//===----- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/OrderedBasicBlock.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Vectorize.h" using namespace llvm; #define DEBUG_TYPE "load-store-vectorizer" STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); namespace { // FIXME: Assuming stack alignment of 4 is always good enough static const unsigned StackAdjustedAlignment = 4; typedef SmallVector InstrList; typedef MapVector InstrListMap; class Vectorizer { Function &F; AliasAnalysis &AA; DominatorTree &DT; ScalarEvolution &SE; TargetTransformInfo &TTI; const DataLayout &DL; IRBuilder<> Builder; public: Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI) : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} bool run(); private: Value *getPointerOperand(Value *I); unsigned getPointerAddressSpace(Value *I); unsigned getAlignment(LoadInst *LI) const { unsigned Align = LI->getAlignment(); if (Align != 0) return Align; return DL.getABITypeAlignment(LI->getType()); } unsigned getAlignment(StoreInst *SI) const { unsigned Align = SI->getAlignment(); if (Align != 0) return Align; return DL.getABITypeAlignment(SI->getValueOperand()->getType()); } bool isConsecutiveAccess(Value *A, Value *B); /// After vectorization, reorder the instructions that I depends on /// (the instructions defining its operands), to ensure they dominate I. void reorder(Instruction *I); /// Returns the first and the last instructions in Chain. std::pair getBoundaryInstrs(ArrayRef Chain); /// Erases the original instructions after vectorizing. void eraseInstructions(ArrayRef Chain); /// "Legalize" the vector type that would be produced by combining \p /// ElementSizeBits elements in \p Chain. Break into two pieces such that the /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is /// expected to have more than 4 elements. std::pair, ArrayRef> splitOddVectorElts(ArrayRef Chain, unsigned ElementSizeBits); /// Finds the largest prefix of Chain that's vectorizable, checking for /// intervening instructions which may affect the memory accessed by the /// instructions within Chain. /// /// The elements of \p Chain must be all loads or all stores and must be in /// address order. ArrayRef getVectorizablePrefix(ArrayRef Chain); /// Collects load and store instructions to vectorize. std::pair collectInstructions(BasicBlock *BB); /// Processes the collected instructions, the \p Map. The values of \p Map /// should be all loads or all stores. bool vectorizeChains(InstrListMap &Map); /// Finds the load/stores to consecutive memory addresses and vectorizes them. bool vectorizeInstructions(ArrayRef Instrs); /// Vectorizes the load instructions in Chain. bool vectorizeLoadChain(ArrayRef Chain, SmallPtrSet *InstructionsProcessed); /// Vectorizes the store instructions in Chain. bool vectorizeStoreChain(ArrayRef Chain, SmallPtrSet *InstructionsProcessed); /// Check if this load/store access is misaligned accesses. bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, unsigned Alignment); }; class LoadStoreVectorizer : public FunctionPass { public: static char ID; LoadStoreVectorizer() : FunctionPass(ID) { initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; StringRef getPassName() const override { return "GPU Load and Store Vectorizer"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); } }; } INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE, "Vectorize load and Store instructions", false, false) INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE, "Vectorize load and store instructions", false, false) char LoadStoreVectorizer::ID = 0; Pass *llvm::createLoadStoreVectorizerPass() { return new LoadStoreVectorizer(); } // The real propagateMetadata expects a SmallVector, but we deal in // vectors of Instructions. static void propagateMetadata(Instruction *I, ArrayRef IL) { SmallVector VL(IL.begin(), IL.end()); propagateMetadata(I, VL); } bool LoadStoreVectorizer::runOnFunction(Function &F) { // Don't vectorize when the attribute NoImplicitFloat is used. if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) return false; AliasAnalysis &AA = getAnalysis().getAAResults(); DominatorTree &DT = getAnalysis().getDomTree(); ScalarEvolution &SE = getAnalysis().getSE(); TargetTransformInfo &TTI = getAnalysis().getTTI(F); Vectorizer V(F, AA, DT, SE, TTI); return V.run(); } // Vectorizer Implementation bool Vectorizer::run() { bool Changed = false; // Scan the blocks in the function in post order. for (BasicBlock *BB : post_order(&F)) { InstrListMap LoadRefs, StoreRefs; std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); Changed |= vectorizeChains(LoadRefs); Changed |= vectorizeChains(StoreRefs); } return Changed; } Value *Vectorizer::getPointerOperand(Value *I) { if (LoadInst *LI = dyn_cast(I)) return LI->getPointerOperand(); if (StoreInst *SI = dyn_cast(I)) return SI->getPointerOperand(); return nullptr; } unsigned Vectorizer::getPointerAddressSpace(Value *I) { if (LoadInst *L = dyn_cast(I)) return L->getPointerAddressSpace(); if (StoreInst *S = dyn_cast(I)) return S->getPointerAddressSpace(); return -1; } // FIXME: Merge with llvm::isConsecutiveAccess bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { Value *PtrA = getPointerOperand(A); Value *PtrB = getPointerOperand(B); unsigned ASA = getPointerAddressSpace(A); unsigned ASB = getPointerAddressSpace(B); // Check that the address spaces match and that the pointers are valid. if (!PtrA || !PtrB || (ASA != ASB)) return false; // Make sure that A and B are different pointers of the same size type. unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); Type *PtrATy = PtrA->getType()->getPointerElementType(); Type *PtrBTy = PtrB->getType()->getPointerElementType(); if (PtrA == PtrB || DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || DL.getTypeStoreSize(PtrATy->getScalarType()) != DL.getTypeStoreSize(PtrBTy->getScalarType())) return false; APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); APInt OffsetDelta = OffsetB - OffsetA; // Check if they are based on the same pointer. That makes the offsets // sufficient. if (PtrA == PtrB) return OffsetDelta == Size; // Compute the necessary base pointer delta to have the necessary final delta // equal to the size. APInt BaseDelta = Size - OffsetDelta; // Compute the distance with SCEV between the base pointers. const SCEV *PtrSCEVA = SE.getSCEV(PtrA); const SCEV *PtrSCEVB = SE.getSCEV(PtrB); const SCEV *C = SE.getConstant(BaseDelta); const SCEV *X = SE.getAddExpr(PtrSCEVA, C); if (X == PtrSCEVB) return true; // Sometimes even this doesn't work, because SCEV can't always see through // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking // things the hard way. // Look through GEPs after checking they're the same except for the last // index. GetElementPtrInst *GEPA = dyn_cast(getPointerOperand(A)); GetElementPtrInst *GEPB = dyn_cast(getPointerOperand(B)); if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands()) return false; unsigned FinalIndex = GEPA->getNumOperands() - 1; for (unsigned i = 0; i < FinalIndex; i++) if (GEPA->getOperand(i) != GEPB->getOperand(i)) return false; Instruction *OpA = dyn_cast(GEPA->getOperand(FinalIndex)); Instruction *OpB = dyn_cast(GEPB->getOperand(FinalIndex)); if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || OpA->getType() != OpB->getType()) return false; // Only look through a ZExt/SExt. if (!isa(OpA) && !isa(OpA)) return false; bool Signed = isa(OpA); OpA = dyn_cast(OpA->getOperand(0)); OpB = dyn_cast(OpB->getOperand(0)); if (!OpA || !OpB || OpA->getType() != OpB->getType()) return false; // Now we need to prove that adding 1 to OpA won't overflow. bool Safe = false; // First attempt: if OpB is an add with NSW/NUW, and OpB is 1 added to OpA, // we're okay. if (OpB->getOpcode() == Instruction::Add && isa(OpB->getOperand(1)) && cast(OpB->getOperand(1))->getSExtValue() > 0) { if (Signed) Safe = cast(OpB)->hasNoSignedWrap(); else Safe = cast(OpB)->hasNoUnsignedWrap(); } unsigned BitWidth = OpA->getType()->getScalarSizeInBits(); // Second attempt: // If any bits are known to be zero other than the sign bit in OpA, we can // add 1 to it while guaranteeing no overflow of any sort. if (!Safe) { APInt KnownZero(BitWidth, 0); APInt KnownOne(BitWidth, 0); computeKnownBits(OpA, KnownZero, KnownOne, DL, 0, nullptr, OpA, &DT); KnownZero &= ~APInt::getHighBitsSet(BitWidth, 1); if (KnownZero != 0) Safe = true; } if (!Safe) return false; const SCEV *OffsetSCEVA = SE.getSCEV(OpA); const SCEV *OffsetSCEVB = SE.getSCEV(OpB); const SCEV *One = SE.getConstant(APInt(BitWidth, 1)); const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One); return X2 == OffsetSCEVB; } void Vectorizer::reorder(Instruction *I) { OrderedBasicBlock OBB(I->getParent()); SmallPtrSet InstructionsToMove; SmallVector Worklist; Worklist.push_back(I); while (!Worklist.empty()) { Instruction *IW = Worklist.pop_back_val(); int NumOperands = IW->getNumOperands(); for (int i = 0; i < NumOperands; i++) { Instruction *IM = dyn_cast(IW->getOperand(i)); if (!IM || IM->getOpcode() == Instruction::PHI) continue; // If IM is in another BB, no need to move it, because this pass only // vectorizes instructions within one BB. if (IM->getParent() != I->getParent()) continue; if (!OBB.dominates(IM, I)) { InstructionsToMove.insert(IM); Worklist.push_back(IM); } } } // All instructions to move should follow I. Start from I, not from begin(). for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; ++BBI) { if (!InstructionsToMove.count(&*BBI)) continue; Instruction *IM = &*BBI; --BBI; IM->removeFromParent(); IM->insertBefore(I); } } std::pair Vectorizer::getBoundaryInstrs(ArrayRef Chain) { Instruction *C0 = Chain[0]; BasicBlock::iterator FirstInstr = C0->getIterator(); BasicBlock::iterator LastInstr = C0->getIterator(); BasicBlock *BB = C0->getParent(); unsigned NumFound = 0; for (Instruction &I : *BB) { if (!is_contained(Chain, &I)) continue; ++NumFound; if (NumFound == 1) { FirstInstr = I.getIterator(); } if (NumFound == Chain.size()) { LastInstr = I.getIterator(); break; } } // Range is [first, last). return std::make_pair(FirstInstr, ++LastInstr); } void Vectorizer::eraseInstructions(ArrayRef Chain) { SmallVector Instrs; for (Instruction *I : Chain) { Value *PtrOperand = getPointerOperand(I); assert(PtrOperand && "Instruction must have a pointer operand."); Instrs.push_back(I); if (GetElementPtrInst *GEP = dyn_cast(PtrOperand)) Instrs.push_back(GEP); } // Erase instructions. for (Instruction *I : Instrs) if (I->use_empty()) I->eraseFromParent(); } std::pair, ArrayRef> Vectorizer::splitOddVectorElts(ArrayRef Chain, unsigned ElementSizeBits) { unsigned ElementSizeBytes = ElementSizeBits / 8; unsigned SizeBytes = ElementSizeBytes * Chain.size(); unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; if (NumLeft == Chain.size()) --NumLeft; else if (NumLeft == 0) NumLeft = 1; return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); } ArrayRef Vectorizer::getVectorizablePrefix(ArrayRef Chain) { // These are in BB order, unlike Chain, which is in address order. SmallVector MemoryInstrs; SmallVector ChainInstrs; bool IsLoadChain = isa(Chain[0]); DEBUG({ for (Instruction *I : Chain) { if (IsLoadChain) assert(isa(I) && "All elements of Chain must be loads, or all must be stores."); else assert(isa(I) && "All elements of Chain must be loads, or all must be stores."); } }); for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { if (isa(I) || isa(I)) { if (!is_contained(Chain, &I)) MemoryInstrs.push_back(&I); else ChainInstrs.push_back(&I); } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I << '\n'); break; } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I << '\n'); break; } } OrderedBasicBlock OBB(Chain[0]->getParent()); // Loop until we find an instruction in ChainInstrs that we can't vectorize. unsigned ChainInstrIdx = 0; Instruction *BarrierMemoryInstr = nullptr; for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; // If a barrier memory instruction was found, chain instructions that follow // will not be added to the valid prefix. if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr)) break; // Check (in BB order) if any instruction prevents ChainInstr from being // vectorized. Find and store the first such "conflicting" instruction. for (Instruction *MemInstr : MemoryInstrs) { // If a barrier memory instruction was found, do not check past it. if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr)) break; if (isa(MemInstr) && isa(ChainInstr)) continue; // We can ignore the alias as long as the load comes before the store, // because that means we won't be moving the load past the store to // vectorize it (the vectorized load is inserted at the location of the // first load in the chain). if (isa(MemInstr) && isa(ChainInstr) && OBB.dominates(ChainInstr, MemInstr)) continue; // Same case, but in reverse. if (isa(MemInstr) && isa(ChainInstr) && OBB.dominates(MemInstr, ChainInstr)) continue; if (!AA.isNoAlias(MemoryLocation::get(MemInstr), MemoryLocation::get(ChainInstr))) { DEBUG({ dbgs() << "LSV: Found alias:\n" " Aliasing instruction and pointer:\n" << " " << *MemInstr << '\n' << " " << *getPointerOperand(MemInstr) << '\n' << " Aliased instruction and pointer:\n" << " " << *ChainInstr << '\n' << " " << *getPointerOperand(ChainInstr) << '\n'; }); // Save this aliasing memory instruction as a barrier, but allow other // instructions that precede the barrier to be vectorized with this one. BarrierMemoryInstr = MemInstr; break; } } // Continue the search only for store chains, since vectorizing stores that // precede an aliasing load is valid. Conversely, vectorizing loads is valid // up to an aliasing store, but should not pull loads from further down in // the basic block. if (IsLoadChain && BarrierMemoryInstr) { // The BarrierMemoryInstr is a store that precedes ChainInstr. assert(OBB.dominates(BarrierMemoryInstr, ChainInstr)); break; } } // Find the largest prefix of Chain whose elements are all in // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB // order.) SmallPtrSet VectorizableChainInstrs( ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); unsigned ChainIdx = 0; for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { if (!VectorizableChainInstrs.count(Chain[ChainIdx])) break; } return Chain.slice(0, ChainIdx); } std::pair Vectorizer::collectInstructions(BasicBlock *BB) { InstrListMap LoadRefs; InstrListMap StoreRefs; for (Instruction &I : *BB) { if (!I.mayReadOrWriteMemory()) continue; if (LoadInst *LI = dyn_cast(&I)) { if (!LI->isSimple()) continue; // Skip if it's not legal. if (!TTI.isLegalToVectorizeLoad(LI)) continue; Type *Ty = LI->getType(); if (!VectorType::isValidElementType(Ty->getScalarType())) continue; // Skip weird non-byte sizes. They probably aren't worth the effort of // handling correctly. unsigned TySize = DL.getTypeSizeInBits(Ty); if (TySize < 8) continue; Value *Ptr = LI->getPointerOperand(); unsigned AS = Ptr->getType()->getPointerAddressSpace(); unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); // No point in looking at these if they're too big to vectorize. if (TySize > VecRegSize / 2) continue; // Make sure all the users of a vector are constant-index extracts. if (isa(Ty) && !all_of(LI->users(), [LI](const User *U) { const ExtractElementInst *EEI = dyn_cast(U); return EEI && isa(EEI->getOperand(1)); })) continue; // Save the load locations. Value *ObjPtr = GetUnderlyingObject(Ptr, DL); LoadRefs[ObjPtr].push_back(LI); } else if (StoreInst *SI = dyn_cast(&I)) { if (!SI->isSimple()) continue; // Skip if it's not legal. if (!TTI.isLegalToVectorizeStore(SI)) continue; Type *Ty = SI->getValueOperand()->getType(); if (!VectorType::isValidElementType(Ty->getScalarType())) continue; // Skip weird non-byte sizes. They probably aren't worth the effort of // handling correctly. unsigned TySize = DL.getTypeSizeInBits(Ty); if (TySize < 8) continue; Value *Ptr = SI->getPointerOperand(); unsigned AS = Ptr->getType()->getPointerAddressSpace(); unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); if (TySize > VecRegSize / 2) continue; if (isa(Ty) && !all_of(SI->users(), [SI](const User *U) { const ExtractElementInst *EEI = dyn_cast(U); return EEI && isa(EEI->getOperand(1)); })) continue; // Save store location. Value *ObjPtr = GetUnderlyingObject(Ptr, DL); StoreRefs[ObjPtr].push_back(SI); } } return {LoadRefs, StoreRefs}; } bool Vectorizer::vectorizeChains(InstrListMap &Map) { bool Changed = false; for (const std::pair &Chain : Map) { unsigned Size = Chain.second.size(); if (Size < 2) continue; DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); // Process the stores in chunks of 64. for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { unsigned Len = std::min(CE - CI, 64); ArrayRef Chunk(&Chain.second[CI], Len); Changed |= vectorizeInstructions(Chunk); } } return Changed; } bool Vectorizer::vectorizeInstructions(ArrayRef Instrs) { DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n"); SmallVector Heads, Tails; int ConsecutiveChain[64]; // Do a quadratic search on all of the given stores and find all of the pairs // of stores that follow each other. for (int i = 0, e = Instrs.size(); i < e; ++i) { ConsecutiveChain[i] = -1; for (int j = e - 1; j >= 0; --j) { if (i == j) continue; if (isConsecutiveAccess(Instrs[i], Instrs[j])) { if (ConsecutiveChain[i] != -1) { int CurDistance = std::abs(ConsecutiveChain[i] - i); int NewDistance = std::abs(ConsecutiveChain[i] - j); if (j < i || NewDistance > CurDistance) continue; // Should not insert. } Tails.push_back(j); Heads.push_back(i); ConsecutiveChain[i] = j; } } } bool Changed = false; SmallPtrSet InstructionsProcessed; for (int Head : Heads) { if (InstructionsProcessed.count(Instrs[Head])) continue; bool LongerChainExists = false; for (unsigned TIt = 0; TIt < Tails.size(); TIt++) if (Head == Tails[TIt] && !InstructionsProcessed.count(Instrs[Heads[TIt]])) { LongerChainExists = true; break; } if (LongerChainExists) continue; // We found an instr that starts a chain. Now follow the chain and try to // vectorize it. SmallVector Operands; int I = Head; while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { if (InstructionsProcessed.count(Instrs[I])) break; Operands.push_back(Instrs[I]); I = ConsecutiveChain[I]; } bool Vectorized = false; if (isa(*Operands.begin())) Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); else Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); Changed |= Vectorized; } return Changed; } bool Vectorizer::vectorizeStoreChain( ArrayRef Chain, SmallPtrSet *InstructionsProcessed) { StoreInst *S0 = cast(Chain[0]); // If the vector has an int element, default to int for the whole load. Type *StoreTy; for (Instruction *I : Chain) { StoreTy = cast(I)->getValueOperand()->getType(); if (StoreTy->isIntOrIntVectorTy()) break; if (StoreTy->isPtrOrPtrVectorTy()) { StoreTy = Type::getIntNTy(F.getParent()->getContext(), DL.getTypeSizeInBits(StoreTy)); break; } } unsigned Sz = DL.getTypeSizeInBits(StoreTy); unsigned AS = S0->getPointerAddressSpace(); unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); unsigned VF = VecRegSize / Sz; unsigned ChainSize = Chain.size(); unsigned Alignment = getAlignment(S0); if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { InstructionsProcessed->insert(Chain.begin(), Chain.end()); return false; } ArrayRef NewChain = getVectorizablePrefix(Chain); if (NewChain.empty()) { // No vectorization possible. InstructionsProcessed->insert(Chain.begin(), Chain.end()); return false; } if (NewChain.size() == 1) { // Failed after the first instruction. Discard it and try the smaller chain. InstructionsProcessed->insert(NewChain.front()); return false; } // Update Chain to the valid vectorizable subchain. Chain = NewChain; ChainSize = Chain.size(); // Check if it's legal to vectorize this chain. If not, split the chain and // try again. unsigned EltSzInBytes = Sz / 8; unsigned SzInBytes = EltSzInBytes * ChainSize; if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) { auto Chains = splitOddVectorElts(Chain, Sz); return vectorizeStoreChain(Chains.first, InstructionsProcessed) | vectorizeStoreChain(Chains.second, InstructionsProcessed); } VectorType *VecTy; VectorType *VecStoreTy = dyn_cast(StoreTy); if (VecStoreTy) VecTy = VectorType::get(StoreTy->getScalarType(), Chain.size() * VecStoreTy->getNumElements()); else VecTy = VectorType::get(StoreTy, Chain.size()); // If it's more than the max vector size or the target has a better // vector factor, break it into two pieces. unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." " Creating two separate arrays.\n"); return vectorizeStoreChain(Chain.slice(0, TargetVF), InstructionsProcessed) | vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); } DEBUG({ dbgs() << "LSV: Stores to vectorize:\n"; for (Instruction *I : Chain) dbgs() << " " << *I << "\n"; }); // We won't try again to vectorize the elements of the chain, regardless of // whether we succeed below. InstructionsProcessed->insert(Chain.begin(), Chain.end()); // If the store is going to be misaligned, don't vectorize it. if (accessIsMisaligned(SzInBytes, AS, Alignment)) { if (S0->getPointerAddressSpace() != 0) return false; unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), StackAdjustedAlignment, DL, S0, nullptr, &DT); if (NewAlign < StackAdjustedAlignment) return false; } BasicBlock::iterator First, Last; std::tie(First, Last) = getBoundaryInstrs(Chain); Builder.SetInsertPoint(&*Last); Value *Vec = UndefValue::get(VecTy); if (VecStoreTy) { unsigned VecWidth = VecStoreTy->getNumElements(); for (unsigned I = 0, E = Chain.size(); I != E; ++I) { StoreInst *Store = cast(Chain[I]); for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { unsigned NewIdx = J + I * VecWidth; Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), Builder.getInt32(J)); if (Extract->getType() != StoreTy->getScalarType()) Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); Value *Insert = Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); Vec = Insert; } } } else { for (unsigned I = 0, E = Chain.size(); I != E; ++I) { StoreInst *Store = cast(Chain[I]); Value *Extract = Store->getValueOperand(); if (Extract->getType() != StoreTy->getScalarType()) Extract = Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); Value *Insert = Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); Vec = Insert; } } // This cast is safe because Builder.CreateStore() always creates a bona fide // StoreInst. StoreInst *SI = cast( Builder.CreateStore(Vec, Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)))); propagateMetadata(SI, Chain); SI->setAlignment(Alignment); eraseInstructions(Chain); ++NumVectorInstructions; NumScalarsVectorized += Chain.size(); return true; } bool Vectorizer::vectorizeLoadChain( ArrayRef Chain, SmallPtrSet *InstructionsProcessed) { LoadInst *L0 = cast(Chain[0]); // If the vector has an int element, default to int for the whole load. Type *LoadTy; for (const auto &V : Chain) { LoadTy = cast(V)->getType(); if (LoadTy->isIntOrIntVectorTy()) break; if (LoadTy->isPtrOrPtrVectorTy()) { LoadTy = Type::getIntNTy(F.getParent()->getContext(), DL.getTypeSizeInBits(LoadTy)); break; } } unsigned Sz = DL.getTypeSizeInBits(LoadTy); unsigned AS = L0->getPointerAddressSpace(); unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); unsigned VF = VecRegSize / Sz; unsigned ChainSize = Chain.size(); unsigned Alignment = getAlignment(L0); if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { InstructionsProcessed->insert(Chain.begin(), Chain.end()); return false; } ArrayRef NewChain = getVectorizablePrefix(Chain); if (NewChain.empty()) { // No vectorization possible. InstructionsProcessed->insert(Chain.begin(), Chain.end()); return false; } if (NewChain.size() == 1) { // Failed after the first instruction. Discard it and try the smaller chain. InstructionsProcessed->insert(NewChain.front()); return false; } // Update Chain to the valid vectorizable subchain. Chain = NewChain; ChainSize = Chain.size(); // Check if it's legal to vectorize this chain. If not, split the chain and // try again. unsigned EltSzInBytes = Sz / 8; unsigned SzInBytes = EltSzInBytes * ChainSize; if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) { auto Chains = splitOddVectorElts(Chain, Sz); return vectorizeLoadChain(Chains.first, InstructionsProcessed) | vectorizeLoadChain(Chains.second, InstructionsProcessed); } VectorType *VecTy; VectorType *VecLoadTy = dyn_cast(LoadTy); if (VecLoadTy) VecTy = VectorType::get(LoadTy->getScalarType(), Chain.size() * VecLoadTy->getNumElements()); else VecTy = VectorType::get(LoadTy, Chain.size()); // If it's more than the max vector size or the target has a better // vector factor, break it into two pieces. unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." " Creating two separate arrays.\n"); return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); } // We won't try again to vectorize the elements of the chain, regardless of // whether we succeed below. InstructionsProcessed->insert(Chain.begin(), Chain.end()); // If the load is going to be misaligned, don't vectorize it. if (accessIsMisaligned(SzInBytes, AS, Alignment)) { if (L0->getPointerAddressSpace() != 0) return false; unsigned NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(), StackAdjustedAlignment, DL, L0, nullptr, &DT); if (NewAlign < StackAdjustedAlignment) return false; Alignment = NewAlign; } DEBUG({ dbgs() << "LSV: Loads to vectorize:\n"; for (Instruction *I : Chain) I->dump(); }); // getVectorizablePrefix already computed getBoundaryInstrs. The value of // Last may have changed since then, but the value of First won't have. If it // matters, we could compute getBoundaryInstrs only once and reuse it here. BasicBlock::iterator First, Last; std::tie(First, Last) = getBoundaryInstrs(Chain); Builder.SetInsertPoint(&*First); Value *Bitcast = Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); // This cast is safe because Builder.CreateLoad always creates a bona fide // LoadInst. LoadInst *LI = cast(Builder.CreateLoad(Bitcast)); propagateMetadata(LI, Chain); LI->setAlignment(Alignment); if (VecLoadTy) { SmallVector InstrsToErase; unsigned VecWidth = VecLoadTy->getNumElements(); for (unsigned I = 0, E = Chain.size(); I != E; ++I) { for (auto Use : Chain[I]->users()) { // All users of vector loads are ExtractElement instructions with // constant indices, otherwise we would have bailed before now. Instruction *UI = cast(Use); unsigned Idx = cast(UI->getOperand(1))->getZExtValue(); unsigned NewIdx = Idx + I * VecWidth; Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), UI->getName()); if (V->getType() != UI->getType()) V = Builder.CreateBitCast(V, UI->getType()); // Replace the old instruction. UI->replaceAllUsesWith(V); InstrsToErase.push_back(UI); } } // Bitcast might not be an Instruction, if the value being loaded is a // constant. In that case, no need to reorder anything. if (Instruction *BitcastInst = dyn_cast(Bitcast)) reorder(BitcastInst); for (auto I : InstrsToErase) I->eraseFromParent(); } else { for (unsigned I = 0, E = Chain.size(); I != E; ++I) { Value *CV = Chain[I]; Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); if (V->getType() != CV->getType()) { V = Builder.CreateBitOrPointerCast(V, CV->getType()); } // Replace the old instruction. CV->replaceAllUsesWith(V); } if (Instruction *BitcastInst = dyn_cast(Bitcast)) reorder(BitcastInst); } eraseInstructions(Chain); ++NumVectorInstructions; NumScalarsVectorized += Chain.size(); return true; } bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, unsigned Alignment) { if (Alignment % SzInBytes == 0) return false; bool Fast = false; bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), SzInBytes * 8, AddressSpace, Alignment, &Fast); DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows << " and fast? " << Fast << "\n";); return !Allows || !Fast; }