy->getElementType(); uint64_t SizeInBytes = TD->getTypeAllocSize(Ty); uint64_t RightRedzoneSize = RedzoneSize + (RedzoneSize - (SizeInBytes % RedzoneSize)); Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL); Constant *NewInitializer = ConstantStruct::get( NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy), NULL); SmallString<2048> DescriptionOfGlobal = G->getName(); DescriptionOfGlobal += " ("; DescriptionOfGlobal += M.getModuleIdentifier(); DescriptionOfGlobal += ")"; GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal); // Create a new global variable with enough space for a redzone. GlobalVariable *NewGlobal = new GlobalVariable( M, NewTy, G->isConstant(), G->getLinkage(), NewInitializer, "", G, G->isThreadLocal()); NewGlobal->copyAttributesFrom(G); NewGlobal->setAlignment(RedzoneSize); Value *Indices2[2]; Indices2[0] = IRB.getInt32(0); Indices2[1] = IRB.getInt32(0); G->replaceAllUsesWith( ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true)); NewGlobal->takeName(G); G->eraseFromParent(); Initializers[i] = ConstantStruct::get( GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy), ConstantInt::get(IntptrTy, SizeInBytes), ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), ConstantExpr::getPointerCast(Name, IntptrTy), NULL); DEBUG(dbgs() << "NEW GLOBAL:\n" << *NewGlobal); } ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); GlobalVariable *AllGlobals = new GlobalVariable( M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage, ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); Function *AsanRegisterGlobals = cast(M.getOrInsertFunction( kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); IRB.CreateCall2(AsanRegisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); // We also need to unregister globals at the end, e.g. when a shared library // gets closed. Function *AsanDtorFunction = Function::Create( FunctionType::get(Type::getVoidTy(*C), false), GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); Function *AsanUnregisterGlobals = cast(M.getOrInsertFunction( kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); IRB_Dtor.CreateCall2(AsanUnregisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority); DEBUG(dbgs() << M); return true; } // virtual bool AddressSanitizer::runOnModule(Module &M) { // Initialize the private fields. No one has accessed them before. TD = getAnalysisIfAvailable(); if (!TD) return false; BL.reset(new FunctionBlackList(ClBlackListFile)); CurrentModule = &M; C = &(M.getContext()); LongSize = TD->getPointerSizeInBits(); IntptrTy = Type::getIntNTy(*C, LongSize); IntptrPtrTy = PointerType::get(IntptrTy, 0); AsanCtorFunction = Function::Create( FunctionType::get(Type::getVoidTy(*C), false), GlobalValue::InternalLinkage, kAsanModuleCtorName, &M); BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction); CtorInsertBefore = ReturnInst::Create(*C, AsanCtorBB); // call __asan_init in the module ctor. IRBuilder<> IRB(CtorInsertBefore); AsanInitFunction = cast( M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL)); AsanInitFunction->setLinkage(Function::ExternalLinkage); IRB.CreateCall(AsanInitFunction); MappingOffset = LongSize == 32 ? kDefaultShadowOffset32 : kDefaultShadowOffset64; if (ClMappingOffsetLog >= 0) { if (ClMappingOffsetLog == 0) { // special case MappingOffset = 0; } else { MappingOffset = 1ULL << ClMappingOffsetLog; } } MappingScale = kDefaultShadowScale; if (ClMappingScale) { MappingScale = ClMappingScale; } // Redzone used for stack and globals is at least 32 bytes. // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. RedzoneSize = std::max(32, (int)(1 << MappingScale)); bool Res = false; if (ClGlobals) Res |= insertGlobalRedzones(M); if (ClMappingOffsetLog >= 0) { // Tell the run-time the current values of mapping offset and scale. GlobalValue *asan_mapping_offset = new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, ConstantInt::get(IntptrTy, MappingOffset), kAsanMappingOffsetName); // Read the global, otherwise it may be optimized away. IRB.CreateLoad(asan_mapping_offset, true); } if (ClMappingScale) { GlobalValue *asan_mapping_scale = new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, ConstantInt::get(IntptrTy, MappingScale), kAsanMappingScaleName); // Read the global, otherwise it may be optimized away. IRB.CreateLoad(asan_mapping_scale, true); } for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; Res |= handleFunction(M, *F); } appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority); return Res; } bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { // For each NSObject descendant having a +load method, this method is invoked // by the ObjC runtime before any of the static constructors is called. // Therefore we need to instrument such methods with a call to __asan_init // at the beginning in order to initialize our runtime before any access to // the shadow memory. // We cannot just ignore these methods, because they may call other // instrumented functions. if (F.getName().find(" load]") != std::string::npos) { IRBuilder<> IRB(F.begin()->begin()); IRB.CreateCall(AsanInitFunction); return true; } return false; } bool AddressSanitizer::handleFunction(Module &M, Function &F) { if (BL->isIn(F)) return false; if (&F == AsanCtorFunction) return false; // If needed, insert __asan_init before checking for AddressSafety attr. maybeInsertAsanInitAtFunctionEntry(F); if (!F.hasFnAttr(Attribute::AddressSafety)) return false; if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false; // We want to instrument every address only once per basic block // (unless there are calls between uses). SmallSet TempsToInstrument; SmallVector ToInstrument; SmallVector NoReturnCalls; // Fill the set of memory operations to instrument. for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { TempsToInstrument.clear(); for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { if (LooksLikeCodeInBug11395(BI)) return false; if ((isa(BI) && ClInstrumentReads) || (isa(BI) && ClInstrumentWrites)) { Value *Addr = getLDSTOperand(BI); if (ClOpt && ClOptSameTemp) { if (!TempsToInstrument.insert(Addr)) continue; // We've seen this temp in the current BB. } } else if (isa(BI) && ClMemIntrin) { // ok, take it. } else { if (CallInst *CI = dyn_cast(BI)) { // A call inside BB. TempsToInstrument.clear(); if (CI->doesNotReturn()) { NoReturnCalls.push_back(CI); } } continue; } ToInstrument.push_back(BI); } } // Instrument. int NumInstrumented = 0; for (size_t i = 0, n = ToInstrument.size(); i != n; i++) { Instruction *Inst = ToInstrument[i]; if (ClDebugMin < 0 || ClDebugMax < 0 || (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { if (isa(Inst) || isa(Inst)) instrumentMop(Inst); else instrumentMemIntrinsic(cast(Inst)); } NumInstrumented++; } DEBUG(dbgs() << F); bool ChangedStack = poisonStackInFunction(M, F); // We must unpoison the stack before every NoReturn call (throw, _exit, etc). // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) { Instruction *CI = NoReturnCalls[i]; IRBuilder<> IRB(CI); IRB.CreateCall(M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), NULL)); } return NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty(); } static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) { if (ShadowRedzoneSize == 1) return PoisonByte; if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte; if (ShadowRedzoneSize == 4) return (PoisonByte << 24) + (PoisonByte << 16) + (PoisonByte << 8) + (PoisonByte); llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4"); } static void PoisonShadowPartialRightRedzone(uint8_t *Shadow, size_t Size, size_t RedzoneSize, size_t ShadowGranularity, uint8_t Magic) { for (size_t i = 0; i < RedzoneSize; i+= ShadowGranularity, Shadow++) { if (i + ShadowGranularity <= Size) { *Shadow = 0; // fully addressable } else if (i >= Size) { *Shadow = Magic; // unaddressable } else { *Shadow = Size - i; // first Size-i bytes are addressable } } } void AddressSanitizer::PoisonStack(const ArrayRef &AllocaVec, IRBuilder<> IRB, Value *ShadowBase, bool DoPoison) { size_t ShadowRZSize = RedzoneSize >> MappingScale; assert(ShadowRZSize >= 1 && ShadowRZSize <= 4); Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8); Type *RZPtrTy = PointerType::get(RZTy, 0); Value *PoisonLeft = ConstantInt::get(RZTy, ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize)); Value *PoisonMid = ConstantInt::get(RZTy, ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize)); Value *PoisonRight = ConstantInt::get(RZTy, ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize)); // poison the first red zone. IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy)); // poison all other red zones. uint64_t Pos = RedzoneSize; for (size_t i = 0, n = AllocaVec.size(); i < n; i++) { AllocaInst *AI = AllocaVec[i]; uint64_t SizeInBytes = getAllocaSizeInBytes(AI); uint64_t AlignedSize = getAlignedAllocaSize(AI); assert(AlignedSize - SizeInBytes < RedzoneSize); Value *Ptr = NULL; Pos += AlignedSize; assert(ShadowBase->getType() == IntptrTy); if (SizeInBytes < AlignedSize) { // Poison the partial redzone at right Ptr = IRB.CreateAdd( ShadowBase, ConstantInt::get(IntptrTy, (Pos >> MappingScale) - ShadowRZSize)); size_t AddressableBytes = RedzoneSize - (AlignedSize - SizeInBytes); uint32_t Poison = 0; if (DoPoison) { PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes, RedzoneSize, 1ULL << MappingScale, kAsanStackPartialRedzoneMagic); } Value *PartialPoison = ConstantInt::get(RZTy, Poison); IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy)); } // Poison the full redzone at right. Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, Pos >> MappingScale)); Value *Poison = i == AllocaVec.size() - 1 ? PoisonRight : PoisonMid; IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy)); Pos += RedzoneSize; } } // Workaround for bug 11395: we don't want to instrument stack in functions // with large assembly blobs (32-bit only), otherwise reg alloc may crash. // FIXME: remove once the bug 11395 is fixed. bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { if (LongSize != 32) return false; CallInst *CI = dyn_cast(I); if (!CI || !CI->isInlineAsm()) return false; if (CI->getNumArgOperands() <= 5) return false; // We have inline assembly with quite a few arguments. return true; } // Find all static Alloca instructions and put // poisoned red zones around all of them. // Then unpoison everything back before the function returns. // // Stack poisoning does not play well with exception handling. // When an exception is thrown, we essentially bypass the code // that unpoisones the stack. This is why the run-time library has // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire // stack in the interceptor. This however does not work inside the // actual function which catches the exception. Most likely because the // compiler hoists the load of the shadow value somewhere too high. // This causes asan to report a non-existing bug on 453.povray. // It sounds like an LLVM bug. bool AddressSanitizer::poisonStackInFunction(Module &M, Function &F) { if (!ClStack) return false; SmallVector AllocaVec; SmallVector RetVec; uint64_t TotalSize = 0; // Filter out Alloca instructions we want (and can) handle. // Collect Ret instructions. for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { BasicBlock &BB = *FI; for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { if (isa(BI)) { RetVec.push_back(BI); continue; } AllocaInst *AI = dyn_cast(BI); if (!AI) continue; if (AI->isArrayAllocation()) continue; if (!AI->isStaticAlloca()) continue; if (!AI->getAllocatedType()->isSized()) continue; if (AI->getAlignment() > RedzoneSize) continue; AllocaVec.push_back(AI); uint64_t AlignedSize = getAlignedAllocaSize(AI); TotalSize += AlignedSize; } } if (AllocaVec.empty()) return false; uint64_t LocalStackSize = TotalSize + (AllocaVec.size() + 1) * RedzoneSize; bool DoStackMalloc = ClUseAfterReturn && LocalStackSize <= kMaxStackMallocSize; Instruction *InsBefore = AllocaVec[0]; IRBuilder<> IRB(InsBefore); Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize); AllocaInst *MyAlloca = new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore); MyAlloca->setAlignment(RedzoneSize); assert(MyAlloca->isStaticAlloca()); Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy); Value *LocalStackBase = OrigStackBase; if (DoStackMalloc) { Value *AsanStackMallocFunc = M.getOrInsertFunction( kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL); LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc, ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase); } // This string will be parsed by the run-time (DescribeStackAddress). SmallString<2048> StackDescriptionStorage; raw_svector_ostream StackDescription(StackDescriptionStorage); StackDescription << F.getName() << " " << AllocaVec.size() << " "; uint64_t Pos = RedzoneSize; // Replace Alloca instructions with base+offset. for (size_t i = 0, n = AllocaVec.size(); i < n; i++) { AllocaInst *AI = AllocaVec[i]; uint64_t SizeInBytes = getAllocaSizeInBytes(AI); StringRef Name = AI->getName(); StackDescription << Pos << " " << SizeInBytes << " " << Name.size() << " " << Name << " "; uint64_t AlignedSize = getAlignedAllocaSize(AI); assert((AlignedSize % RedzoneSize) == 0); AI->replaceAllUsesWith( IRB.CreateIntToPtr( IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)), AI->getType())); Pos += AlignedSize + RedzoneSize; } assert(Pos == LocalStackSize); // Write the Magic value and the frame description constant to the redzone. Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), BasePlus0); Value *BasePlus1 = IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, LongSize/8)); BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy); Value *Description = IRB.CreatePointerCast( createPrivateGlobalForString(M, StackDescription.str()), IntptrTy); IRB.CreateStore(Description, BasePlus1); // Poison the stack redzones at the entry. Value *ShadowBase = memToShadow(LocalStackBase, IRB); PoisonStack(ArrayRef(AllocaVec), IRB, ShadowBase, true); Value *AsanStackFreeFunc = NULL; if (DoStackMalloc) { AsanStackFreeFunc = M.getOrInsertFunction( kAsanStackFreeName, IRB.getVoidTy(), IntptrTy, IntptrTy, IntptrTy, NULL); } // Unpoison the stack before all ret instructions. for (size_t i = 0, n = RetVec.size(); i < n; i++) { Instruction *Ret = RetVec[i]; IRBuilder<> IRBRet(Ret); // Mark the current frame as retired. IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), BasePlus0); // Unpoison the stack. PoisonStack(ArrayRef(AllocaVec), IRBRet, ShadowBase, false); if (DoStackMalloc) { IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase, ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase); } } if (ClDebugStack) { DEBUG(dbgs() << F); } return true; }