//===- LoopInterchange.cpp - Loop interchange pass------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This Pass handles loop interchange transform. // This pass interchanges loops to provide a more cache-friendly memory access // patterns. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/DependenceAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; #define DEBUG_TYPE "loop-interchange" static cl::opt LoopInterchangeCostThreshold( "loop-interchange-threshold", cl::init(0), cl::Hidden, cl::desc("Interchange if you gain more than this number")); namespace { typedef SmallVector LoopVector; // TODO: Check if we can use a sparse matrix here. typedef std::vector> CharMatrix; // Maximum number of dependencies that can be handled in the dependency matrix. static const unsigned MaxMemInstrCount = 100; // Maximum loop depth supported. static const unsigned MaxLoopNestDepth = 10; struct LoopInterchange; #ifdef DUMP_DEP_MATRICIES void printDepMatrix(CharMatrix &DepMatrix) { for (auto I = DepMatrix.begin(), E = DepMatrix.end(); I != E; ++I) { std::vector Vec = *I; for (auto II = Vec.begin(), EE = Vec.end(); II != EE; ++II) DEBUG(dbgs() << *II << " "); DEBUG(dbgs() << "\n"); } } #endif static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, Loop *L, DependenceInfo *DI) { typedef SmallVector ValueVector; ValueVector MemInstr; // For each block. for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end(); BB != BE; ++BB) { // Scan the BB and collect legal loads and stores. for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) { if (!isa(I)) return false; if (LoadInst *Ld = dyn_cast(I)) { if (!Ld->isSimple()) return false; MemInstr.push_back(&*I); } else if (StoreInst *St = dyn_cast(I)) { if (!St->isSimple()) return false; MemInstr.push_back(&*I); } } } DEBUG(dbgs() << "Found " << MemInstr.size() << " Loads and Stores to analyze\n"); ValueVector::iterator I, IE, J, JE; for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { for (J = I, JE = MemInstr.end(); J != JE; ++J) { std::vector Dep; Instruction *Src = cast(*I); Instruction *Dst = cast(*J); if (Src == Dst) continue; // Ignore Input dependencies. if (isa(Src) && isa(Dst)) continue; // Track Output, Flow, and Anti dependencies. if (auto D = DI->depends(Src, Dst, true)) { assert(D->isOrdered() && "Expected an output, flow or anti dep."); DEBUG(StringRef DepType = D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; dbgs() << "Found " << DepType << " dependency between Src and Dst\n" << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); unsigned Levels = D->getLevels(); char Direction; for (unsigned II = 1; II <= Levels; ++II) { const SCEV *Distance = D->getDistance(II); const SCEVConstant *SCEVConst = dyn_cast_or_null(Distance); if (SCEVConst) { const ConstantInt *CI = SCEVConst->getValue(); if (CI->isNegative()) Direction = '<'; else if (CI->isZero()) Direction = '='; else Direction = '>'; Dep.push_back(Direction); } else if (D->isScalar(II)) { Direction = 'S'; Dep.push_back(Direction); } else { unsigned Dir = D->getDirection(II); if (Dir == Dependence::DVEntry::LT || Dir == Dependence::DVEntry::LE) Direction = '<'; else if (Dir == Dependence::DVEntry::GT || Dir == Dependence::DVEntry::GE) Direction = '>'; else if (Dir == Dependence::DVEntry::EQ) Direction = '='; else Direction = '*'; Dep.push_back(Direction); } } while (Dep.size() != Level) { Dep.push_back('I'); } DepMatrix.push_back(Dep); if (DepMatrix.size() > MaxMemInstrCount) { DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount << " dependencies inside loop\n"); return false; } } } } // We don't have a DepMatrix to check legality return false. if (DepMatrix.size() == 0) return false; return true; } // A loop is moved from index 'from' to an index 'to'. Update the Dependence // matrix by exchanging the two columns. static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, unsigned ToIndx) { unsigned numRows = DepMatrix.size(); for (unsigned i = 0; i < numRows; ++i) { char TmpVal = DepMatrix[i][ToIndx]; DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; DepMatrix[i][FromIndx] = TmpVal; } } // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is // '>' static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, unsigned Column) { for (unsigned i = 0; i <= Column; ++i) { if (DepMatrix[Row][i] == '<') return false; if (DepMatrix[Row][i] == '>') return true; } // All dependencies were '=','S' or 'I' return false; } // Checks if no dependence exist in the dependency matrix in Row before Column. static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, unsigned Column) { for (unsigned i = 0; i < Column; ++i) { if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && DepMatrix[Row][i] != 'I') return false; } return true; } static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, unsigned OuterLoopId, char InnerDep, char OuterDep) { if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) return false; if (InnerDep == OuterDep) return true; // It is legal to interchange if and only if after interchange no row has a // '>' direction as the leftmost non-'='. if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') return true; if (InnerDep == '<') return true; if (InnerDep == '>') { // If OuterLoopId represents outermost loop then interchanging will make the // 1st dependency as '>' if (OuterLoopId == 0) return false; // If all dependencies before OuterloopId are '=','S'or 'I'. Then // interchanging will result in this row having an outermost non '=' // dependency of '>' if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) return true; } return false; } // Checks if it is legal to interchange 2 loops. // [Theorem] A permutation of the loops in a perfect nest is legal if and only // if the direction matrix, after the same permutation is applied to its // columns, has no ">" direction as the leftmost non-"=" direction in any row. static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, unsigned InnerLoopId, unsigned OuterLoopId) { unsigned NumRows = DepMatrix.size(); // For each row check if it is valid to interchange. for (unsigned Row = 0; Row < NumRows; ++Row) { char InnerDep = DepMatrix[Row][InnerLoopId]; char OuterDep = DepMatrix[Row][OuterLoopId]; if (InnerDep == '*' || OuterDep == '*') return false; if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) return false; } return true; } static void populateWorklist(Loop &L, SmallVector &V) { DEBUG(dbgs() << "Calling populateWorklist on Func: " << L.getHeader()->getParent()->getName() << " Loop: %" << L.getHeader()->getName() << '\n'); LoopVector LoopList; Loop *CurrentLoop = &L; const std::vector *Vec = &CurrentLoop->getSubLoops(); while (!Vec->empty()) { // The current loop has multiple subloops in it hence it is not tightly // nested. // Discard all loops above it added into Worklist. if (Vec->size() != 1) { LoopList.clear(); return; } LoopList.push_back(CurrentLoop); CurrentLoop = Vec->front(); Vec = &CurrentLoop->getSubLoops(); } LoopList.push_back(CurrentLoop); V.push_back(std::move(LoopList)); } static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); if (InnerIndexVar) return InnerIndexVar; if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) return nullptr; for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ++I) { PHINode *PhiVar = cast(I); Type *PhiTy = PhiVar->getType(); if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && !PhiTy->isPointerTy()) return nullptr; const SCEVAddRecExpr *AddRec = dyn_cast(SE->getSCEV(PhiVar)); if (!AddRec || !AddRec->isAffine()) continue; const SCEV *Step = AddRec->getStepRecurrence(*SE); if (!isa(Step)) continue; // Found the induction variable. // FIXME: Handle loops with more than one induction variable. Note that, // currently, legality makes sure we have only one induction variable. return PhiVar; } return nullptr; } /// LoopInterchangeLegality checks if it is legal to interchange the loop. class LoopInterchangeLegality { public: LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA) : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), PreserveLCSSA(PreserveLCSSA), InnerLoopHasReduction(false) {} /// Check if the loops can be interchanged. bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix); /// Check if the loop structure is understood. We do not handle triangular /// loops for now. bool isLoopStructureUnderstood(PHINode *InnerInductionVar); bool currentLimitations(); bool hasInnerLoopReduction() { return InnerLoopHasReduction; } private: bool tightlyNested(Loop *Outer, Loop *Inner); bool containsUnsafeInstructionsInHeader(BasicBlock *BB); bool areAllUsesReductions(Instruction *Ins, Loop *L); bool containsUnsafeInstructionsInLatch(BasicBlock *BB); bool findInductionAndReductions(Loop *L, SmallVector &Inductions, SmallVector &Reductions); Loop *OuterLoop; Loop *InnerLoop; ScalarEvolution *SE; LoopInfo *LI; DominatorTree *DT; bool PreserveLCSSA; bool InnerLoopHasReduction; }; /// LoopInterchangeProfitability checks if it is profitable to interchange the /// loop. class LoopInterchangeProfitability { public: LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE) : OuterLoop(Outer), InnerLoop(Inner), SE(SE) {} /// Check if the loop interchange is profitable. bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix); private: int getInstrOrderCost(); Loop *OuterLoop; Loop *InnerLoop; /// Scev analysis. ScalarEvolution *SE; }; /// LoopInterchangeTransform interchanges the loop. class LoopInterchangeTransform { public: LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, BasicBlock *LoopNestExit, bool InnerLoopContainsReductions) : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LoopExit(LoopNestExit), InnerLoopHasReduction(InnerLoopContainsReductions) {} /// Interchange OuterLoop and InnerLoop. bool transform(); void restructureLoops(Loop *InnerLoop, Loop *OuterLoop); void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); private: void splitInnerLoopLatch(Instruction *); void splitInnerLoopHeader(); bool adjustLoopLinks(); void adjustLoopPreheaders(); bool adjustLoopBranches(); void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred, BasicBlock *NewPred); Loop *OuterLoop; Loop *InnerLoop; /// Scev analysis. ScalarEvolution *SE; LoopInfo *LI; DominatorTree *DT; BasicBlock *LoopExit; bool InnerLoopHasReduction; }; // Main LoopInterchange Pass. struct LoopInterchange : public FunctionPass { static char ID; ScalarEvolution *SE; LoopInfo *LI; DependenceInfo *DI; DominatorTree *DT; bool PreserveLCSSA; LoopInterchange() : FunctionPass(ID), SE(nullptr), LI(nullptr), DI(nullptr), DT(nullptr) { initializeLoopInterchangePass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; SE = &getAnalysis().getSE(); LI = &getAnalysis().getLoopInfo(); DI = &getAnalysis().getDI(); auto *DTWP = getAnalysisIfAvailable(); DT = DTWP ? &DTWP->getDomTree() : nullptr; PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); // Build up a worklist of loop pairs to analyze. SmallVector Worklist; for (Loop *L : *LI) populateWorklist(*L, Worklist); DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n"); bool Changed = true; while (!Worklist.empty()) { LoopVector LoopList = Worklist.pop_back_val(); Changed = processLoopList(LoopList, F); } return Changed; } bool isComputableLoopNest(LoopVector LoopList) { for (Loop *L : LoopList) { const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); if (ExitCountOuter == SE->getCouldNotCompute()) { DEBUG(dbgs() << "Couldn't compute backedge count\n"); return false; } if (L->getNumBackEdges() != 1) { DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); return false; } if (!L->getExitingBlock()) { DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); return false; } } return true; } unsigned selectLoopForInterchange(const LoopVector &LoopList) { // TODO: Add a better heuristic to select the loop to be interchanged based // on the dependence matrix. Currently we select the innermost loop. return LoopList.size() - 1; } bool processLoopList(LoopVector LoopList, Function &F) { bool Changed = false; unsigned LoopNestDepth = LoopList.size(); if (LoopNestDepth < 2) { DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); return false; } if (LoopNestDepth > MaxLoopNestDepth) { DEBUG(dbgs() << "Cannot handle loops of depth greater than " << MaxLoopNestDepth << "\n"); return false; } if (!isComputableLoopNest(LoopList)) { DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); return false; } DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth << "\n"); CharMatrix DependencyMatrix; Loop *OuterMostLoop = *(LoopList.begin()); if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, OuterMostLoop, DI)) { DEBUG(dbgs() << "Populating dependency matrix failed\n"); return false; } #ifdef DUMP_DEP_MATRICIES DEBUG(dbgs() << "Dependence before interchange\n"); printDepMatrix(DependencyMatrix); #endif BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch(); BranchInst *OuterMostLoopLatchBI = dyn_cast(OuterMostLoopLatch->getTerminator()); if (!OuterMostLoopLatchBI) return false; // Since we currently do not handle LCSSA PHI's any failure in loop // condition will now branch to LoopNestExit. // TODO: This should be removed once we handle LCSSA PHI nodes. // Get the Outermost loop exit. BasicBlock *LoopNestExit; if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader()) LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1); else LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0); if (isa(LoopNestExit->begin())) { DEBUG(dbgs() << "PHI Nodes in loop nest exit is not handled for now " "since on failure all loops branch to loop nest exit.\n"); return false; } unsigned SelecLoopId = selectLoopForInterchange(LoopList); // Move the selected loop outwards to the best possible position. for (unsigned i = SelecLoopId; i > 0; i--) { bool Interchanged = processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); if (!Interchanged) return Changed; // Loops interchanged reflect the same in LoopList std::swap(LoopList[i - 1], LoopList[i]); // Update the DependencyMatrix interChangeDependencies(DependencyMatrix, i, i - 1); DT->recalculate(F); #ifdef DUMP_DEP_MATRICIES DEBUG(dbgs() << "Dependence after interchange\n"); printDepMatrix(DependencyMatrix); #endif Changed |= Interchanged; } return Changed; } bool processLoop(LoopVector LoopList, unsigned InnerLoopId, unsigned OuterLoopId, BasicBlock *LoopNestExit, std::vector> &DependencyMatrix) { DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId << " and OuterLoopId = " << OuterLoopId << "\n"); Loop *InnerLoop = LoopList[InnerLoopId]; Loop *OuterLoop = LoopList[OuterLoopId]; LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT, PreserveLCSSA); if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n"); return false; } DEBUG(dbgs() << "Loops are legal to interchange\n"); LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE); if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { DEBUG(dbgs() << "Interchanging loops not profitable\n"); return false; } LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, LIL.hasInnerLoopReduction()); LIT.transform(); DEBUG(dbgs() << "Loops interchanged\n"); return true; } }; } // end of namespace bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) { return none_of(Ins->users(), [=](User *U) -> bool { auto *UserIns = dyn_cast(U); RecurrenceDescriptor RD; return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD); }); } bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader( BasicBlock *BB) { for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { // Load corresponding to reduction PHI's are safe while concluding if // tightly nested. if (LoadInst *L = dyn_cast(I)) { if (!areAllUsesReductions(L, InnerLoop)) return true; } else if (I->mayHaveSideEffects() || I->mayReadFromMemory()) return true; } return false; } bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch( BasicBlock *BB) { for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { // Stores corresponding to reductions are safe while concluding if tightly // nested. if (StoreInst *L = dyn_cast(I)) { if (!isa(L->getOperand(0))) return true; } else if (I->mayHaveSideEffects() || I->mayReadFromMemory()) return true; } return false; } bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); DEBUG(dbgs() << "Checking if loops are tightly nested\n"); // A perfectly nested loop will not have any branch in between the outer and // inner block i.e. outer header will branch to either inner preheader and // outerloop latch. BranchInst *OuterLoopHeaderBI = dyn_cast(OuterLoopHeader->getTerminator()); if (!OuterLoopHeaderBI) return false; for (unsigned i = 0, e = OuterLoopHeaderBI->getNumSuccessors(); i < e; ++i) { if (OuterLoopHeaderBI->getSuccessor(i) != InnerLoopPreHeader && OuterLoopHeaderBI->getSuccessor(i) != OuterLoopLatch) return false; } DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); // We do not have any basic block in between now make sure the outer header // and outer loop latch doesn't contain any unsafe instructions. if (containsUnsafeInstructionsInHeader(OuterLoopHeader) || containsUnsafeInstructionsInLatch(OuterLoopLatch)) return false; DEBUG(dbgs() << "Loops are perfectly nested\n"); // We have a perfect loop nest. return true; } bool LoopInterchangeLegality::isLoopStructureUnderstood( PHINode *InnerInduction) { unsigned Num = InnerInduction->getNumOperands(); BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); for (unsigned i = 0; i < Num; ++i) { Value *Val = InnerInduction->getOperand(i); if (isa(Val)) continue; Instruction *I = dyn_cast(Val); if (!I) return false; // TODO: Handle triangular loops. // e.g. for(int i=0;igetIncomingBlock(IncomBlockIndx) == InnerLoopPreheader && !OuterLoop->isLoopInvariant(I)) { return false; } } return true; } bool LoopInterchangeLegality::findInductionAndReductions( Loop *L, SmallVector &Inductions, SmallVector &Reductions) { if (!L->getLoopLatch() || !L->getLoopPredecessor()) return false; for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ++I) { RecurrenceDescriptor RD; InductionDescriptor ID; PHINode *PHI = cast(I); if (InductionDescriptor::isInductionPHI(PHI, L, SE, ID)) Inductions.push_back(PHI); else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) Reductions.push_back(PHI); else { DEBUG( dbgs() << "Failed to recognize PHI as an induction or reduction.\n"); return false; } } return true; } static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) { for (auto I = Block->begin(); isa(I); ++I) { PHINode *PHI = cast(I); // Reduction lcssa phi will have only 1 incoming block that from loop latch. if (PHI->getNumIncomingValues() > 1) return false; Instruction *Ins = dyn_cast(PHI->getIncomingValue(0)); if (!Ins) return false; // Incoming value for lcssa phi's in outer loop exit can only be inner loop // exits lcssa phi else it would not be tightly nested. if (!isa(Ins) && isOuterLoopExitBlock) return false; } return true; } static BasicBlock *getLoopLatchExitBlock(BasicBlock *LatchBlock, BasicBlock *LoopHeader) { if (BranchInst *BI = dyn_cast(LatchBlock->getTerminator())) { unsigned Num = BI->getNumSuccessors(); assert(Num == 2); for (unsigned i = 0; i < Num; ++i) { if (BI->getSuccessor(i) == LoopHeader) continue; return BI->getSuccessor(i); } } return nullptr; } // This function indicates the current limitations in the transform as a result // of which we do not proceed. bool LoopInterchangeLegality::currentLimitations() { BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); PHINode *InnerInductionVar; SmallVector Inductions; SmallVector Reductions; if (!findInductionAndReductions(InnerLoop, Inductions, Reductions)) return true; // TODO: Currently we handle only loops with 1 induction variable. if (Inductions.size() != 1) { DEBUG(dbgs() << "We currently only support loops with 1 induction variable." << "Failed to interchange due to current limitation\n"); return true; } if (Reductions.size() > 0) InnerLoopHasReduction = true; InnerInductionVar = Inductions.pop_back_val(); Reductions.clear(); if (!findInductionAndReductions(OuterLoop, Inductions, Reductions)) return true; // Outer loop cannot have reduction because then loops will not be tightly // nested. if (!Reductions.empty()) return true; // TODO: Currently we handle only loops with 1 induction variable. if (Inductions.size() != 1) return true; // TODO: Triangular loops are not handled for now. if (!isLoopStructureUnderstood(InnerInductionVar)) { DEBUG(dbgs() << "Loop structure not understood by pass\n"); return true; } // TODO: We only handle LCSSA PHI's corresponding to reduction for now. BasicBlock *LoopExitBlock = getLoopLatchExitBlock(OuterLoopLatch, OuterLoopHeader); if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, true)) return true; LoopExitBlock = getLoopLatchExitBlock(InnerLoopLatch, InnerLoopHeader); if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, false)) return true; // TODO: Current limitation: Since we split the inner loop latch at the point // were induction variable is incremented (induction.next); We cannot have // more than 1 user of induction.next since it would result in broken code // after split. // e.g. // for(i=0;igetIncomingBlock(0) == InnerLoopPreHeader) InnerIndexVarInc = dyn_cast(InnerInductionVar->getIncomingValue(1)); else InnerIndexVarInc = dyn_cast(InnerInductionVar->getIncomingValue(0)); if (!InnerIndexVarInc) return true; // Since we split the inner loop latch on this induction variable. Make sure // we do not have any instruction between the induction variable and branch // instruction. bool FoundInduction = false; for (const Instruction &I : reverse(*InnerLoopLatch)) { if (isa(I) || isa(I) || isa(I)) continue; // We found an instruction. If this is not induction variable then it is not // safe to split this loop latch. if (!I.isIdenticalTo(InnerIndexVarInc)) return true; FoundInduction = true; break; } // The loop latch ended and we didn't find the induction variable return as // current limitation. if (!FoundInduction) return true; return false; } bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) { if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId << " and OuterLoopId = " << OuterLoopId << " due to dependence\n"); return false; } // Create unique Preheaders if we already do not have one. BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); // Create a unique outer preheader - // 1) If OuterLoop preheader is not present. // 2) If OuterLoop Preheader is same as OuterLoop Header // 3) If OuterLoop Preheader is same as Header of the previous loop. // 4) If OuterLoop Preheader is Entry node. if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() || isa(OuterLoopPreHeader->begin()) || !OuterLoopPreHeader->getUniquePredecessor()) { OuterLoopPreHeader = InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA); } if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() || InnerLoopPreHeader == OuterLoop->getHeader()) { InnerLoopPreHeader = InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA); } // TODO: The loops could not be interchanged due to current limitations in the // transform module. if (currentLimitations()) { DEBUG(dbgs() << "Not legal because of current transform limitation\n"); return false; } // Check if the loops are tightly nested. if (!tightlyNested(OuterLoop, InnerLoop)) { DEBUG(dbgs() << "Loops not tightly nested\n"); return false; } return true; } int LoopInterchangeProfitability::getInstrOrderCost() { unsigned GoodOrder, BadOrder; BadOrder = GoodOrder = 0; for (auto BI = InnerLoop->block_begin(), BE = InnerLoop->block_end(); BI != BE; ++BI) { for (Instruction &Ins : **BI) { if (const GetElementPtrInst *GEP = dyn_cast(&Ins)) { unsigned NumOp = GEP->getNumOperands(); bool FoundInnerInduction = false; bool FoundOuterInduction = false; for (unsigned i = 0; i < NumOp; ++i) { const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); const SCEVAddRecExpr *AR = dyn_cast(OperandVal); if (!AR) continue; // If we find the inner induction after an outer induction e.g. // for(int i=0;igetLoop() == InnerLoop) { // We found an InnerLoop induction after OuterLoop induction. It is // a good order. FoundInnerInduction = true; if (FoundOuterInduction) { GoodOrder++; break; } } // If we find the outer induction after an inner induction e.g. // for(int i=0;igetLoop() == OuterLoop) { // We found an OuterLoop induction after InnerLoop induction. It is // a bad order. FoundOuterInduction = true; if (FoundInnerInduction) { BadOrder++; break; } } } } } } return GoodOrder - BadOrder; } static bool isProfitableForVectorization(unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) { // TODO: Improve this heuristic to catch more cases. // If the inner loop is loop independent or doesn't carry any dependency it is // profitable to move this to outer position. unsigned Row = DepMatrix.size(); for (unsigned i = 0; i < Row; ++i) { if (DepMatrix[i][InnerLoopId] != 'S' && DepMatrix[i][InnerLoopId] != 'I') return false; // TODO: We need to improve this heuristic. if (DepMatrix[i][OuterLoopId] != '=') return false; } // If outer loop has dependence and inner loop is loop independent then it is // profitable to interchange to enable parallelism. return true; } bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) { // TODO: Add better profitability checks. // e.g // 1) Construct dependency matrix and move the one with no loop carried dep // inside to enable vectorization. // This is rough cost estimation algorithm. It counts the good and bad order // of induction variables in the instruction and allows reordering if number // of bad orders is more than good. int Cost = getInstrOrderCost(); DEBUG(dbgs() << "Cost = " << Cost << "\n"); if (Cost < -LoopInterchangeCostThreshold) return true; // It is not profitable as per current cache profitability model. But check if // we can move this loop outside to improve parallelism. bool ImprovesPar = isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix); return ImprovesPar; } void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, Loop *InnerLoop) { for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E; ++I) { if (*I == InnerLoop) { OuterLoop->removeChildLoop(I); return; } } llvm_unreachable("Couldn't find loop"); } void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop, Loop *OuterLoop) { Loop *OuterLoopParent = OuterLoop->getParentLoop(); if (OuterLoopParent) { // Remove the loop from its parent loop. removeChildLoop(OuterLoopParent, OuterLoop); removeChildLoop(OuterLoop, InnerLoop); OuterLoopParent->addChildLoop(InnerLoop); } else { removeChildLoop(OuterLoop, InnerLoop); LI->changeTopLevelLoop(OuterLoop, InnerLoop); } while (!InnerLoop->empty()) OuterLoop->addChildLoop(InnerLoop->removeChildLoop(InnerLoop->begin())); InnerLoop->addChildLoop(OuterLoop); } bool LoopInterchangeTransform::transform() { bool Transformed = false; Instruction *InnerIndexVar; if (InnerLoop->getSubLoops().size() == 0) { BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); DEBUG(dbgs() << "Calling Split Inner Loop\n"); PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); if (!InductionPHI) { DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); return false; } if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) InnerIndexVar = dyn_cast(InductionPHI->getIncomingValue(1)); else InnerIndexVar = dyn_cast(InductionPHI->getIncomingValue(0)); // // Split at the place were the induction variable is // incremented/decremented. // TODO: This splitting logic may not work always. Fix this. splitInnerLoopLatch(InnerIndexVar); DEBUG(dbgs() << "splitInnerLoopLatch done\n"); // Splits the inner loops phi nodes out into a separate basic block. splitInnerLoopHeader(); DEBUG(dbgs() << "splitInnerLoopHeader done\n"); } Transformed |= adjustLoopLinks(); if (!Transformed) { DEBUG(dbgs() << "adjustLoopLinks failed\n"); return false; } restructureLoops(InnerLoop, OuterLoop); return true; } void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) { BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); BasicBlock *InnerLoopLatchPred = InnerLoopLatch; InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI); } void LoopInterchangeTransform::splitInnerLoopHeader() { // Split the inner loop header out. Here make sure that the reduction PHI's // stay in the innerloop body. BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); if (InnerLoopHasReduction) { // FIXME: Check if the induction PHI will always be the first PHI. BasicBlock *New = InnerLoopHeader->splitBasicBlock( ++(InnerLoopHeader->begin()), InnerLoopHeader->getName() + ".split"); if (LI) if (Loop *L = LI->getLoopFor(InnerLoopHeader)) L->addBasicBlockToLoop(New, *LI); // Adjust Reduction PHI's in the block. SmallVector PHIVec; for (auto I = New->begin(); isa(I); ++I) { PHINode *PHI = dyn_cast(I); Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader); PHI->replaceAllUsesWith(V); PHIVec.push_back((PHI)); } for (PHINode *P : PHIVec) { P->eraseFromParent(); } } else { SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); } DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & " "InnerLoopHeader\n"); } /// \brief Move all instructions except the terminator from FromBB right before /// InsertBefore static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { auto &ToList = InsertBefore->getParent()->getInstList(); auto &FromList = FromBB->getInstList(); ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), FromBB->getTerminator()->getIterator()); } void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred, BasicBlock *NewPred) { for (auto I = CurrBlock->begin(); isa(I); ++I) { PHINode *PHI = cast(I); unsigned Num = PHI->getNumIncomingValues(); for (unsigned i = 0; i < Num; ++i) { if (PHI->getIncomingBlock(i) == OldPred) PHI->setIncomingBlock(i, NewPred); } } } bool LoopInterchangeTransform::adjustLoopBranches() { DEBUG(dbgs() << "adjustLoopBranches called\n"); // Adjust the loop preheader BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); BasicBlock *InnerLoopLatchPredecessor = InnerLoopLatch->getUniquePredecessor(); BasicBlock *InnerLoopLatchSuccessor; BasicBlock *OuterLoopLatchSuccessor; BranchInst *OuterLoopLatchBI = dyn_cast(OuterLoopLatch->getTerminator()); BranchInst *InnerLoopLatchBI = dyn_cast(InnerLoopLatch->getTerminator()); BranchInst *OuterLoopHeaderBI = dyn_cast(OuterLoopHeader->getTerminator()); BranchInst *InnerLoopHeaderBI = dyn_cast(InnerLoopHeader->getTerminator()); if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || !InnerLoopHeaderBI) return false; BranchInst *InnerLoopLatchPredecessorBI = dyn_cast(InnerLoopLatchPredecessor->getTerminator()); BranchInst *OuterLoopPredecessorBI = dyn_cast(OuterLoopPredecessor->getTerminator()); if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) return false; BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); if (!InnerLoopHeaderSuccessor) return false; // Adjust Loop Preheader and headers unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors(); for (unsigned i = 0; i < NumSucc; ++i) { if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader) OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader); } NumSucc = OuterLoopHeaderBI->getNumSuccessors(); for (unsigned i = 0; i < NumSucc; ++i) { if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch) OuterLoopHeaderBI->setSuccessor(i, LoopExit); else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader) OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSuccessor); } // Adjust reduction PHI's now that the incoming block has changed. updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader, OuterLoopHeader); BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI); InnerLoopHeaderBI->eraseFromParent(); // -------------Adjust loop latches----------- if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); else InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors(); for (unsigned i = 0; i < NumSucc; ++i) { if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch) InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor); } // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with // the value and remove this PHI node from inner loop. SmallVector LcssaVec; for (auto I = InnerLoopLatchSuccessor->begin(); isa(I); ++I) { PHINode *LcssaPhi = cast(I); LcssaVec.push_back(LcssaPhi); } for (PHINode *P : LcssaVec) { Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch); P->replaceAllUsesWith(Incoming); P->eraseFromParent(); } if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); else OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor) InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor); else InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor); updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch); if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) { OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch); } else { OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch); } return true; } void LoopInterchangeTransform::adjustLoopPreheaders() { // We have interchanged the preheaders so we need to interchange the data in // the preheader as well. // This is because the content of inner preheader was previously executed // inside the outer loop. BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); BranchInst *InnerTermBI = cast(InnerLoopPreHeader->getTerminator()); // These instructions should now be executed inside the loop. // Move instruction into a new block after outer header. moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator()); // These instructions were not executed previously in the loop so move them to // the older inner loop preheader. moveBBContents(OuterLoopPreHeader, InnerTermBI); } bool LoopInterchangeTransform::adjustLoopLinks() { // Adjust all branches in the inner and outer loop. bool Changed = adjustLoopBranches(); if (Changed) adjustLoopPreheaders(); return Changed; } char LoopInterchange::ID = 0; INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange", "Interchanges loops for cache reuse", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(LoopInterchange, "loop-interchange", "Interchanges loops for cache reuse", false, false) Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }