//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass transforms loops by placing phi nodes at the end of the loops for // all values that are live across the loop boundary. For example, it turns // the left into the right code: // // for (...) for (...) // if (c) if (c) // X1 = ... X1 = ... // else else // X2 = ... X2 = ... // X3 = phi(X1, X2) X3 = phi(X1, X2) // ... = X3 + 4 X4 = phi(X3) // ... = X4 + 4 // // This is still valid LLVM; the extra phi nodes are purely redundant, and will // be trivially eliminated by InstCombine. The major benefit of this // transformation is that it makes many other loop optimizations, such as // LoopUnswitching, simpler. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/LCSSA.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PredIteratorCache.h" #include "llvm/Pass.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/SSAUpdater.h" using namespace llvm; #define DEBUG_TYPE "lcssa" STATISTIC(NumLCSSA, "Number of live out of a loop variables"); #ifdef EXPENSIVE_CHECKS static bool VerifyLoopLCSSA = true; #else static bool VerifyLoopLCSSA = false; #endif static cl::opt VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), cl::desc("Verify loop lcssa form (time consuming)")); /// Return true if the specified block is in the list. static bool isExitBlock(BasicBlock *BB, const SmallVectorImpl &ExitBlocks) { return is_contained(ExitBlocks, BB); } /// For every instruction from the worklist, check to see if it has any uses /// that are outside the current loop. If so, insert LCSSA PHI nodes and /// rewrite the uses. bool llvm::formLCSSAForInstructions(SmallVectorImpl &Worklist, DominatorTree &DT, LoopInfo &LI) { SmallVector UsesToRewrite; SmallSetVector PHIsToRemove; PredIteratorCache PredCache; bool Changed = false; // Cache the Loop ExitBlocks across this loop. We expect to get a lot of // instructions within the same loops, computing the exit blocks is // expensive, and we're not mutating the loop structure. SmallDenseMap> LoopExitBlocks; while (!Worklist.empty()) { UsesToRewrite.clear(); Instruction *I = Worklist.pop_back_val(); BasicBlock *InstBB = I->getParent(); Loop *L = LI.getLoopFor(InstBB); if (!LoopExitBlocks.count(L)) L->getExitBlocks(LoopExitBlocks[L]); assert(LoopExitBlocks.count(L)); const SmallVectorImpl &ExitBlocks = LoopExitBlocks[L]; if (ExitBlocks.empty()) continue; // Tokens cannot be used in PHI nodes, so we skip over them. // We can run into tokens which are live out of a loop with catchswitch // instructions in Windows EH if the catchswitch has one catchpad which // is inside the loop and another which is not. if (I->getType()->isTokenTy()) continue; for (Use &U : I->uses()) { Instruction *User = cast(U.getUser()); BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast(User)) UserBB = PN->getIncomingBlock(U); if (InstBB != UserBB && !L->contains(UserBB)) UsesToRewrite.push_back(&U); } // If there are no uses outside the loop, exit with no change. if (UsesToRewrite.empty()) continue; ++NumLCSSA; // We are applying the transformation // Invoke instructions are special in that their result value is not // available along their unwind edge. The code below tests to see whether // DomBB dominates the value, so adjust DomBB to the normal destination // block, which is effectively where the value is first usable. BasicBlock *DomBB = InstBB; if (InvokeInst *Inv = dyn_cast(I)) DomBB = Inv->getNormalDest(); DomTreeNode *DomNode = DT.getNode(DomBB); SmallVector AddedPHIs; SmallVector PostProcessPHIs; SmallVector InsertedPHIs; SSAUpdater SSAUpdate(&InsertedPHIs); SSAUpdate.Initialize(I->getType(), I->getName()); // Insert the LCSSA phi's into all of the exit blocks dominated by the // value, and add them to the Phi's map. for (BasicBlock *ExitBB : ExitBlocks) { if (!DT.dominates(DomNode, DT.getNode(ExitBB))) continue; // If we already inserted something for this BB, don't reprocess it. if (SSAUpdate.HasValueForBlock(ExitBB)) continue; PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), I->getName() + ".lcssa", &ExitBB->front()); // Add inputs from inside the loop for this PHI. for (BasicBlock *Pred : PredCache.get(ExitBB)) { PN->addIncoming(I, Pred); // If the exit block has a predecessor not within the loop, arrange for // the incoming value use corresponding to that predecessor to be // rewritten in terms of a different LCSSA PHI. if (!L->contains(Pred)) UsesToRewrite.push_back( &PN->getOperandUse(PN->getOperandNumForIncomingValue( PN->getNumIncomingValues() - 1))); } AddedPHIs.push_back(PN); // Remember that this phi makes the value alive in this block. SSAUpdate.AddAvailableValue(ExitBB, PN); // LoopSimplify might fail to simplify some loops (e.g. when indirect // branches are involved). In such situations, it might happen that an // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we // create PHIs in such an exit block, we are also inserting PHIs into L2's // header. This could break LCSSA form for L2 because these inserted PHIs // can also have uses outside of L2. Remember all PHIs in such situation // as to revisit than later on. FIXME: Remove this if indirectbr support // into LoopSimplify gets improved. if (auto *OtherLoop = LI.getLoopFor(ExitBB)) if (!L->contains(OtherLoop)) PostProcessPHIs.push_back(PN); } // Rewrite all uses outside the loop in terms of the new PHIs we just // inserted. for (Use *UseToRewrite : UsesToRewrite) { // If this use is in an exit block, rewrite to use the newly inserted PHI. // This is required for correctness because SSAUpdate doesn't handle uses // in the same block. It assumes the PHI we inserted is at the end of the // block. Instruction *User = cast(UseToRewrite->getUser()); BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast(User)) UserBB = PN->getIncomingBlock(*UseToRewrite); if (isa(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { // Tell the VHs that the uses changed. This updates SCEV's caches. if (UseToRewrite->get()->hasValueHandle()) ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); UseToRewrite->set(&UserBB->front()); continue; } // Otherwise, do full PHI insertion. SSAUpdate.RewriteUse(*UseToRewrite); } // SSAUpdater might have inserted phi-nodes inside other loops. We'll need // to post-process them to keep LCSSA form. for (PHINode *InsertedPN : InsertedPHIs) { if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) if (!L->contains(OtherLoop)) PostProcessPHIs.push_back(InsertedPN); } // Post process PHI instructions that were inserted into another disjoint // loop and update their exits properly. for (auto *PostProcessPN : PostProcessPHIs) { if (PostProcessPN->use_empty()) continue; // Reprocess each PHI instruction. Worklist.push_back(PostProcessPN); } // Keep track of PHI nodes that we want to remove because they did not have // any uses rewritten. for (PHINode *PN : AddedPHIs) if (PN->use_empty()) PHIsToRemove.insert(PN); Changed = true; } // Remove PHI nodes that did not have any uses rewritten. for (PHINode *PN : PHIsToRemove) { assert (PN->use_empty() && "Trying to remove a phi with uses."); PN->eraseFromParent(); } return Changed; } /// Return true if the specified block dominates at least /// one of the blocks in the specified list. static bool blockDominatesAnExit(BasicBlock *BB, DominatorTree &DT, const SmallVectorImpl &ExitBlocks) { DomTreeNode *DomNode = DT.getNode(BB); return any_of(ExitBlocks, [&](BasicBlock *EB) { return DT.dominates(DomNode, DT.getNode(EB)); }); } bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution *SE) { bool Changed = false; // Get the set of exiting blocks. SmallVector ExitBlocks; L.getExitBlocks(ExitBlocks); if (ExitBlocks.empty()) return false; SmallVector Worklist; // Look at all the instructions in the loop, checking to see if they have uses // outside the loop. If so, put them into the worklist to rewrite those uses. for (BasicBlock *BB : L.blocks()) { // For large loops, avoid use-scanning by using dominance information: In // particular, if a block does not dominate any of the loop exits, then none // of the values defined in the block could be used outside the loop. if (!blockDominatesAnExit(BB, DT, ExitBlocks)) continue; for (Instruction &I : *BB) { // Reject two common cases fast: instructions with no uses (like stores) // and instructions with one use that is in the same block as this. if (I.use_empty() || (I.hasOneUse() && I.user_back()->getParent() == BB && !isa(I.user_back()))) continue; Worklist.push_back(&I); } } Changed = formLCSSAForInstructions(Worklist, DT, *LI); // If we modified the code, remove any caches about the loop from SCEV to // avoid dangling entries. // FIXME: This is a big hammer, can we clear the cache more selectively? if (SE && Changed) SE->forgetLoop(&L); assert(L.isLCSSAForm(DT)); return Changed; } /// Process a loop nest depth first. bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution *SE) { bool Changed = false; // Recurse depth-first through inner loops. for (Loop *SubLoop : L.getSubLoops()) Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); Changed |= formLCSSA(L, DT, LI, SE); return Changed; } /// Process all loops in the function, inner-most out. static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, ScalarEvolution *SE) { bool Changed = false; for (auto &L : *LI) Changed |= formLCSSARecursively(*L, DT, LI, SE); return Changed; } namespace { struct LCSSAWrapperPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid LCSSAWrapperPass() : FunctionPass(ID) { initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); } // Cached analysis information for the current function. DominatorTree *DT; LoopInfo *LI; ScalarEvolution *SE; bool runOnFunction(Function &F) override; void verifyAnalysis() const override { // This check is very expensive. On the loop intensive compiles it may cause // up to 10x slowdown. Currently it's disabled by default. LPPassManager // always does limited form of the LCSSA verification. Similar reasoning // was used for the LoopInfo verifier. if (VerifyLoopLCSSA) { assert(all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }) && "LCSSA form is broken!"); } }; /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG. It maintains both of these, /// as well as the CFG. It also requires dominator information. void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreservedID(LoopSimplifyID); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); // This is needed to perform LCSSA verification inside LPPassManager AU.addRequired(); AU.addPreserved(); } }; } char LCSSAWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", false, false) Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } char &llvm::LCSSAID = LCSSAWrapperPass::ID; /// Transform \p F into loop-closed SSA form. bool LCSSAWrapperPass::runOnFunction(Function &F) { LI = &getAnalysis().getLoopInfo(); DT = &getAnalysis().getDomTree(); auto *SEWP = getAnalysisIfAvailable(); SE = SEWP ? &SEWP->getSE() : nullptr; return formLCSSAOnAllLoops(LI, *DT, SE); } PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { auto &LI = AM.getResult(F); auto &DT = AM.getResult(F); auto *SE = AM.getCachedResult(F); if (!formLCSSAOnAllLoops(&LI, DT, SE)) return PreservedAnalyses::all(); // FIXME: This should also 'preserve the CFG'. PreservedAnalyses PA; PA.preserve(); PA.preserve(); PA.preserve(); PA.preserve(); return PA; }