//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // CUDA C/C++ includes memory space designation as variable type qualifers (such // as __global__ and __shared__). Knowing the space of a memory access allows // CUDA compilers to emit faster PTX loads and stores. For example, a load from // shared memory can be translated to `ld.shared` which is roughly 10% faster // than a generic `ld` on an NVIDIA Tesla K40c. // // Unfortunately, type qualifiers only apply to variable declarations, so CUDA // compilers must infer the memory space of an address expression from // type-qualified variables. // // LLVM IR uses non-zero (so-called) specific address spaces to represent memory // spaces (e.g. addrspace(3) means shared memory). The Clang frontend // places only type-qualified variables in specific address spaces, and then // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) // (so-called the generic address space) for other instructions to use. // // For example, the Clang translates the following CUDA code // __shared__ float a[10]; // float v = a[i]; // to // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i // %v = load float, float* %1 ; emits ld.f32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is // redirected to %0 (the generic version of @a). // // The optimization implemented in this file propagates specific address spaces // from type-qualified variable declarations to its users. For example, it // optimizes the above IR to // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX // codegen is able to emit ld.shared.f32 for %v. // // Address space inference works in two steps. First, it uses a data-flow // analysis to infer as many generic pointers as possible to point to only one // specific address space. In the above example, it can prove that %1 only // points to addrspace(3). This algorithm was published in // CUDA: Compiling and optimizing for a GPU platform // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang // ICCS 2012 // // Then, address space inference replaces all refinable generic pointers with // equivalent specific pointers. // // The major challenge of implementing this optimization is handling PHINodes, // which may create loops in the data flow graph. This brings two complications. // // First, the data flow analysis in Step 1 needs to be circular. For example, // %generic.input = addrspacecast float addrspace(3)* %input to float* // loop: // %y = phi [ %generic.input, %y2 ] // %y2 = getelementptr %y, 1 // %v = load %y2 // br ..., label %loop, ... // proving %y specific requires proving both %generic.input and %y2 specific, // but proving %y2 specific circles back to %y. To address this complication, // the data flow analysis operates on a lattice: // uninitialized > specific address spaces > generic. // All address expressions (our implementation only considers phi, bitcast, // addrspacecast, and getelementptr) start with the uninitialized address space. // The monotone transfer function moves the address space of a pointer down a // lattice path from uninitialized to specific and then to generic. A join // operation of two different specific address spaces pushes the expression down // to the generic address space. The analysis completes once it reaches a fixed // point. // // Second, IR rewriting in Step 2 also needs to be circular. For example, // converting %y to addrspace(3) requires the compiler to know the converted // %y2, but converting %y2 needs the converted %y. To address this complication, // we break these cycles using "undef" placeholders. When converting an // instruction `I` to a new address space, if its operand `Op` is not converted // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. // For instance, our algorithm first converts %y to // %y' = phi float addrspace(3)* [ %input, undef ] // Then, it converts %y2 to // %y2' = getelementptr %y', 1 // Finally, it fixes the undef in %y' so that // %y' = phi float addrspace(3)* [ %input, %y2' ] // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SetVector.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Operator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/ValueMapper.h" #define DEBUG_TYPE "infer-address-spaces" using namespace llvm; namespace { static const unsigned UninitializedAddressSpace = ~0u; using ValueToAddrSpaceMapTy = DenseMap; /// \brief InferAddressSpaces class InferAddressSpaces : public FunctionPass { /// Target specific address space which uses of should be replaced if /// possible. unsigned FlatAddrSpace; public: static char ID; InferAddressSpaces() : FunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); } bool runOnFunction(Function &F) override; private: // Returns the new address space of V if updated; otherwise, returns None. Optional updateAddressSpace(const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const; // Tries to infer the specific address space of each address expression in // Postorder. void inferAddressSpaces(const std::vector &Postorder, ValueToAddrSpaceMapTy *InferredAddrSpace) const; bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; // Changes the flat address expressions in function F to point to specific // address spaces if InferredAddrSpace says so. Postorder is the postorder of // all flat expressions in the use-def graph of function F. bool rewriteWithNewAddressSpaces(const std::vector &Postorder, const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const; void appendsFlatAddressExpressionToPostorderStack( Value *V, std::vector> &PostorderStack, DenseSet &Visited) const; bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV, Value *NewV) const; void collectRewritableIntrinsicOperands( IntrinsicInst *II, std::vector> &PostorderStack, DenseSet &Visited) const; std::vector collectFlatAddressExpressions(Function &F) const; Value *cloneValueWithNewAddressSpace( Value *V, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, SmallVectorImpl *UndefUsesToFix) const; unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; }; } // end anonymous namespace char InferAddressSpaces::ID = 0; namespace llvm { void initializeInferAddressSpacesPass(PassRegistry &); } INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", false, false) // Returns true if V is an address expression. // TODO: Currently, we consider only phi, bitcast, addrspacecast, and // getelementptr operators. static bool isAddressExpression(const Value &V) { if (!isa(V)) return false; switch (cast(V).getOpcode()) { case Instruction::PHI: case Instruction::BitCast: case Instruction::AddrSpaceCast: case Instruction::GetElementPtr: case Instruction::Select: return true; default: return false; } } // Returns the pointer operands of V. // // Precondition: V is an address expression. static SmallVector getPointerOperands(const Value &V) { const Operator &Op = cast(V); switch (Op.getOpcode()) { case Instruction::PHI: { auto IncomingValues = cast(Op).incoming_values(); return SmallVector(IncomingValues.begin(), IncomingValues.end()); } case Instruction::BitCast: case Instruction::AddrSpaceCast: case Instruction::GetElementPtr: return {Op.getOperand(0)}; case Instruction::Select: return {Op.getOperand(1), Op.getOperand(2)}; default: llvm_unreachable("Unexpected instruction type."); } } // TODO: Move logic to TTI? bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV, Value *NewV) const { Module *M = II->getParent()->getParent()->getParent(); switch (II->getIntrinsicID()) { case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec:{ const ConstantInt *IsVolatile = dyn_cast(II->getArgOperand(4)); if (!IsVolatile || !IsVolatile->isNullValue()) return false; LLVM_FALLTHROUGH; } case Intrinsic::objectsize: { Type *DestTy = II->getType(); Type *SrcTy = NewV->getType(); Function *NewDecl = Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); II->setArgOperand(0, NewV); II->setCalledFunction(NewDecl); return true; } default: return false; } } // TODO: Move logic to TTI? void InferAddressSpaces::collectRewritableIntrinsicOperands( IntrinsicInst *II, std::vector> &PostorderStack, DenseSet &Visited) const { switch (II->getIntrinsicID()) { case Intrinsic::objectsize: case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), PostorderStack, Visited); break; default: break; } } // Returns all flat address expressions in function F. The elements are // If V is an unvisited flat address expression, appends V to PostorderStack // and marks it as visited. void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( Value *V, std::vector> &PostorderStack, DenseSet &Visited) const { assert(V->getType()->isPointerTy()); if (isAddressExpression(*V) && V->getType()->getPointerAddressSpace() == FlatAddrSpace) { if (Visited.insert(V).second) PostorderStack.push_back(std::make_pair(V, false)); } } // Returns all flat address expressions in function F. The elements are ordered // ordered in postorder. std::vector InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { // This function implements a non-recursive postorder traversal of a partial // use-def graph of function F. std::vector> PostorderStack; // The set of visited expressions. DenseSet Visited; auto PushPtrOperand = [&](Value *Ptr) { appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited); }; // Look at operations that may be interesting accelerate by moving to a known // address space. We aim at generating after loads and stores, but pure // addressing calculations may also be faster. for (Instruction &I : instructions(F)) { if (auto *GEP = dyn_cast(&I)) { if (!GEP->getType()->isVectorTy()) PushPtrOperand(GEP->getPointerOperand()); } else if (auto *LI = dyn_cast(&I)) PushPtrOperand(LI->getPointerOperand()); else if (auto *SI = dyn_cast(&I)) PushPtrOperand(SI->getPointerOperand()); else if (auto *RMW = dyn_cast(&I)) PushPtrOperand(RMW->getPointerOperand()); else if (auto *CmpX = dyn_cast(&I)) PushPtrOperand(CmpX->getPointerOperand()); else if (auto *MI = dyn_cast(&I)) { // For memset/memcpy/memmove, any pointer operand can be replaced. PushPtrOperand(MI->getRawDest()); // Handle 2nd operand for memcpy/memmove. if (auto *MTI = dyn_cast(MI)) PushPtrOperand(MTI->getRawSource()); } else if (auto *II = dyn_cast(&I)) collectRewritableIntrinsicOperands(II, PostorderStack, Visited); else if (ICmpInst *Cmp = dyn_cast(&I)) { // FIXME: Handle vectors of pointers if (Cmp->getOperand(0)->getType()->isPointerTy()) { PushPtrOperand(Cmp->getOperand(0)); PushPtrOperand(Cmp->getOperand(1)); } } } std::vector Postorder; // The resultant postorder. while (!PostorderStack.empty()) { // If the operands of the expression on the top are already explored, // adds that expression to the resultant postorder. if (PostorderStack.back().second) { Postorder.push_back(PostorderStack.back().first); PostorderStack.pop_back(); continue; } // Otherwise, adds its operands to the stack and explores them. PostorderStack.back().second = true; for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) { appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, Visited); } } return Postorder; } // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone // of OperandUse.get() in the new address space. If the clone is not ready yet, // returns an undef in the new address space as a placeholder. static Value *operandWithNewAddressSpaceOrCreateUndef( const Use &OperandUse, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, SmallVectorImpl *UndefUsesToFix) { Value *Operand = OperandUse.get(); Type *NewPtrTy = Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); if (Constant *C = dyn_cast(Operand)) return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) return NewOperand; UndefUsesToFix->push_back(&OperandUse); return UndefValue::get(NewPtrTy); } // Returns a clone of `I` with its operands converted to those specified in // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an // operand whose address space needs to be modified might not exist in // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and // adds that operand use to UndefUsesToFix so that caller can fix them later. // // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast // from a pointer whose type already matches. Therefore, this function returns a // Value* instead of an Instruction*. static Value *cloneInstructionWithNewAddressSpace( Instruction *I, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, SmallVectorImpl *UndefUsesToFix) { Type *NewPtrType = I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); if (I->getOpcode() == Instruction::AddrSpaceCast) { Value *Src = I->getOperand(0); // Because `I` is flat, the source address space must be specific. // Therefore, the inferred address space must be the source space, according // to our algorithm. assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); if (Src->getType() != NewPtrType) return new BitCastInst(Src, NewPtrType); return Src; } // Computes the converted pointer operands. SmallVector NewPointerOperands; for (const Use &OperandUse : I->operands()) { if (!OperandUse.get()->getType()->isPointerTy()) NewPointerOperands.push_back(nullptr); else NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); } switch (I->getOpcode()) { case Instruction::BitCast: return new BitCastInst(NewPointerOperands[0], NewPtrType); case Instruction::PHI: { assert(I->getType()->isPointerTy()); PHINode *PHI = cast(I); PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); NewPHI->addIncoming(NewPointerOperands[OperandNo], PHI->getIncomingBlock(Index)); } return NewPHI; } case Instruction::GetElementPtr: { GetElementPtrInst *GEP = cast(I); GetElementPtrInst *NewGEP = GetElementPtrInst::Create( GEP->getSourceElementType(), NewPointerOperands[0], SmallVector(GEP->idx_begin(), GEP->idx_end())); NewGEP->setIsInBounds(GEP->isInBounds()); return NewGEP; } case Instruction::Select: { assert(I->getType()->isPointerTy()); return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], NewPointerOperands[2], "", nullptr, I); } default: llvm_unreachable("Unexpected opcode"); } } // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the // constant expression `CE` with its operands replaced as specified in // ValueWithNewAddrSpace. static Value *cloneConstantExprWithNewAddressSpace( ConstantExpr *CE, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace) { Type *TargetType = CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); if (CE->getOpcode() == Instruction::AddrSpaceCast) { // Because CE is flat, the source address space must be specific. // Therefore, the inferred address space must be the source space according // to our algorithm. assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == NewAddrSpace); return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); } if (CE->getOpcode() == Instruction::BitCast) { if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) return ConstantExpr::getBitCast(cast(NewOperand), TargetType); return ConstantExpr::getAddrSpaceCast(CE, TargetType); } if (CE->getOpcode() == Instruction::Select) { Constant *Src0 = CE->getOperand(1); Constant *Src1 = CE->getOperand(2); if (Src0->getType()->getPointerAddressSpace() == Src1->getType()->getPointerAddressSpace()) { return ConstantExpr::getSelect( CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), ConstantExpr::getAddrSpaceCast(Src1, TargetType)); } } // Computes the operands of the new constant expression. SmallVector NewOperands; for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { Constant *Operand = CE->getOperand(Index); // If the address space of `Operand` needs to be modified, the new operand // with the new address space should already be in ValueWithNewAddrSpace // because (1) the constant expressions we consider (i.e. addrspacecast, // bitcast, and getelementptr) do not incur cycles in the data flow graph // and (2) this function is called on constant expressions in postorder. if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { NewOperands.push_back(cast(NewOperand)); } else { // Otherwise, reuses the old operand. NewOperands.push_back(Operand); } } if (CE->getOpcode() == Instruction::GetElementPtr) { // Needs to specify the source type while constructing a getelementptr // constant expression. return CE->getWithOperands( NewOperands, TargetType, /*OnlyIfReduced=*/false, NewOperands[0]->getType()->getPointerElementType()); } return CE->getWithOperands(NewOperands, TargetType); } // Returns a clone of the value `V`, with its operands replaced as specified in // ValueWithNewAddrSpace. This function is called on every flat address // expression whose address space needs to be modified, in postorder. // // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. Value *InferAddressSpaces::cloneValueWithNewAddressSpace( Value *V, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, SmallVectorImpl *UndefUsesToFix) const { // All values in Postorder are flat address expressions. assert(isAddressExpression(*V) && V->getType()->getPointerAddressSpace() == FlatAddrSpace); if (Instruction *I = dyn_cast(V)) { Value *NewV = cloneInstructionWithNewAddressSpace( I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); if (Instruction *NewI = dyn_cast(NewV)) { if (NewI->getParent() == nullptr) { NewI->insertBefore(I); NewI->takeName(I); } } return NewV; } return cloneConstantExprWithNewAddressSpace( cast(V), NewAddrSpace, ValueWithNewAddrSpace); } // Defines the join operation on the address space lattice (see the file header // comments). unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, unsigned AS2) const { if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) return FlatAddrSpace; if (AS1 == UninitializedAddressSpace) return AS2; if (AS2 == UninitializedAddressSpace) return AS1; // The join of two different specific address spaces is flat. return (AS1 == AS2) ? AS1 : FlatAddrSpace; } bool InferAddressSpaces::runOnFunction(Function &F) { if (skipFunction(F)) return false; const TargetTransformInfo &TTI = getAnalysis().getTTI(F); FlatAddrSpace = TTI.getFlatAddressSpace(); if (FlatAddrSpace == UninitializedAddressSpace) return false; // Collects all flat address expressions in postorder. std::vector Postorder = collectFlatAddressExpressions(F); // Runs a data-flow analysis to refine the address spaces of every expression // in Postorder. ValueToAddrSpaceMapTy InferredAddrSpace; inferAddressSpaces(Postorder, &InferredAddrSpace); // Changes the address spaces of the flat address expressions who are inferred // to point to a specific address space. return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F); } void InferAddressSpaces::inferAddressSpaces( const std::vector &Postorder, ValueToAddrSpaceMapTy *InferredAddrSpace) const { SetVector Worklist(Postorder.begin(), Postorder.end()); // Initially, all expressions are in the uninitialized address space. for (Value *V : Postorder) (*InferredAddrSpace)[V] = UninitializedAddressSpace; while (!Worklist.empty()) { Value *V = Worklist.pop_back_val(); // Tries to update the address space of the stack top according to the // address spaces of its operands. DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); Optional NewAS = updateAddressSpace(*V, *InferredAddrSpace); if (!NewAS.hasValue()) continue; // If any updates are made, grabs its users to the worklist because // their address spaces can also be possibly updated. DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); (*InferredAddrSpace)[V] = NewAS.getValue(); for (Value *User : V->users()) { // Skip if User is already in the worklist. if (Worklist.count(User)) continue; auto Pos = InferredAddrSpace->find(User); // Our algorithm only updates the address spaces of flat address // expressions, which are those in InferredAddrSpace. if (Pos == InferredAddrSpace->end()) continue; // Function updateAddressSpace moves the address space down a lattice // path. Therefore, nothing to do if User is already inferred as flat (the // bottom element in the lattice). if (Pos->second == FlatAddrSpace) continue; Worklist.insert(User); } } } Optional InferAddressSpaces::updateAddressSpace( const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { assert(InferredAddrSpace.count(&V)); // The new inferred address space equals the join of the address spaces // of all its pointer operands. unsigned NewAS = UninitializedAddressSpace; const Operator &Op = cast(V); if (Op.getOpcode() == Instruction::Select) { Value *Src0 = Op.getOperand(1); Value *Src1 = Op.getOperand(2); auto I = InferredAddrSpace.find(Src0); unsigned Src0AS = (I != InferredAddrSpace.end()) ? I->second : Src0->getType()->getPointerAddressSpace(); auto J = InferredAddrSpace.find(Src1); unsigned Src1AS = (J != InferredAddrSpace.end()) ? J->second : Src1->getType()->getPointerAddressSpace(); auto *C0 = dyn_cast(Src0); auto *C1 = dyn_cast(Src1); // If one of the inputs is a constant, we may be able to do a constant // addrspacecast of it. Defer inferring the address space until the input // address space is known. if ((C1 && Src0AS == UninitializedAddressSpace) || (C0 && Src1AS == UninitializedAddressSpace)) return None; if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) NewAS = Src1AS; else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) NewAS = Src0AS; else NewAS = joinAddressSpaces(Src0AS, Src1AS); } else { for (Value *PtrOperand : getPointerOperands(V)) { auto I = InferredAddrSpace.find(PtrOperand); unsigned OperandAS = I != InferredAddrSpace.end() ? I->second : PtrOperand->getType()->getPointerAddressSpace(); // join(flat, *) = flat. So we can break if NewAS is already flat. NewAS = joinAddressSpaces(NewAS, OperandAS); if (NewAS == FlatAddrSpace) break; } } unsigned OldAS = InferredAddrSpace.lookup(&V); assert(OldAS != FlatAddrSpace); if (OldAS == NewAS) return None; return NewAS; } /// \p returns true if \p U is the pointer operand of a memory instruction with /// a single pointer operand that can have its address space changed by simply /// mutating the use to a new value. static bool isSimplePointerUseValidToReplace(Use &U) { User *Inst = U.getUser(); unsigned OpNo = U.getOperandNo(); if (auto *LI = dyn_cast(Inst)) return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile(); if (auto *SI = dyn_cast(Inst)) return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile(); if (auto *RMW = dyn_cast(Inst)) return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile(); if (auto *CmpX = dyn_cast(Inst)) { return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && !CmpX->isVolatile(); } return false; } /// Update memory intrinsic uses that require more complex processing than /// simple memory instructions. Thse require re-mangling and may have multiple /// pointer operands. static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, Value *NewV) { IRBuilder<> B(MI); MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); if (auto *MSI = dyn_cast(MI)) { B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getAlignment(), false, // isVolatile TBAA, ScopeMD, NoAliasMD); } else if (auto *MTI = dyn_cast(MI)) { Value *Src = MTI->getRawSource(); Value *Dest = MTI->getRawDest(); // Be careful in case this is a self-to-self copy. if (Src == OldV) Src = NewV; if (Dest == OldV) Dest = NewV; if (isa(MTI)) { MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); B.CreateMemCpy(Dest, Src, MTI->getLength(), MTI->getAlignment(), false, // isVolatile TBAA, TBAAStruct, ScopeMD, NoAliasMD); } else { assert(isa(MTI)); B.CreateMemMove(Dest, Src, MTI->getLength(), MTI->getAlignment(), false, // isVolatile TBAA, ScopeMD, NoAliasMD); } } else llvm_unreachable("unhandled MemIntrinsic"); MI->eraseFromParent(); return true; } // \p returns true if it is OK to change the address space of constant \p C with // a ConstantExpr addrspacecast. bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { assert(NewAS != UninitializedAddressSpace); unsigned SrcAS = C->getType()->getPointerAddressSpace(); if (SrcAS == NewAS || isa(C)) return true; // Prevent illegal casts between different non-flat address spaces. if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) return false; if (isa(C)) return true; if (auto *Op = dyn_cast(C)) { // If we already have a constant addrspacecast, it should be safe to cast it // off. if (Op->getOpcode() == Instruction::AddrSpaceCast) return isSafeToCastConstAddrSpace(cast(Op->getOperand(0)), NewAS); if (Op->getOpcode() == Instruction::IntToPtr && Op->getType()->getPointerAddressSpace() == FlatAddrSpace) return true; } return false; } static Value::use_iterator skipToNextUser(Value::use_iterator I, Value::use_iterator End) { User *CurUser = I->getUser(); ++I; while (I != End && I->getUser() == CurUser) ++I; return I; } bool InferAddressSpaces::rewriteWithNewAddressSpaces( const std::vector &Postorder, const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { // For each address expression to be modified, creates a clone of it with its // pointer operands converted to the new address space. Since the pointer // operands are converted, the clone is naturally in the new address space by // construction. ValueToValueMapTy ValueWithNewAddrSpace; SmallVector UndefUsesToFix; for (Value* V : Postorder) { unsigned NewAddrSpace = InferredAddrSpace.lookup(V); if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); } } if (ValueWithNewAddrSpace.empty()) return false; // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. for (const Use *UndefUse : UndefUsesToFix) { User *V = UndefUse->getUser(); User *NewV = cast(ValueWithNewAddrSpace.lookup(V)); unsigned OperandNo = UndefUse->getOperandNo(); assert(isa(NewV->getOperand(OperandNo))); NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); } // Replaces the uses of the old address expressions with the new ones. for (Value *V : Postorder) { Value *NewV = ValueWithNewAddrSpace.lookup(V); if (NewV == nullptr) continue; DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " << *NewV << '\n'); Value::use_iterator I, E, Next; for (I = V->use_begin(), E = V->use_end(); I != E; ) { Use &U = *I; // Some users may see the same pointer operand in multiple operands. Skip // to the next instruction. I = skipToNextUser(I, E); if (isSimplePointerUseValidToReplace(U)) { // If V is used as the pointer operand of a compatible memory operation, // sets the pointer operand to NewV. This replacement does not change // the element type, so the resultant load/store is still valid. U.set(NewV); continue; } User *CurUser = U.getUser(); // Handle more complex cases like intrinsic that need to be remangled. if (auto *MI = dyn_cast(CurUser)) { if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) continue; } if (auto *II = dyn_cast(CurUser)) { if (rewriteIntrinsicOperands(II, V, NewV)) continue; } if (isa(CurUser)) { if (ICmpInst *Cmp = dyn_cast(CurUser)) { // If we can infer that both pointers are in the same addrspace, // transform e.g. // %cmp = icmp eq float* %p, %q // into // %cmp = icmp eq float addrspace(3)* %new_p, %new_q unsigned NewAS = NewV->getType()->getPointerAddressSpace(); int SrcIdx = U.getOperandNo(); int OtherIdx = (SrcIdx == 0) ? 1 : 0; Value *OtherSrc = Cmp->getOperand(OtherIdx); if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { Cmp->setOperand(OtherIdx, OtherNewV); Cmp->setOperand(SrcIdx, NewV); continue; } } // Even if the type mismatches, we can cast the constant. if (auto *KOtherSrc = dyn_cast(OtherSrc)) { if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { Cmp->setOperand(SrcIdx, NewV); Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); continue; } } } // Otherwise, replaces the use with flat(NewV). if (Instruction *I = dyn_cast(V)) { BasicBlock::iterator InsertPos = std::next(I->getIterator()); while (isa(InsertPos)) ++InsertPos; U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); } else { U.set(ConstantExpr::getAddrSpaceCast(cast(NewV), V->getType())); } } } if (V->use_empty()) RecursivelyDeleteTriviallyDeadInstructions(V); } return true; } FunctionPass *llvm::createInferAddressSpacesPass() { return new InferAddressSpaces(); }