//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements the loop fusion pass. /// The implementation is largely based on the following document: /// /// Code Transformations to Augment the Scope of Loop Fusion in a /// Production Compiler /// Christopher Mark Barton /// MSc Thesis /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf /// /// The general approach taken is to collect sets of control flow equivalent /// loops and test whether they can be fused. The necessary conditions for /// fusion are: /// 1. The loops must be adjacent (there cannot be any statements between /// the two loops). /// 2. The loops must be conforming (they must execute the same number of /// iterations). /// 3. The loops must be control flow equivalent (if one loop executes, the /// other is guaranteed to execute). /// 4. There cannot be any negative distance dependencies between the loops. /// If all of these conditions are satisfied, it is safe to fuse the loops. /// /// This implementation creates FusionCandidates that represent the loop and the /// necessary information needed by fusion. It then operates on the fusion /// candidates, first confirming that the candidate is eligible for fusion. The /// candidates are then collected into control flow equivalent sets, sorted in /// dominance order. Each set of control flow equivalent candidates is then /// traversed, attempting to fuse pairs of candidates in the set. If all /// requirements for fusion are met, the two candidates are fused, creating a /// new (fused) candidate which is then added back into the set to consider for /// additional fusion. /// /// This implementation currently does not make any modifications to remove /// conditions for fusion. Code transformations to make loops conform to each of /// the conditions for fusion are discussed in more detail in the document /// above. These can be added to the current implementation in the future. //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopFuse.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DependenceAnalysis.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/Function.h" #include "llvm/IR/Verifier.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; #define DEBUG_TYPE "loop-fusion" STATISTIC(FuseCounter, "Count number of loop fusions performed"); STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion"); STATISTIC(InvalidPreheader, "Loop has invalid preheader"); STATISTIC(InvalidHeader, "Loop has invalid header"); STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks"); STATISTIC(InvalidExitBlock, "Loop has invalid exit block"); STATISTIC(InvalidLatch, "Loop has invalid latch"); STATISTIC(InvalidLoop, "Loop is invalid"); STATISTIC(AddressTakenBB, "Basic block has address taken"); STATISTIC(MayThrowException, "Loop may throw an exception"); STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access"); STATISTIC(NotSimplifiedForm, "Loop is not in simplified form"); STATISTIC(InvalidDependencies, "Dependencies prevent fusion"); STATISTIC(InvalidTripCount, "Loop does not have invariant backedge taken count"); STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop"); STATISTIC(NonEqualTripCount, "Candidate trip counts are not the same"); STATISTIC(NonAdjacent, "Candidates are not adjacent"); STATISTIC(NonEmptyPreheader, "Candidate has a non-empty preheader"); enum FusionDependenceAnalysisChoice { FUSION_DEPENDENCE_ANALYSIS_SCEV, FUSION_DEPENDENCE_ANALYSIS_DA, FUSION_DEPENDENCE_ANALYSIS_ALL, }; static cl::opt FusionDependenceAnalysis( "loop-fusion-dependence-analysis", cl::desc("Which dependence analysis should loop fusion use?"), cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", "Use the scalar evolution interface"), clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", "Use the dependence analysis interface"), clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", "Use all available analyses")), cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore); #ifndef NDEBUG static cl::opt VerboseFusionDebugging("loop-fusion-verbose-debug", cl::desc("Enable verbose debugging for Loop Fusion"), cl::Hidden, cl::init(false), cl::ZeroOrMore); #endif /// This class is used to represent a candidate for loop fusion. When it is /// constructed, it checks the conditions for loop fusion to ensure that it /// represents a valid candidate. It caches several parts of a loop that are /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead /// of continually querying the underlying Loop to retrieve these values. It is /// assumed these will not change throughout loop fusion. /// /// The invalidate method should be used to indicate that the FusionCandidate is /// no longer a valid candidate for fusion. Similarly, the isValid() method can /// be used to ensure that the FusionCandidate is still valid for fusion. struct FusionCandidate { /// Cache of parts of the loop used throughout loop fusion. These should not /// need to change throughout the analysis and transformation. /// These parts are cached to avoid repeatedly looking up in the Loop class. /// Preheader of the loop this candidate represents BasicBlock *Preheader; /// Header of the loop this candidate represents BasicBlock *Header; /// Blocks in the loop that exit the loop BasicBlock *ExitingBlock; /// The successor block of this loop (where the exiting blocks go to) BasicBlock *ExitBlock; /// Latch of the loop BasicBlock *Latch; /// The loop that this fusion candidate represents Loop *L; /// Vector of instructions in this loop that read from memory SmallVector MemReads; /// Vector of instructions in this loop that write to memory SmallVector MemWrites; /// Are all of the members of this fusion candidate still valid bool Valid; /// Dominator and PostDominator trees are needed for the /// FusionCandidateCompare function, required by FusionCandidateSet to /// determine where the FusionCandidate should be inserted into the set. These /// are used to establish ordering of the FusionCandidates based on dominance. const DominatorTree *DT; const PostDominatorTree *PDT; FusionCandidate(Loop *L, const DominatorTree *DT, const PostDominatorTree *PDT) : Preheader(L->getLoopPreheader()), Header(L->getHeader()), ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()), Latch(L->getLoopLatch()), L(L), Valid(true), DT(DT), PDT(PDT) { // Walk over all blocks in the loop and check for conditions that may // prevent fusion. For each block, walk over all instructions and collect // the memory reads and writes If any instructions that prevent fusion are // found, invalidate this object and return. for (BasicBlock *BB : L->blocks()) { if (BB->hasAddressTaken()) { AddressTakenBB++; invalidate(); return; } for (Instruction &I : *BB) { if (I.mayThrow()) { MayThrowException++; invalidate(); return; } if (StoreInst *SI = dyn_cast(&I)) { if (SI->isVolatile()) { ContainsVolatileAccess++; invalidate(); return; } } if (LoadInst *LI = dyn_cast(&I)) { if (LI->isVolatile()) { ContainsVolatileAccess++; invalidate(); return; } } if (I.mayWriteToMemory()) MemWrites.push_back(&I); if (I.mayReadFromMemory()) MemReads.push_back(&I); } } } /// Check if all members of the class are valid. bool isValid() const { return Preheader && Header && ExitingBlock && ExitBlock && Latch && L && !L->isInvalid() && Valid; } /// Verify that all members are in sync with the Loop object. void verify() const { assert(isValid() && "Candidate is not valid!!"); assert(!L->isInvalid() && "Loop is invalid!"); assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync"); assert(Header == L->getHeader() && "Header is out of sync"); assert(ExitingBlock == L->getExitingBlock() && "Exiting Blocks is out of sync"); assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync"); assert(Latch == L->getLoopLatch() && "Latch is out of sync"); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void dump() const { dbgs() << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr") << "\n" << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n" << "\tExitingBB: " << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n" << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr") << "\n" << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"; } #endif private: // This is only used internally for now, to clear the MemWrites and MemReads // list and setting Valid to false. I can't envision other uses of this right // now, since once FusionCandidates are put into the FusionCandidateSet they // are immutable. Thus, any time we need to change/update a FusionCandidate, // we must create a new one and insert it into the FusionCandidateSet to // ensure the FusionCandidateSet remains ordered correctly. void invalidate() { MemWrites.clear(); MemReads.clear(); Valid = false; } }; inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const FusionCandidate &FC) { if (FC.isValid()) OS << FC.Preheader->getName(); else OS << ""; return OS; } struct FusionCandidateCompare { /// Comparison functor to sort two Control Flow Equivalent fusion candidates /// into dominance order. /// If LHS dominates RHS and RHS post-dominates LHS, return true; /// IF RHS dominates LHS and LHS post-dominates RHS, return false; bool operator()(const FusionCandidate &LHS, const FusionCandidate &RHS) const { const DominatorTree *DT = LHS.DT; // Do not save PDT to local variable as it is only used in asserts and thus // will trigger an unused variable warning if building without asserts. assert(DT && LHS.PDT && "Expecting valid dominator tree"); // Do this compare first so if LHS == RHS, function returns false. if (DT->dominates(RHS.Preheader, LHS.Preheader)) { // RHS dominates LHS // Verify LHS post-dominates RHS assert(LHS.PDT->dominates(LHS.Preheader, RHS.Preheader)); return false; } if (DT->dominates(LHS.Preheader, RHS.Preheader)) { // Verify RHS Postdominates LHS assert(LHS.PDT->dominates(RHS.Preheader, LHS.Preheader)); return true; } // If LHS does not dominate RHS and RHS does not dominate LHS then there is // no dominance relationship between the two FusionCandidates. Thus, they // should not be in the same set together. llvm_unreachable( "No dominance relationship between these fusion candidates!"); } }; namespace { using LoopVector = SmallVector; // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0 // dominates FC1 and FC1 post-dominates FC0. // std::set was chosen because we want a sorted data structure with stable // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent // loops by moving intervening code around. When this intervening code contains // loops, those loops will be moved also. The corresponding FusionCandidates // will also need to be moved accordingly. As this is done, having stable // iterators will simplify the logic. Similarly, having an efficient insert that // keeps the FusionCandidateSet sorted will also simplify the implementation. using FusionCandidateSet = std::set; using FusionCandidateCollection = SmallVector; } // namespace inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const FusionCandidateSet &CandSet) { for (auto IT : CandSet) OS << IT << "\n"; return OS; } #if !defined(NDEBUG) static void printFusionCandidates(const FusionCandidateCollection &FusionCandidates) { dbgs() << "Fusion Candidates: \n"; for (const auto &CandidateSet : FusionCandidates) { dbgs() << "*** Fusion Candidate Set ***\n"; dbgs() << CandidateSet; dbgs() << "****************************\n"; } } #endif /// Collect all loops in function at the same nest level, starting at the /// outermost level. /// /// This data structure collects all loops at the same nest level for a /// given function (specified by the LoopInfo object). It starts at the /// outermost level. struct LoopDepthTree { using LoopsOnLevelTy = SmallVector; using iterator = LoopsOnLevelTy::iterator; using const_iterator = LoopsOnLevelTy::const_iterator; LoopDepthTree(LoopInfo &LI) : Depth(1) { if (!LI.empty()) LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend())); } /// Test whether a given loop has been removed from the function, and thus is /// no longer valid. bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); } /// Record that a given loop has been removed from the function and is no /// longer valid. void removeLoop(const Loop *L) { RemovedLoops.insert(L); } /// Descend the tree to the next (inner) nesting level void descend() { LoopsOnLevelTy LoopsOnNextLevel; for (const LoopVector &LV : *this) for (Loop *L : LV) if (!isRemovedLoop(L) && L->begin() != L->end()) LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end())); LoopsOnLevel = LoopsOnNextLevel; RemovedLoops.clear(); Depth++; } bool empty() const { return size() == 0; } size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); } unsigned getDepth() const { return Depth; } iterator begin() { return LoopsOnLevel.begin(); } iterator end() { return LoopsOnLevel.end(); } const_iterator begin() const { return LoopsOnLevel.begin(); } const_iterator end() const { return LoopsOnLevel.end(); } private: /// Set of loops that have been removed from the function and are no longer /// valid. SmallPtrSet RemovedLoops; /// Depth of the current level, starting at 1 (outermost loops). unsigned Depth; /// Vector of loops at the current depth level that have the same parent loop LoopsOnLevelTy LoopsOnLevel; }; #ifndef NDEBUG static void printLoopVector(const LoopVector &LV) { dbgs() << "****************************\n"; for (auto L : LV) printLoop(*L, dbgs()); dbgs() << "****************************\n"; } #endif static void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1, OptimizationRemarkEmitter &ORE) { using namespace ore; ORE.emit( OptimizationRemark(DEBUG_TYPE, "LoopFusion", FC0.Preheader->getParent()) << "Fused " << NV("Cand1", StringRef(FC0.Preheader->getName())) << " with " << NV("Cand2", StringRef(FC1.Preheader->getName()))); } struct LoopFuser { private: // Sets of control flow equivalent fusion candidates for a given nest level. FusionCandidateCollection FusionCandidates; LoopDepthTree LDT; DomTreeUpdater DTU; LoopInfo &LI; DominatorTree &DT; DependenceInfo &DI; ScalarEvolution &SE; PostDominatorTree &PDT; OptimizationRemarkEmitter &ORE; public: LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI, ScalarEvolution &SE, PostDominatorTree &PDT, OptimizationRemarkEmitter &ORE, const DataLayout &DL) : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI), DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {} /// This is the main entry point for loop fusion. It will traverse the /// specified function and collect candidate loops to fuse, starting at the /// outermost nesting level and working inwards. bool fuseLoops(Function &F) { #ifndef NDEBUG if (VerboseFusionDebugging) { LI.print(dbgs()); } #endif LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName() << "\n"); bool Changed = false; while (!LDT.empty()) { LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth " << LDT.getDepth() << "\n";); for (const LoopVector &LV : LDT) { assert(LV.size() > 0 && "Empty loop set was build!"); // Skip singleton loop sets as they do not offer fusion opportunities on // this level. if (LV.size() == 1) continue; #ifndef NDEBUG if (VerboseFusionDebugging) { LLVM_DEBUG({ dbgs() << " Visit loop set (#" << LV.size() << "):\n"; printLoopVector(LV); }); } #endif collectFusionCandidates(LV); Changed |= fuseCandidates(); } // Finished analyzing candidates at this level. // Descend to the next level and clear all of the candidates currently // collected. Note that it will not be possible to fuse any of the // existing candidates with new candidates because the new candidates will // be at a different nest level and thus not be control flow equivalent // with all of the candidates collected so far. LLVM_DEBUG(dbgs() << "Descend one level!\n"); LDT.descend(); FusionCandidates.clear(); } if (Changed) LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump();); #ifndef NDEBUG assert(DT.verify()); assert(PDT.verify()); LI.verify(DT); SE.verify(); #endif LLVM_DEBUG(dbgs() << "Loop Fusion complete\n"); return Changed; } private: /// Determine if two fusion candidates are control flow equivalent. /// /// Two fusion candidates are control flow equivalent if when one executes, /// the other is guaranteed to execute. This is determined using dominators /// and post-dominators: if A dominates B and B post-dominates A then A and B /// are control-flow equivalent. bool isControlFlowEquivalent(const FusionCandidate &FC0, const FusionCandidate &FC1) const { assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders"); if (DT.dominates(FC0.Preheader, FC1.Preheader)) return PDT.dominates(FC1.Preheader, FC0.Preheader); if (DT.dominates(FC1.Preheader, FC0.Preheader)) return PDT.dominates(FC0.Preheader, FC1.Preheader); return false; } /// Determine if a fusion candidate (representing a loop) is eligible for /// fusion. Note that this only checks whether a single loop can be fused - it /// does not check whether it is *legal* to fuse two loops together. bool eligibleForFusion(const FusionCandidate &FC) const { if (!FC.isValid()) { LLVM_DEBUG(dbgs() << "FC " << FC << " has invalid CFG requirements!\n"); if (!FC.Preheader) InvalidPreheader++; if (!FC.Header) InvalidHeader++; if (!FC.ExitingBlock) InvalidExitingBlock++; if (!FC.ExitBlock) InvalidExitBlock++; if (!FC.Latch) InvalidLatch++; if (FC.L->isInvalid()) InvalidLoop++; return false; } // Require ScalarEvolution to be able to determine a trip count. if (!SE.hasLoopInvariantBackedgeTakenCount(FC.L)) { LLVM_DEBUG(dbgs() << "Loop " << FC.L->getName() << " trip count not computable!\n"); InvalidTripCount++; return false; } if (!FC.L->isLoopSimplifyForm()) { LLVM_DEBUG(dbgs() << "Loop " << FC.L->getName() << " is not in simplified form!\n"); NotSimplifiedForm++; return false; } return true; } /// Iterate over all loops in the given loop set and identify the loops that /// are eligible for fusion. Place all eligible fusion candidates into Control /// Flow Equivalent sets, sorted by dominance. void collectFusionCandidates(const LoopVector &LV) { for (Loop *L : LV) { FusionCandidate CurrCand(L, &DT, &PDT); if (!eligibleForFusion(CurrCand)) continue; // Go through each list in FusionCandidates and determine if L is control // flow equivalent with the first loop in that list. If it is, append LV. // If not, go to the next list. // If no suitable list is found, start another list and add it to // FusionCandidates. bool FoundSet = false; for (auto &CurrCandSet : FusionCandidates) { if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) { CurrCandSet.insert(CurrCand); FoundSet = true; #ifndef NDEBUG if (VerboseFusionDebugging) LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to existing candidate set\n"); #endif break; } } if (!FoundSet) { // No set was found. Create a new set and add to FusionCandidates #ifndef NDEBUG if (VerboseFusionDebugging) LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n"); #endif FusionCandidateSet NewCandSet; NewCandSet.insert(CurrCand); FusionCandidates.push_back(NewCandSet); } NumFusionCandidates++; } } /// Determine if it is beneficial to fuse two loops. /// /// For now, this method simply returns true because we want to fuse as much /// as possible (primarily to test the pass). This method will evolve, over /// time, to add heuristics for profitability of fusion. bool isBeneficialFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { return true; } /// Determine if two fusion candidates have the same trip count (i.e., they /// execute the same number of iterations). /// /// Note that for now this method simply returns a boolean value because there /// are no mechanisms in loop fusion to handle different trip counts. In the /// future, this behaviour can be extended to adjust one of the loops to make /// the trip counts equal (e.g., loop peeling). When this is added, this /// interface may need to change to return more information than just a /// boolean value. bool identicalTripCounts(const FusionCandidate &FC0, const FusionCandidate &FC1) const { const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L); if (isa(TripCount0)) { UncomputableTripCount++; LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!"); return false; } const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L); if (isa(TripCount1)) { UncomputableTripCount++; LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!"); return false; } LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & " << *TripCount1 << " are " << (TripCount0 == TripCount1 ? "identical" : "different") << "\n"); return (TripCount0 == TripCount1); } /// Walk each set of control flow equivalent fusion candidates and attempt to /// fuse them. This does a single linear traversal of all candidates in the /// set. The conditions for legal fusion are checked at this point. If a pair /// of fusion candidates passes all legality checks, they are fused together /// and a new fusion candidate is created and added to the FusionCandidateSet. /// The original fusion candidates are then removed, as they are no longer /// valid. bool fuseCandidates() { bool Fused = false; LLVM_DEBUG(printFusionCandidates(FusionCandidates)); for (auto &CandidateSet : FusionCandidates) { if (CandidateSet.size() < 2) continue; LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n" << CandidateSet << "\n"); for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) { assert(!LDT.isRemovedLoop(FC0->L) && "Should not have removed loops in CandidateSet!"); auto FC1 = FC0; for (++FC1; FC1 != CandidateSet.end(); ++FC1) { assert(!LDT.isRemovedLoop(FC1->L) && "Should not have removed loops in CandidateSet!"); LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump(); dbgs() << " with\n"; FC1->dump(); dbgs() << "\n"); FC0->verify(); FC1->verify(); if (!identicalTripCounts(*FC0, *FC1)) { LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip " "counts. Not fusing.\n"); NonEqualTripCount++; continue; } if (!isAdjacent(*FC0, *FC1)) { LLVM_DEBUG(dbgs() << "Fusion candidates are not adjacent. Not fusing.\n"); NonAdjacent++; continue; } // For now we skip fusing if the second candidate has any instructions // in the preheader. This is done because we currently do not have the // safety checks to determine if it is save to move the preheader of // the second candidate past the body of the first candidate. Once // these checks are added, this condition can be removed. if (!isEmptyPreheader(*FC1)) { LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty " "preheader. Not fusing.\n"); NonEmptyPreheader++; continue; } if (!dependencesAllowFusion(*FC0, *FC1)) { LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n"); continue; } bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1); LLVM_DEBUG(dbgs() << "\tFusion appears to be " << (BeneficialToFuse ? "" : "un") << "profitable!\n"); if (!BeneficialToFuse) continue; // All analysis has completed and has determined that fusion is legal // and profitable. At this point, start transforming the code and // perform fusion. LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and " << *FC1 << "\n"); // Report fusion to the Optimization Remarks. // Note this needs to be done *before* performFusion because // performFusion will change the original loops, making it not // possible to identify them after fusion is complete. reportLoopFusion(*FC0, *FC1, ORE); FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT); FusedCand.verify(); assert(eligibleForFusion(FusedCand) && "Fused candidate should be eligible for fusion!"); // Notify the loop-depth-tree that these loops are not valid objects // anymore. LDT.removeLoop(FC1->L); CandidateSet.erase(FC0); CandidateSet.erase(FC1); auto InsertPos = CandidateSet.insert(FusedCand); assert(InsertPos.second && "Unable to insert TargetCandidate in CandidateSet!"); // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations // of the FC1 loop will attempt to fuse the new (fused) loop with the // remaining candidates in the current candidate set. FC0 = FC1 = InsertPos.first; LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet << "\n"); Fused = true; } } } return Fused; } /// Rewrite all additive recurrences in a SCEV to use a new loop. class AddRecLoopReplacer : public SCEVRewriteVisitor { public: AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL, bool UseMax = true) : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL), NewL(NewL) {} const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { const Loop *ExprL = Expr->getLoop(); SmallVector Operands; if (ExprL == &OldL) { Operands.append(Expr->op_begin(), Expr->op_end()); return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags()); } if (OldL.contains(ExprL)) { bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE)); if (!UseMax || !Pos || !Expr->isAffine()) { Valid = false; return Expr; } return visit(Expr->getStart()); } for (const SCEV *Op : Expr->operands()) Operands.push_back(visit(Op)); return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags()); } bool wasValidSCEV() const { return Valid; } private: bool Valid, UseMax; const Loop &OldL, &NewL; }; /// Return false if the access functions of \p I0 and \p I1 could cause /// a negative dependence. bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0, Instruction &I1, bool EqualIsInvalid) { Value *Ptr0 = getLoadStorePointerOperand(&I0); Value *Ptr1 = getLoadStorePointerOperand(&I1); if (!Ptr0 || !Ptr1) return false; const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0); const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1); #ifndef NDEBUG if (VerboseFusionDebugging) LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs " << *SCEVPtr1 << "\n"); #endif AddRecLoopReplacer Rewriter(SE, L0, L1); SCEVPtr0 = Rewriter.visit(SCEVPtr0); #ifndef NDEBUG if (VerboseFusionDebugging) LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n"); #endif if (!Rewriter.wasValidSCEV()) return false; // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by // L0) and the other is not. We could check if it is monotone and test // the beginning and end value instead. BasicBlock *L0Header = L0.getHeader(); auto HasNonLinearDominanceRelation = [&](const SCEV *S) { const SCEVAddRecExpr *AddRec = dyn_cast(S); if (!AddRec) return false; return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) && !DT.dominates(AddRec->getLoop()->getHeader(), L0Header); }; if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation)) return false; ICmpInst::Predicate Pred = EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE; bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1); #ifndef NDEBUG if (VerboseFusionDebugging) LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1 << "\n"); #endif return IsAlwaysGE; } /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses /// specified by @p DepChoice are used to determine this. bool dependencesAllowFusion(const FusionCandidate &FC0, const FusionCandidate &FC1, Instruction &I0, Instruction &I1, bool AnyDep, FusionDependenceAnalysisChoice DepChoice) { #ifndef NDEBUG if (VerboseFusionDebugging) { LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : " << DepChoice << "\n"); } #endif switch (DepChoice) { case FUSION_DEPENDENCE_ANALYSIS_SCEV: return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep); case FUSION_DEPENDENCE_ANALYSIS_DA: { auto DepResult = DI.depends(&I0, &I1, true); if (!DepResult) return true; #ifndef NDEBUG if (VerboseFusionDebugging) { LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs()); dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: " << (DepResult->isOrdered() ? "true" : "false") << "]\n"); LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels() << "\n"); } #endif if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor()) LLVM_DEBUG( dbgs() << "TODO: Implement pred/succ dependence handling!\n"); // TODO: Can we actually use the dependence info analysis here? return false; } case FUSION_DEPENDENCE_ANALYSIS_ALL: return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, FUSION_DEPENDENCE_ANALYSIS_SCEV) || dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, FUSION_DEPENDENCE_ANALYSIS_DA); } llvm_unreachable("Unknown fusion dependence analysis choice!"); } /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused. bool dependencesAllowFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1 << "\n"); assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth()); assert(DT.dominates(FC0.Preheader, FC1.Preheader)); for (Instruction *WriteL0 : FC0.MemWrites) { for (Instruction *WriteL1 : FC1.MemWrites) if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, /* AnyDep */ false, FusionDependenceAnalysis)) { InvalidDependencies++; return false; } for (Instruction *ReadL1 : FC1.MemReads) if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1, /* AnyDep */ false, FusionDependenceAnalysis)) { InvalidDependencies++; return false; } } for (Instruction *WriteL1 : FC1.MemWrites) { for (Instruction *WriteL0 : FC0.MemWrites) if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, /* AnyDep */ false, FusionDependenceAnalysis)) { InvalidDependencies++; return false; } for (Instruction *ReadL0 : FC0.MemReads) if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1, /* AnyDep */ false, FusionDependenceAnalysis)) { InvalidDependencies++; return false; } } // Walk through all uses in FC1. For each use, find the reaching def. If the // def is located in FC0 then it is is not safe to fuse. for (BasicBlock *BB : FC1.L->blocks()) for (Instruction &I : *BB) for (auto &Op : I.operands()) if (Instruction *Def = dyn_cast(Op)) if (FC0.L->contains(Def->getParent())) { InvalidDependencies++; return false; } return true; } /// Determine if the exit block of \p FC0 is the preheader of \p FC1. In this /// case, there is no code in between the two fusion candidates, thus making /// them adjacent. bool isAdjacent(const FusionCandidate &FC0, const FusionCandidate &FC1) const { return FC0.ExitBlock == FC1.Preheader; } bool isEmptyPreheader(const FusionCandidate &FC) const { return FC.Preheader->size() == 1; } /// Fuse two fusion candidates, creating a new fused loop. /// /// This method contains the mechanics of fusing two loops, represented by \p /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1 /// postdominates \p FC0 (making them control flow equivalent). It also /// assumes that the other conditions for fusion have been met: adjacent, /// identical trip counts, and no negative distance dependencies exist that /// would prevent fusion. Thus, there is no checking for these conditions in /// this method. /// /// Fusion is performed by rewiring the CFG to update successor blocks of the /// components of tho loop. Specifically, the following changes are done: /// /// 1. The preheader of \p FC1 is removed as it is no longer necessary /// (because it is currently only a single statement block). /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1. /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0. /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0. /// /// All of these modifications are done with dominator tree updates, thus /// keeping the dominator (and post dominator) information up-to-date. /// /// This can be improved in the future by actually merging blocks during /// fusion. For example, the preheader of \p FC1 can be merged with the /// preheader of \p FC0. This would allow loops with more than a single /// statement in the preheader to be fused. Similarly, the latch blocks of the /// two loops could also be fused into a single block. This will require /// analysis to prove it is safe to move the contents of the block past /// existing code, which currently has not been implemented. Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { assert(FC0.isValid() && FC1.isValid() && "Expecting valid fusion candidates"); LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump(); dbgs() << "Fusion Candidate 1: \n"; FC1.dump();); assert(FC1.Preheader == FC0.ExitBlock); assert(FC1.Preheader->size() == 1 && FC1.Preheader->getSingleSuccessor() == FC1.Header); // Remember the phi nodes originally in the header of FC0 in order to rewire // them later. However, this is only necessary if the new loop carried // values might not dominate the exiting branch. While we do not generally // test if this is the case but simply insert intermediate phi nodes, we // need to make sure these intermediate phi nodes have different // predecessors. To this end, we filter the special case where the exiting // block is the latch block of the first loop. Nothing needs to be done // anyway as all loop carried values dominate the latch and thereby also the // exiting branch. SmallVector OriginalFC0PHIs; if (FC0.ExitingBlock != FC0.Latch) for (PHINode &PHI : FC0.Header->phis()) OriginalFC0PHIs.push_back(&PHI); // Replace incoming blocks for header PHIs first. FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); // Then modify the control flow and update DT and PDT. SmallVector TreeUpdates; // The old exiting block of the first loop (FC0) has to jump to the header // of the second as we need to execute the code in the second header block // regardless of the trip count. That is, if the trip count is 0, so the // back edge is never taken, we still have to execute both loop headers, // especially (but not only!) if the second is a do-while style loop. // However, doing so might invalidate the phi nodes of the first loop as // the new values do only need to dominate their latch and not the exiting // predicate. To remedy this potential problem we always introduce phi // nodes in the header of the second loop later that select the loop carried // value, if the second header was reached through an old latch of the // first, or undef otherwise. This is sound as exiting the first implies the // second will exit too, __without__ taking the back-edge. [Their // trip-counts are equal after all. // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go // to FC1.Header? I think this is basically what the three sequences are // trying to accomplish; however, doing this directly in the CFG may mean // the DT/PDT becomes invalid FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader, FC1.Header); TreeUpdates.emplace_back(DominatorTree::UpdateType( DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader)); TreeUpdates.emplace_back(DominatorTree::UpdateType( DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); // The pre-header of L1 is not necessary anymore. assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); FC1.Preheader->getTerminator()->eraseFromParent(); new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); TreeUpdates.emplace_back(DominatorTree::UpdateType( DominatorTree::Delete, FC1.Preheader, FC1.Header)); // Moves the phi nodes from the second to the first loops header block. while (PHINode *PHI = dyn_cast(&FC1.Header->front())) { if (SE.isSCEVable(PHI->getType())) SE.forgetValue(PHI); if (PHI->hasNUsesOrMore(1)) PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); else PHI->eraseFromParent(); } // Introduce new phi nodes in the second loop header to ensure // exiting the first and jumping to the header of the second does not break // the SSA property of the phis originally in the first loop. See also the // comment above. Instruction *L1HeaderIP = &FC1.Header->front(); for (PHINode *LCPHI : OriginalFC0PHIs) { int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); assert(L1LatchBBIdx >= 0 && "Expected loop carried value to be rewired at this point!"); Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); PHINode *L1HeaderPHI = PHINode::Create( LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); L1HeaderPHI->addIncoming(LCV, FC0.Latch); L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), FC0.ExitingBlock); LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); } // Replace latch terminator destinations. FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); // If FC0.Latch and FC0.ExitingBlock are the same then we have already // performed the updates above. if (FC0.Latch != FC0.ExitingBlock) TreeUpdates.emplace_back(DominatorTree::UpdateType( DominatorTree::Insert, FC0.Latch, FC1.Header)); TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, FC0.Latch, FC0.Header)); TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, FC1.Latch, FC0.Header)); TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, FC1.Latch, FC1.Header)); // Update DT/PDT DTU.applyUpdates(TreeUpdates); LI.removeBlock(FC1.Preheader); DTU.deleteBB(FC1.Preheader); DTU.flush(); // Is there a way to keep SE up-to-date so we don't need to forget the loops // and rebuild the information in subsequent passes of fusion? SE.forgetLoop(FC1.L); SE.forgetLoop(FC0.L); // Merge the loops. SmallVector Blocks(FC1.L->block_begin(), FC1.L->block_end()); for (BasicBlock *BB : Blocks) { FC0.L->addBlockEntry(BB); FC1.L->removeBlockFromLoop(BB); if (LI.getLoopFor(BB) != FC1.L) continue; LI.changeLoopFor(BB, FC0.L); } while (!FC1.L->empty()) { const auto &ChildLoopIt = FC1.L->begin(); Loop *ChildLoop = *ChildLoopIt; FC1.L->removeChildLoop(ChildLoopIt); FC0.L->addChildLoop(ChildLoop); } // Delete the now empty loop L1. LI.erase(FC1.L); #ifndef NDEBUG assert(!verifyFunction(*FC0.Header->getParent(), &errs())); assert(DT.verify(DominatorTree::VerificationLevel::Fast)); assert(PDT.verify()); LI.verify(DT); SE.verify(); #endif FuseCounter++; LLVM_DEBUG(dbgs() << "Fusion done:\n"); return FC0.L; } }; struct LoopFuseLegacy : public FunctionPass { static char ID; LoopFuseLegacy() : FunctionPass(ID) { initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequiredID(LoopSimplifyID); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &LI = getAnalysis().getLoopInfo(); auto &DT = getAnalysis().getDomTree(); auto &DI = getAnalysis().getDI(); auto &SE = getAnalysis().getSE(); auto &PDT = getAnalysis().getPostDomTree(); auto &ORE = getAnalysis().getORE(); const DataLayout &DL = F.getParent()->getDataLayout(); LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); return LF.fuseLoops(F); } }; PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) { auto &LI = AM.getResult(F); auto &DT = AM.getResult(F); auto &DI = AM.getResult(F); auto &SE = AM.getResult(F); auto &PDT = AM.getResult(F); auto &ORE = AM.getResult(F); const DataLayout &DL = F.getParent()->getDataLayout(); LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); bool Changed = LF.fuseLoops(F); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); PA.preserve(); PA.preserve(); return PA; } char LoopFuseLegacy::ID = 0; INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false) INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false) FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }