//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Dead Loop Deletion Pass. This pass is responsible // for eliminating loops with non-infinite computable trip counts that have no // side effects or volatile instructions, and do not contribute to the // computation of the function's return value. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopDeletion.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/LoopPassManager.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; #define DEBUG_TYPE "loop-delete" STATISTIC(NumDeleted, "Number of loops deleted"); /// This function deletes dead loops. The caller of this function needs to /// guarantee that the loop is infact dead. Here we handle two kinds of dead /// loop. The first kind (\p isLoopDead) is where only invariant values from /// within the loop are used outside of it. The second kind (\p /// isLoopNeverExecuted) is where the loop is provably never executed. We can /// always remove never executed loops since they will not cause any /// difference to program behaviour. /// /// This also updates the relevant analysis information in \p DT, \p SE, and \p /// LI. It also updates the loop PM if an updater struct is provided. // TODO: This function will be used by loop-simplifyCFG as well. So, move this // to LoopUtils.cpp static void deleteDeadLoop(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, bool LoopIsNeverExecuted, LPMUpdater *Updater = nullptr); /// Determines if a loop is dead. /// /// This assumes that we've already checked for unique exit and exiting blocks, /// and that the code is in LCSSA form. static bool isLoopDead(Loop *L, ScalarEvolution &SE, SmallVectorImpl &ExitingBlocks, BasicBlock *ExitBlock, bool &Changed, BasicBlock *Preheader) { // Make sure that all PHI entries coming from the loop are loop invariant. // Because the code is in LCSSA form, any values used outside of the loop // must pass through a PHI in the exit block, meaning that this check is // sufficient to guarantee that no loop-variant values are used outside // of the loop. BasicBlock::iterator BI = ExitBlock->begin(); bool AllEntriesInvariant = true; bool AllOutgoingValuesSame = true; while (PHINode *P = dyn_cast(BI)) { Value *incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); // Make sure all exiting blocks produce the same incoming value for the exit // block. If there are different incoming values for different exiting // blocks, then it is impossible to statically determine which value should // be used. AllOutgoingValuesSame = all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) { return incoming == P->getIncomingValueForBlock(BB); }); if (!AllOutgoingValuesSame) break; if (Instruction *I = dyn_cast(incoming)) if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) { AllEntriesInvariant = false; break; } ++BI; } if (Changed) SE.forgetLoopDispositions(L); if (!AllEntriesInvariant || !AllOutgoingValuesSame) return false; // Make sure that no instructions in the block have potential side-effects. // This includes instructions that could write to memory, and loads that are // marked volatile. for (auto &I : L->blocks()) if (any_of(*I, [](Instruction &I) { return I.mayHaveSideEffects(); })) return false; return true; } /// This function returns true if there is no viable path from the /// entry block to the header of \p L. Right now, it only does /// a local search to save compile time. static bool isLoopNeverExecuted(Loop *L) { using namespace PatternMatch; auto *Preheader = L->getLoopPreheader(); // TODO: We can relax this constraint, since we just need a loop // predecessor. assert(Preheader && "Needs preheader!"); if (Preheader == &Preheader->getParent()->getEntryBlock()) return false; // All predecessors of the preheader should have a constant conditional // branch, with the loop's preheader as not-taken. for (auto *Pred: predecessors(Preheader)) { BasicBlock *Taken, *NotTaken; ConstantInt *Cond; if (!match(Pred->getTerminator(), m_Br(m_ConstantInt(Cond), Taken, NotTaken))) return false; if (!Cond->getZExtValue()) std::swap(Taken, NotTaken); if (Taken == Preheader) return false; } assert(!pred_empty(Preheader) && "Preheader should have predecessors at this point!"); // All the predecessors have the loop preheader as not-taken target. return true; } /// Remove a loop if it is dead. /// /// A loop is considered dead if it does not impact the observable behavior of /// the program other than finite running time. This never removes a loop that /// might be infinite (unless it is never executed), as doing so could change /// the halting/non-halting nature of a program. /// /// This entire process relies pretty heavily on LoopSimplify form and LCSSA in /// order to make various safety checks work. /// /// \returns true if any changes were made. This may mutate the loop even if it /// is unable to delete it due to hoisting trivially loop invariant /// instructions out of the loop. static bool deleteLoopIfDead(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, LPMUpdater *Updater = nullptr) { assert(L->isLCSSAForm(DT) && "Expected LCSSA!"); // We can only remove the loop if there is a preheader that we can // branch from after removing it. BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) return false; // If LoopSimplify form is not available, stay out of trouble. if (!L->hasDedicatedExits()) return false; // We can't remove loops that contain subloops. If the subloops were dead, // they would already have been removed in earlier executions of this pass. if (L->begin() != L->end()) return false; BasicBlock *ExitBlock = L->getUniqueExitBlock(); if (ExitBlock && isLoopNeverExecuted(L)) { deleteDeadLoop(L, DT, SE, LI, true /* LoopIsNeverExecuted */, Updater); ++NumDeleted; return true; } // The remaining checks below are for a loop being dead because all statements // in the loop are invariant. SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); // We require that the loop only have a single exit block. Otherwise, we'd // be in the situation of needing to be able to solve statically which exit // block will be branched to, or trying to preserve the branching logic in // a loop invariant manner. if (!ExitBlock) return false; // Finally, we have to check that the loop really is dead. bool Changed = false; if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader)) return Changed; // Don't remove loops for which we can't solve the trip count. // They could be infinite, in which case we'd be changing program behavior. const SCEV *S = SE.getMaxBackedgeTakenCount(L); if (isa(S)) return Changed; deleteDeadLoop(L, DT, SE, LI, false /* LoopIsNeverExecuted */, Updater); ++NumDeleted; return true; } static void deleteDeadLoop(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, bool LoopIsNeverExecuted, LPMUpdater *Updater) { assert(L->isLCSSAForm(DT) && "Expected LCSSA!"); auto *Preheader = L->getLoopPreheader(); assert(Preheader && "Preheader should exist!"); // Now that we know the removal is safe, remove the loop by changing the // branch from the preheader to go to the single exit block. // // Because we're deleting a large chunk of code at once, the sequence in which // we remove things is very important to avoid invalidation issues. // If we have an LPM updater, tell it about the loop being removed. if (Updater) Updater->markLoopAsDeleted(*L); // Tell ScalarEvolution that the loop is deleted. Do this before // deleting the loop so that ScalarEvolution can look at the loop // to determine what it needs to clean up. SE.forgetLoop(L); auto *ExitBlock = L->getUniqueExitBlock(); assert(ExitBlock && "Should have a unique exit block!"); // Connect the preheader directly to the exit block. // Even when the loop is never executed, we cannot remove the edge from the // source block to the exit block. Consider the case where the unexecuted loop // branches back to an outer loop. If we deleted the loop and removed the edge // coming to this inner loop, this will break the outer loop structure (by // deleting the backedge of the outer loop). If the outer loop is indeed a // non-loop, it will be deleted in a future iteration of loop deletion pass. Preheader->getTerminator()->replaceUsesOfWith(L->getHeader(), ExitBlock); SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); // Rewrite phis in the exit block to get their inputs from the Preheader // instead of the exiting block. BasicBlock *ExitingBlock = ExitingBlocks[0]; BasicBlock::iterator BI = ExitBlock->begin(); while (PHINode *P = dyn_cast(BI)) { int j = P->getBasicBlockIndex(ExitingBlock); assert(j >= 0 && "Can't find exiting block in exit block's phi node!"); if (LoopIsNeverExecuted) P->setIncomingValue(j, UndefValue::get(P->getType())); P->setIncomingBlock(j, Preheader); for (unsigned i = 1; i < ExitingBlocks.size(); ++i) P->removeIncomingValue(ExitingBlocks[i]); ++BI; } // Update the dominator tree and remove the instructions and blocks that will // be deleted from the reference counting scheme. SmallVector ChildNodes; for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); LI != LE; ++LI) { // Move all of the block's children to be children of the Preheader, which // allows us to remove the domtree entry for the block. ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end()); for (DomTreeNode *ChildNode : ChildNodes) { DT.changeImmediateDominator(ChildNode, DT[Preheader]); } ChildNodes.clear(); DT.eraseNode(*LI); // Remove the block from the reference counting scheme, so that we can // delete it freely later. (*LI)->dropAllReferences(); } // Erase the instructions and the blocks without having to worry // about ordering because we already dropped the references. // NOTE: This iteration is safe because erasing the block does not remove its // entry from the loop's block list. We do that in the next section. for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); LI != LE; ++LI) (*LI)->eraseFromParent(); // Finally, the blocks from loopinfo. This has to happen late because // otherwise our loop iterators won't work. SmallPtrSet blocks; blocks.insert(L->block_begin(), L->block_end()); for (BasicBlock *BB : blocks) LI.removeBlock(BB); // The last step is to update LoopInfo now that we've eliminated this loop. LI.markAsRemoved(L); } PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { if (!deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI, &Updater)) return PreservedAnalyses::all(); return getLoopPassPreservedAnalyses(); } namespace { class LoopDeletionLegacyPass : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopDeletionLegacyPass() : LoopPass(ID) { initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry()); } // Possibly eliminate loop L if it is dead. bool runOnLoop(Loop *L, LPPassManager &) override; void getAnalysisUsage(AnalysisUsage &AU) const override { getLoopAnalysisUsage(AU); } }; } char LoopDeletionLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion", "Delete dead loops", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion", "Delete dead loops", false, false) Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); } bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &) { if (skipLoop(L)) return false; DominatorTree &DT = getAnalysis().getDomTree(); ScalarEvolution &SE = getAnalysis().getSE(); LoopInfo &LI = getAnalysis().getLoopInfo(); return deleteLoopIfDead(L, DT, SE, LI); }