//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass hoists expressions from branches to a common dominator. It uses // GVN (global value numbering) to discover expressions computing the same // values. The primary goal is to reduce the code size, and in some // cases reduce critical path (by exposing more ILP). // Hoisting may affect the performance in some cases. To mitigate that, hoisting // is disabled in the following cases. // 1. Scalars across calls. // 2. geps when corresponding load/store cannot be hoisted. //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/Transforms/Utils/MemorySSA.h" using namespace llvm; #define DEBUG_TYPE "gvn-hoist" STATISTIC(NumHoisted, "Number of instructions hoisted"); STATISTIC(NumRemoved, "Number of instructions removed"); STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); STATISTIC(NumLoadsRemoved, "Number of loads removed"); STATISTIC(NumStoresHoisted, "Number of stores hoisted"); STATISTIC(NumStoresRemoved, "Number of stores removed"); STATISTIC(NumCallsHoisted, "Number of calls hoisted"); STATISTIC(NumCallsRemoved, "Number of calls removed"); static cl::opt MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), cl::desc("Max number of instructions to hoist " "(default unlimited = -1)")); static cl::opt MaxNumberOfBBSInPath( "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), cl::desc("Max number of basic blocks on the path between " "hoisting locations (default = 4, unlimited = -1)")); namespace { // Provides a sorting function based on the execution order of two instructions. struct SortByDFSIn { private: DenseMap &DFSNumber; public: SortByDFSIn(DenseMap &D) : DFSNumber(D) {} // Returns true when A executes before B. bool operator()(const Instruction *A, const Instruction *B) const { // FIXME: libc++ has a std::sort() algorithm that will call the compare // function on the same element. Once PR20837 is fixed and some more years // pass by and all the buildbots have moved to a corrected std::sort(), // enable the following assert: // // assert(A != B); const BasicBlock *BA = A->getParent(); const BasicBlock *BB = B->getParent(); unsigned NA = DFSNumber[BA]; unsigned NB = DFSNumber[BB]; if (NA < NB) return true; if (NA == NB) { // Sort them in the order they occur in the same basic block. BasicBlock::const_iterator AI(A), BI(B); return std::distance(AI, BI) < 0; } return false; } }; // A map from a pair of VNs to all the instructions with those VNs. typedef DenseMap, SmallVector> VNtoInsns; // An invalid value number Used when inserting a single value number into // VNtoInsns. enum : unsigned { InvalidVN = ~2U }; // Records all scalar instructions candidate for code hoisting. class InsnInfo { VNtoInsns VNtoScalars; public: // Inserts I and its value number in VNtoScalars. void insert(Instruction *I, GVN::ValueTable &VN) { // Scalar instruction. unsigned V = VN.lookupOrAdd(I); VNtoScalars[{V, InvalidVN}].push_back(I); } const VNtoInsns &getVNTable() const { return VNtoScalars; } }; // Records all load instructions candidate for code hoisting. class LoadInfo { VNtoInsns VNtoLoads; public: // Insert Load and the value number of its memory address in VNtoLoads. void insert(LoadInst *Load, GVN::ValueTable &VN) { if (Load->isSimple()) { unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); VNtoLoads[{V, InvalidVN}].push_back(Load); } } const VNtoInsns &getVNTable() const { return VNtoLoads; } }; // Records all store instructions candidate for code hoisting. class StoreInfo { VNtoInsns VNtoStores; public: // Insert the Store and a hash number of the store address and the stored // value in VNtoStores. void insert(StoreInst *Store, GVN::ValueTable &VN) { if (!Store->isSimple()) return; // Hash the store address and the stored value. Value *Ptr = Store->getPointerOperand(); Value *Val = Store->getValueOperand(); VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); } const VNtoInsns &getVNTable() const { return VNtoStores; } }; // Records all call instructions candidate for code hoisting. class CallInfo { VNtoInsns VNtoCallsScalars; VNtoInsns VNtoCallsLoads; VNtoInsns VNtoCallsStores; public: // Insert Call and its value numbering in one of the VNtoCalls* containers. void insert(CallInst *Call, GVN::ValueTable &VN) { // A call that doesNotAccessMemory is handled as a Scalar, // onlyReadsMemory will be handled as a Load instruction, // all other calls will be handled as stores. unsigned V = VN.lookupOrAdd(Call); auto Entry = std::make_pair(V, InvalidVN); if (Call->doesNotAccessMemory()) VNtoCallsScalars[Entry].push_back(Call); else if (Call->onlyReadsMemory()) VNtoCallsLoads[Entry].push_back(Call); else VNtoCallsStores[Entry].push_back(Call); } const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } }; typedef DenseMap BBSideEffectsSet; typedef SmallVector SmallVecInsn; typedef SmallVectorImpl SmallVecImplInsn; // This pass hoists common computations across branches sharing common // dominator. The primary goal is to reduce the code size, and in some // cases reduce critical path (by exposing more ILP). class GVNHoist { public: GVN::ValueTable VN; DominatorTree *DT; AliasAnalysis *AA; MemoryDependenceResults *MD; const bool OptForMinSize; DenseMap DFSNumber; BBSideEffectsSet BBSideEffects; MemorySSA *MSSA; int HoistedCtr; enum InsKind { Unknown, Scalar, Load, Store }; GVNHoist(DominatorTree *Dt, AliasAnalysis *Aa, MemoryDependenceResults *Md, bool OptForMinSize) : DT(Dt), AA(Aa), MD(Md), OptForMinSize(OptForMinSize), HoistedCtr(0) {} // Return true when there are exception handling in BB. bool hasEH(const BasicBlock *BB) { auto It = BBSideEffects.find(BB); if (It != BBSideEffects.end()) return It->second; if (BB->isEHPad() || BB->hasAddressTaken()) { BBSideEffects[BB] = true; return true; } if (BB->getTerminator()->mayThrow()) { BBSideEffects[BB] = true; return true; } BBSideEffects[BB] = false; return false; } // Return true when all paths from A to the end of the function pass through // either B or C. bool hoistingFromAllPaths(const BasicBlock *A, const BasicBlock *B, const BasicBlock *C) { // We fully copy the WL in order to be able to remove items from it. SmallPtrSet WL; WL.insert(B); WL.insert(C); for (auto It = df_begin(A), E = df_end(A); It != E;) { // There exists a path from A to the exit of the function if we are still // iterating in DF traversal and we removed all instructions from the work // list. if (WL.empty()) return false; const BasicBlock *BB = *It; if (WL.erase(BB)) { // Stop DFS traversal when BB is in the work list. It.skipChildren(); continue; } // Check for end of function, calls that do not return, etc. if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator())) return false; // Increment DFS traversal when not skipping children. ++It; } return true; } /* Return true when I1 appears before I2 in the instructions of BB. */ bool firstInBB(BasicBlock *BB, const Instruction *I1, const Instruction *I2) { for (Instruction &I : *BB) { if (&I == I1) return true; if (&I == I2) return false; } llvm_unreachable("I1 and I2 not found in BB"); } // Return true when there are users of Def in BB. bool hasMemoryUseOnPath(MemoryAccess *Def, const BasicBlock *BB, const Instruction *OldPt) { const BasicBlock *DefBB = Def->getBlock(); const BasicBlock *OldBB = OldPt->getParent(); for (User *U : Def->users()) if (auto *MU = dyn_cast(U)) { BasicBlock *UBB = MU->getBlock(); // Only analyze uses in BB. if (BB != UBB) continue; // A use in the same block as the Def is on the path. if (UBB == DefBB) { assert(MSSA->locallyDominates(Def, MU) && "def not dominating use"); return true; } if (UBB != OldBB) return true; // It is only harmful to hoist when the use is before OldPt. if (firstInBB(UBB, MU->getMemoryInst(), OldPt)) return true; } return false; } // Return true when there are exception handling or loads of memory Def // between OldPt and NewPt. // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and // return true when the counter NBBsOnAllPaths reaces 0, except when it is // initialized to -1 which is unlimited. bool hasEHOrLoadsOnPath(const Instruction *NewPt, const Instruction *OldPt, MemoryAccess *Def, int &NBBsOnAllPaths) { const BasicBlock *NewBB = NewPt->getParent(); const BasicBlock *OldBB = OldPt->getParent(); assert(DT->dominates(NewBB, OldBB) && "invalid path"); assert(DT->dominates(Def->getBlock(), NewBB) && "def does not dominate new hoisting point"); // Walk all basic blocks reachable in depth-first iteration on the inverse // CFG from OldBB to NewBB. These blocks are all the blocks that may be // executed between the execution of NewBB and OldBB. Hoisting an expression // from OldBB into NewBB has to be safe on all execution paths. for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { if (*I == NewBB) { // Stop traversal when reaching HoistPt. I.skipChildren(); continue; } // Impossible to hoist with exceptions on the path. if (hasEH(*I)) return true; // Check that we do not move a store past loads. if (hasMemoryUseOnPath(Def, *I, OldPt)) return true; // Stop walk once the limit is reached. if (NBBsOnAllPaths == 0) return true; // -1 is unlimited number of blocks on all paths. if (NBBsOnAllPaths != -1) --NBBsOnAllPaths; ++I; } return false; } // Return true when there are exception handling between HoistPt and BB. // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and // return true when the counter NBBsOnAllPaths reaches 0, except when it is // initialized to -1 which is unlimited. bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB, int &NBBsOnAllPaths) { assert(DT->dominates(HoistPt, BB) && "Invalid path"); // Walk all basic blocks reachable in depth-first iteration on // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the // blocks that may be executed between the execution of NewHoistPt and // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe // on all execution paths. for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) { if (*I == HoistPt) { // Stop traversal when reaching NewHoistPt. I.skipChildren(); continue; } // Impossible to hoist with exceptions on the path. if (hasEH(*I)) return true; // Stop walk once the limit is reached. if (NBBsOnAllPaths == 0) return true; // -1 is unlimited number of blocks on all paths. if (NBBsOnAllPaths != -1) --NBBsOnAllPaths; ++I; } return false; } // Return true when it is safe to hoist a memory load or store U from OldPt // to NewPt. bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { // In place hoisting is safe. if (NewPt == OldPt) return true; const BasicBlock *NewBB = NewPt->getParent(); const BasicBlock *OldBB = OldPt->getParent(); const BasicBlock *UBB = U->getBlock(); // Check for dependences on the Memory SSA. MemoryAccess *D = U->getDefiningAccess(); BasicBlock *DBB = D->getBlock(); if (DT->properlyDominates(NewBB, DBB)) // Cannot move the load or store to NewBB above its definition in DBB. return false; if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) if (auto *UD = dyn_cast(D)) if (firstInBB(DBB, NewPt, UD->getMemoryInst())) // Cannot move the load or store to NewPt above its definition in D. return false; // Check for unsafe hoistings due to side effects. if (K == InsKind::Store) { if (hasEHOrLoadsOnPath(NewPt, OldPt, D, NBBsOnAllPaths)) return false; } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) return false; if (UBB == NewBB) { if (DT->properlyDominates(DBB, NewBB)) return true; assert(UBB == DBB); assert(MSSA->locallyDominates(D, U)); } // No side effects: it is safe to hoist. return true; } // Return true when it is safe to hoist scalar instructions from BB1 and BB2 // to HoistBB. bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB1, const BasicBlock *BB2, int &NBBsOnAllPaths) { // Check that the hoisted expression is needed on all paths. When HoistBB // already contains an instruction to be hoisted, the expression is needed // on all paths. Enable scalar hoisting at -Oz as it is safe to hoist // scalars to a place where they are partially needed. if (!OptForMinSize && BB1 != HoistBB && !hoistingFromAllPaths(HoistBB, BB1, BB2)) return false; if (hasEHOnPath(HoistBB, BB1, NBBsOnAllPaths) || hasEHOnPath(HoistBB, BB2, NBBsOnAllPaths)) return false; // Safe to hoist scalars from BB1 and BB2 to HoistBB. return true; } // Each element of a hoisting list contains the basic block where to hoist and // a list of instructions to be hoisted. typedef std::pair HoistingPointInfo; typedef SmallVector HoistingPointList; // Partition InstructionsToHoist into a set of candidates which can share a // common hoisting point. The partitions are collected in HPL. IsScalar is // true when the instructions in InstructionsToHoist are scalars. IsLoad is // true when the InstructionsToHoist are loads, false when they are stores. void partitionCandidates(SmallVecImplInsn &InstructionsToHoist, HoistingPointList &HPL, InsKind K) { // No need to sort for two instructions. if (InstructionsToHoist.size() > 2) { SortByDFSIn Pred(DFSNumber); std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred); } int NBBsOnAllPaths = MaxNumberOfBBSInPath; SmallVecImplInsn::iterator II = InstructionsToHoist.begin(); SmallVecImplInsn::iterator Start = II; Instruction *HoistPt = *II; BasicBlock *HoistBB = HoistPt->getParent(); MemoryUseOrDef *UD; if (K != InsKind::Scalar) UD = cast(MSSA->getMemoryAccess(HoistPt)); for (++II; II != InstructionsToHoist.end(); ++II) { Instruction *Insn = *II; BasicBlock *BB = Insn->getParent(); BasicBlock *NewHoistBB; Instruction *NewHoistPt; if (BB == HoistBB) { NewHoistBB = HoistBB; NewHoistPt = firstInBB(BB, Insn, HoistPt) ? Insn : HoistPt; } else { NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB); if (NewHoistBB == BB) NewHoistPt = Insn; else if (NewHoistBB == HoistBB) NewHoistPt = HoistPt; else NewHoistPt = NewHoistBB->getTerminator(); } if (K == InsKind::Scalar) { if (safeToHoistScalar(NewHoistBB, HoistBB, BB, NBBsOnAllPaths)) { // Extend HoistPt to NewHoistPt. HoistPt = NewHoistPt; HoistBB = NewHoistBB; continue; } } else { // When NewBB already contains an instruction to be hoisted, the // expression is needed on all paths. // Check that the hoisted expression is needed on all paths: it is // unsafe to hoist loads to a place where there may be a path not // loading from the same address: for instance there may be a branch on // which the address of the load may not be initialized. if ((HoistBB == NewHoistBB || BB == NewHoistBB || hoistingFromAllPaths(NewHoistBB, HoistBB, BB)) && // Also check that it is safe to move the load or store from HoistPt // to NewHoistPt, and from Insn to NewHoistPt. safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) && safeToHoistLdSt(NewHoistPt, Insn, cast(MSSA->getMemoryAccess(Insn)), K, NBBsOnAllPaths)) { // Extend HoistPt to NewHoistPt. HoistPt = NewHoistPt; HoistBB = NewHoistBB; continue; } } // At this point it is not safe to extend the current hoisting to // NewHoistPt: save the hoisting list so far. if (std::distance(Start, II) > 1) HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); // Start over from BB. Start = II; if (K != InsKind::Scalar) UD = cast(MSSA->getMemoryAccess(*Start)); HoistPt = Insn; HoistBB = BB; NBBsOnAllPaths = MaxNumberOfBBSInPath; } // Save the last partition. if (std::distance(Start, II) > 1) HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); } // Initialize HPL from Map. void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, InsKind K) { for (const auto &Entry : Map) { if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold) return; const SmallVecInsn &V = Entry.second; if (V.size() < 2) continue; // Compute the insertion point and the list of expressions to be hoisted. SmallVecInsn InstructionsToHoist; for (auto I : V) if (!hasEH(I->getParent())) InstructionsToHoist.push_back(I); if (!InstructionsToHoist.empty()) partitionCandidates(InstructionsToHoist, HPL, K); } } // Return true when all operands of Instr are available at insertion point // HoistPt. When limiting the number of hoisted expressions, one could hoist // a load without hoisting its access function. So before hoisting any // expression, make sure that all its operands are available at insert point. bool allOperandsAvailable(const Instruction *I, const BasicBlock *HoistPt) const { for (const Use &Op : I->operands()) if (const auto *Inst = dyn_cast(&Op)) if (!DT->dominates(Inst->getParent(), HoistPt)) return false; return true; } Instruction *firstOfTwo(Instruction *I, Instruction *J) const { for (Instruction &I1 : *I->getParent()) if (&I1 == I || &I1 == J) return &I1; llvm_unreachable("Both I and J must be from same BB"); } // Replace the use of From with To in Insn. void replaceUseWith(Instruction *Insn, Value *From, Value *To) const { for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); UI != UE;) { Use &U = *UI++; if (U.getUser() == Insn) { U.set(To); return; } } llvm_unreachable("should replace exactly once"); } bool makeOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt) const { // Check whether the GEP of a ld/st can be synthesized at HoistPt. GetElementPtrInst *Gep = nullptr; Instruction *Val = nullptr; if (auto *Ld = dyn_cast(Repl)) Gep = dyn_cast(Ld->getPointerOperand()); if (auto *St = dyn_cast(Repl)) { Gep = dyn_cast(St->getPointerOperand()); Val = dyn_cast(St->getValueOperand()); // Check that the stored value is available. if (Val) { if (isa(Val)) { // Check whether we can compute the GEP at HoistPt. if (!allOperandsAvailable(Val, HoistPt)) return false; } else if (!DT->dominates(Val->getParent(), HoistPt)) return false; } } // Check whether we can compute the Gep at HoistPt. if (!Gep || !allOperandsAvailable(Gep, HoistPt)) return false; // Copy the gep before moving the ld/st. Instruction *ClonedGep = Gep->clone(); ClonedGep->insertBefore(HoistPt->getTerminator()); replaceUseWith(Repl, Gep, ClonedGep); // Also copy Val when it is a GEP. if (Val && isa(Val)) { Instruction *ClonedVal = Val->clone(); ClonedVal->insertBefore(HoistPt->getTerminator()); replaceUseWith(Repl, Val, ClonedVal); } return true; } std::pair hoist(HoistingPointList &HPL) { unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; for (const HoistingPointInfo &HP : HPL) { // Find out whether we already have one of the instructions in HoistPt, // in which case we do not have to move it. BasicBlock *HoistPt = HP.first; const SmallVecInsn &InstructionsToHoist = HP.second; Instruction *Repl = nullptr; for (Instruction *I : InstructionsToHoist) if (I->getParent() == HoistPt) { // If there are two instructions in HoistPt to be hoisted in place: // update Repl to be the first one, such that we can rename the uses // of the second based on the first. Repl = !Repl ? I : firstOfTwo(Repl, I); } if (Repl) { // Repl is already in HoistPt: it remains in place. assert(allOperandsAvailable(Repl, HoistPt) && "instruction depends on operands that are not available"); } else { // When we do not find Repl in HoistPt, select the first in the list // and move it to HoistPt. Repl = InstructionsToHoist.front(); // We can move Repl in HoistPt only when all operands are available. // The order in which hoistings are done may influence the availability // of operands. if (!allOperandsAvailable(Repl, HoistPt) && !makeOperandsAvailable(Repl, HoistPt)) continue; Repl->moveBefore(HoistPt->getTerminator()); } if (isa(Repl)) ++NL; else if (isa(Repl)) ++NS; else if (isa(Repl)) ++NC; else // Scalar ++NI; // Remove and rename all other instructions. for (Instruction *I : InstructionsToHoist) if (I != Repl) { ++NR; if (isa(Repl)) ++NumLoadsRemoved; else if (isa(Repl)) ++NumStoresRemoved; else if (isa(Repl)) ++NumCallsRemoved; I->replaceAllUsesWith(Repl); I->eraseFromParent(); } } NumHoisted += NL + NS + NC + NI; NumRemoved += NR; NumLoadsHoisted += NL; NumStoresHoisted += NS; NumCallsHoisted += NC; return {NI, NL + NC + NS}; } // Hoist all expressions. Returns Number of scalars hoisted // and number of non-scalars hoisted. std::pair hoistExpressions(Function &F) { InsnInfo II; LoadInfo LI; StoreInfo SI; CallInfo CI; for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { for (Instruction &I1 : *BB) { if (auto *Load = dyn_cast(&I1)) LI.insert(Load, VN); else if (auto *Store = dyn_cast(&I1)) SI.insert(Store, VN); else if (auto *Call = dyn_cast(&I1)) { if (auto *Intr = dyn_cast(Call)) { if (isa(Intr) || Intr->getIntrinsicID() == Intrinsic::assume) continue; } if (Call->mayHaveSideEffects()) { if (!OptForMinSize) break; // We may continue hoisting across calls which write to memory. if (Call->mayThrow()) break; } CI.insert(Call, VN); } else if (OptForMinSize || !isa(&I1)) // Do not hoist scalars past calls that may write to memory because // that could result in spills later. geps are handled separately. // TODO: We can relax this for targets like AArch64 as they have more // registers than X86. II.insert(&I1, VN); } } HoistingPointList HPL; computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); return hoist(HPL); } bool run(Function &F) { VN.setDomTree(DT); VN.setAliasAnalysis(AA); VN.setMemDep(MD); bool Res = false; unsigned I = 0; for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) DFSNumber.insert({BB, ++I}); // FIXME: use lazy evaluation of VN to avoid the fix-point computation. while (1) { // FIXME: only compute MemorySSA once. We need to update the analysis in // the same time as transforming the code. MemorySSA M(F, AA, DT); MSSA = &M; auto HoistStat = hoistExpressions(F); if (HoistStat.first + HoistStat.second == 0) { return Res; } if (HoistStat.second > 0) { // To address a limitation of the current GVN, we need to rerun the // hoisting after we hoisted loads in order to be able to hoist all // scalars dependent on the hoisted loads. Same for stores. VN.clear(); } Res = true; } return Res; } }; class GVNHoistLegacyPass : public FunctionPass { public: static char ID; GVNHoistLegacyPass() : FunctionPass(ID) { initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { auto &DT = getAnalysis().getDomTree(); auto &AA = getAnalysis().getAAResults(); auto &MD = getAnalysis().getMemDep(); GVNHoist G(&DT, &AA, &MD, F.optForMinSize()); return G.run(F); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); } }; } // namespace PreservedAnalyses GVNHoistPass::run(Function &F, AnalysisManager &AM) { DominatorTree &DT = AM.getResult(F); AliasAnalysis &AA = AM.getResult(F); MemoryDependenceResults &MD = AM.getResult(F); GVNHoist G(&DT, &AA, &MD, F.optForMinSize()); if (!G.run(F)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); return PA; } char GVNHoistLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", "Early GVN Hoisting of Expressions", false, false) INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", "Early GVN Hoisting of Expressions", false, false) FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }