//===- BugDriver.h - Top-Level BugPoint class -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class contains all of the shared state and information that is used by // the BugPoint tool to track down errors in optimizations. This class is the // main driver class that invokes all sub-functionality. // //===----------------------------------------------------------------------===// #ifndef LLVM_TOOLS_BUGPOINT_BUGDRIVER_H #define LLVM_TOOLS_BUGPOINT_BUGDRIVER_H #include "llvm/IR/ValueMap.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include namespace llvm { class Value; class PassInfo; class Module; class GlobalVariable; class Function; class BasicBlock; class AbstractInterpreter; class Instruction; class LLVMContext; class DebugCrashes; class CC; extern bool DisableSimplifyCFG; /// BugpointIsInterrupted - Set to true when the user presses ctrl-c. /// extern bool BugpointIsInterrupted; class BugDriver { LLVMContext &Context; const char *ToolName; // argv[0] of bugpoint std::string ReferenceOutputFile; // Name of `good' output file Module *Program; // The raw program, linked together std::vector PassesToRun; AbstractInterpreter *Interpreter; // How to run the program AbstractInterpreter *SafeInterpreter; // To generate reference output, etc. CC *cc; bool run_find_bugs; unsigned Timeout; unsigned MemoryLimit; bool UseValgrind; // FIXME: sort out public/private distinctions... friend class ReducePassList; friend class ReduceMisCodegenFunctions; public: BugDriver(const char *toolname, bool find_bugs, unsigned timeout, unsigned memlimit, bool use_valgrind, LLVMContext &ctxt); ~BugDriver(); const char *getToolName() const { return ToolName; } LLVMContext &getContext() const { return Context; } // Set up methods... these methods are used to copy information about the // command line arguments into instance variables of BugDriver. // bool addSources(const std::vector &FileNames); void addPass(std::string p) { PassesToRun.push_back(std::move(p)); } void setPassesToRun(const std::vector &PTR) { PassesToRun = PTR; } const std::vector &getPassesToRun() const { return PassesToRun; } /// run - The top level method that is invoked after all of the instance /// variables are set up from command line arguments. The \p as_child argument /// indicates whether the driver is to run in parent mode or child mode. /// Error run(); /// debugOptimizerCrash - This method is called when some optimizer pass /// crashes on input. It attempts to prune down the testcase to something /// reasonable, and figure out exactly which pass is crashing. /// Error debugOptimizerCrash(const std::string &ID = "passes"); /// debugCodeGeneratorCrash - This method is called when the code generator /// crashes on an input. It attempts to reduce the input as much as possible /// while still causing the code generator to crash. Error debugCodeGeneratorCrash(); /// debugMiscompilation - This method is used when the passes selected are not /// crashing, but the generated output is semantically different from the /// input. Error debugMiscompilation(); /// debugPassMiscompilation - This method is called when the specified pass /// miscompiles Program as input. It tries to reduce the testcase to /// something that smaller that still miscompiles the program. /// ReferenceOutput contains the filename of the file containing the output we /// are to match. /// bool debugPassMiscompilation(const PassInfo *ThePass, const std::string &ReferenceOutput); /// compileSharedObject - This method creates a SharedObject from a given /// BitcodeFile for debugging a code generator. /// Expected compileSharedObject(const std::string &BitcodeFile); /// debugCodeGenerator - This method narrows down a module to a function or /// set of functions, using the CBE as a ``safe'' code generator for other /// functions that are not under consideration. Error debugCodeGenerator(); /// isExecutingJIT - Returns true if bugpoint is currently testing the JIT /// bool isExecutingJIT(); Module *getProgram() const { return Program; } /// swapProgramIn - Set the current module to the specified module, returning /// the old one. Module *swapProgramIn(Module *M) { Module *OldProgram = Program; Program = M; return OldProgram; } AbstractInterpreter *switchToSafeInterpreter() { AbstractInterpreter *Old = Interpreter; Interpreter = (AbstractInterpreter *)SafeInterpreter; return Old; } void switchToInterpreter(AbstractInterpreter *AI) { Interpreter = AI; } /// setNewProgram - If we reduce or update the program somehow, call this /// method to update bugdriver with it. This deletes the old module and sets /// the specified one as the current program. void setNewProgram(Module *M); /// Try to compile the specified module. This is used for code generation /// crash testing. Error compileProgram(Module *M) const; /// executeProgram - This method runs "Program", capturing the output of the /// program to a file. A recommended filename may be optionally specified. /// Expected executeProgram(const Module *Program, std::string OutputFilename, std::string Bitcode, const std::string &SharedObjects, AbstractInterpreter *AI) const; /// executeProgramSafely - Used to create reference output with the "safe" /// backend, if reference output is not provided. If there is a problem with /// the code generator (e.g., llc crashes), this will return false and set /// Error. /// Expected executeProgramSafely(const Module *Program, const std::string &OutputFile) const; /// createReferenceFile - calls compileProgram and then records the output /// into ReferenceOutputFile. Returns true if reference file created, false /// otherwise. Note: initializeExecutionEnvironment should be called BEFORE /// this function. /// Error createReferenceFile(Module *M, const std::string &Filename = "bugpoint.reference.out-%%%%%%%"); /// diffProgram - This method executes the specified module and diffs the /// output against the file specified by ReferenceOutputFile. If the output /// is different, 1 is returned. If there is a problem with the code /// generator (e.g., llc crashes), this will return -1 and set Error. /// Expected diffProgram(const Module *Program, const std::string &BitcodeFile = "", const std::string &SharedObj = "", bool RemoveBitcode = false) const; /// EmitProgressBitcode - This function is used to output M to a file named /// "bugpoint-ID.bc". /// void EmitProgressBitcode(const Module *M, const std::string &ID, bool NoFlyer = false) const; /// This method clones the current Program and deletes the specified /// instruction from the cloned module. It then runs a series of cleanup /// passes (ADCE and SimplifyCFG) to eliminate any code which depends on the /// value. The modified module is then returned. /// std::unique_ptr deleteInstructionFromProgram(const Instruction *I, unsigned Simp); /// This method clones the current Program and performs a series of cleanups /// intended to get rid of extra cruft on the module. If the /// MayModifySemantics argument is true, then the cleanups is allowed to /// modify how the code behaves. /// std::unique_ptr performFinalCleanups(Module *M, bool MayModifySemantics = false); /// Given a module, extract up to one loop from it into a new function. This /// returns null if there are no extractable loops in the program or if the /// loop extractor crashes. std::unique_ptr extractLoop(Module *M); /// Extract all but the specified basic blocks into their own functions. The /// only detail is that M is actually a module cloned from the one the BBs are /// in, so some mapping needs to be performed. If this operation fails for /// some reason (ie the implementation is buggy), this function should return /// null, otherwise it returns a new Module. std::unique_ptr extractMappedBlocksFromModule(const std::vector &BBs, Module *M); /// Carefully run the specified set of pass on the specified/ module, /// returning the transformed module on success, or a null pointer on failure. std::unique_ptr runPassesOn(Module *M, const std::vector &Passes, unsigned NumExtraArgs = 0, const char *const *ExtraArgs = nullptr); /// runPasses - Run the specified passes on Program, outputting a bitcode /// file and writting the filename into OutputFile if successful. If the /// optimizations fail for some reason (optimizer crashes), return true, /// otherwise return false. If DeleteOutput is set to true, the bitcode is /// deleted on success, and the filename string is undefined. This prints to /// outs() a single line message indicating whether compilation was successful /// or failed, unless Quiet is set. ExtraArgs specifies additional arguments /// to pass to the child bugpoint instance. /// bool runPasses(Module *Program, const std::vector &PassesToRun, std::string &OutputFilename, bool DeleteOutput = false, bool Quiet = false, unsigned NumExtraArgs = 0, const char *const *ExtraArgs = nullptr) const; /// runPasses - Just like the method above, but this just returns true or /// false indicating whether or not the optimizer crashed on the specified /// input (true = crashed). Does not produce any output. /// bool runPasses(Module *M, const std::vector &PassesToRun) const { std::string Filename; return runPasses(M, PassesToRun, Filename, true); } /// Take the specified pass list and create different combinations of passes /// to compile the program with. Compile the program with each set and mark /// test to see if it compiled correctly. If the passes compiled correctly /// output nothing and rearrange the passes into a new order. If the passes /// did not compile correctly, output the command required to recreate the /// failure. Error runManyPasses(const std::vector &AllPasses); /// writeProgramToFile - This writes the current "Program" to the named /// bitcode file. If an error occurs, true is returned. /// bool writeProgramToFile(const std::string &Filename, const Module *M) const; bool writeProgramToFile(const std::string &Filename, int FD, const Module *M) const; bool writeProgramToFile(int FD, const Module *M) const; private: /// initializeExecutionEnvironment - This method is used to set up the /// environment for executing LLVM programs. /// Error initializeExecutionEnvironment(); }; struct DiscardTemp { sys::fs::TempFile &File; ~DiscardTemp(); }; /// Given a bitcode or assembly input filename, parse and return it, or return /// null if not possible. /// std::unique_ptr parseInputFile(StringRef InputFilename, LLVMContext &ctxt); /// getPassesString - Turn a list of passes into a string which indicates the /// command line options that must be passed to add the passes. /// std::string getPassesString(const std::vector &Passes); /// PrintFunctionList - prints out list of problematic functions /// void PrintFunctionList(const std::vector &Funcs); /// PrintGlobalVariableList - prints out list of problematic global variables /// void PrintGlobalVariableList(const std::vector &GVs); // DeleteGlobalInitializer - "Remove" the global variable by deleting its // initializer, making it external. // void DeleteGlobalInitializer(GlobalVariable *GV); // DeleteFunctionBody - "Remove" the function by deleting all of it's basic // blocks, making it external. // void DeleteFunctionBody(Function *F); /// Given a module and a list of functions in the module, split the functions /// OUT of the specified module, and place them in the new module. std::unique_ptr SplitFunctionsOutOfModule(Module *M, const std::vector &F, ValueToValueMapTy &VMap); } // End llvm namespace #endif