//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the C++ Decl subclasses, other than those for // templates (in DeclTemplate.h) and friends (in DeclFriend.h). // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_DECLCXX_H #define LLVM_CLANG_AST_DECLCXX_H #include "clang/AST/Expr.h" #include "clang/AST/Decl.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/UnresolvedSet.h" #include "llvm/ADT/SmallPtrSet.h" namespace clang { class ClassTemplateDecl; class ClassTemplateSpecializationDecl; class CXXBasePath; class CXXBasePaths; class CXXConstructorDecl; class CXXConversionDecl; class CXXDestructorDecl; class CXXMethodDecl; class CXXRecordDecl; class CXXMemberLookupCriteria; class CXXFinalOverriderMap; class CXXIndirectPrimaryBaseSet; class FriendDecl; /// \brief Represents any kind of function declaration, whether it is a /// concrete function or a function template. class AnyFunctionDecl { NamedDecl *Function; AnyFunctionDecl(NamedDecl *ND) : Function(ND) { } public: AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { } AnyFunctionDecl(FunctionTemplateDecl *FTD); /// \brief Implicily converts any function or function template into a /// named declaration. operator NamedDecl *() const { return Function; } /// \brief Retrieve the underlying function or function template. NamedDecl *get() const { return Function; } static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) { return AnyFunctionDecl(ND); } }; } // end namespace clang namespace llvm { /// Implement simplify_type for AnyFunctionDecl, so that we can dyn_cast from /// AnyFunctionDecl to any function or function template declaration. template<> struct simplify_type { typedef ::clang::NamedDecl* SimpleType; static SimpleType getSimplifiedValue(const ::clang::AnyFunctionDecl &Val) { return Val; } }; template<> struct simplify_type< ::clang::AnyFunctionDecl> : public simplify_type {}; // Provide PointerLikeTypeTraits for non-cvr pointers. template<> class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> { public: static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) { return F.get(); } static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) { return ::clang::AnyFunctionDecl::getFromNamedDecl( static_cast< ::clang::NamedDecl*>(P)); } enum { NumLowBitsAvailable = 2 }; }; } // end namespace llvm namespace clang { /// AccessSpecDecl - An access specifier followed by colon ':'. /// /// An objects of this class represents sugar for the syntactic occurrence /// of an access specifier followed by a colon in the list of member /// specifiers of a C++ class definition. /// /// Note that they do not represent other uses of access specifiers, /// such as those occurring in a list of base specifiers. /// Also note that this class has nothing to do with so-called /// "access declarations" (C++98 11.3 [class.access.dcl]). class AccessSpecDecl : public Decl { /// ColonLoc - The location of the ':'. SourceLocation ColonLoc; AccessSpecDecl(AccessSpecifier AS, DeclContext *DC, SourceLocation ASLoc, SourceLocation ColonLoc) : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) { setAccess(AS); } AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) { } public: /// getAccessSpecifierLoc - The location of the access specifier. SourceLocation getAccessSpecifierLoc() const { return getLocation(); } /// setAccessSpecifierLoc - Sets the location of the access specifier. void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); } /// getColonLoc - The location of the colon following the access specifier. SourceLocation getColonLoc() const { return ColonLoc; } /// setColonLoc - Sets the location of the colon. void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; } SourceRange getSourceRange() const { return SourceRange(getAccessSpecifierLoc(), getColonLoc()); } static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS, DeclContext *DC, SourceLocation ASLoc, SourceLocation ColonLoc) { return new (C) AccessSpecDecl(AS, DC, ASLoc, ColonLoc); } static AccessSpecDecl *Create(ASTContext &C, EmptyShell Empty) { return new (C) AccessSpecDecl(Empty); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const AccessSpecDecl *D) { return true; } static bool classofKind(Kind K) { return K == AccessSpec; } }; /// CXXBaseSpecifier - A base class of a C++ class. /// /// Each CXXBaseSpecifier represents a single, direct base class (or /// struct) of a C++ class (or struct). It specifies the type of that /// base class, whether it is a virtual or non-virtual base, and what /// level of access (public, protected, private) is used for the /// derivation. For example: /// /// @code /// class A { }; /// class B { }; /// class C : public virtual A, protected B { }; /// @endcode /// /// In this code, C will have two CXXBaseSpecifiers, one for "public /// virtual A" and the other for "protected B". class CXXBaseSpecifier { /// Range - The source code range that covers the full base /// specifier, including the "virtual" (if present) and access /// specifier (if present). SourceRange Range; /// \brief The source location of the ellipsis, if this is a pack /// expansion. SourceLocation EllipsisLoc; /// Virtual - Whether this is a virtual base class or not. bool Virtual : 1; /// BaseOfClass - Whether this is the base of a class (true) or of a /// struct (false). This determines the mapping from the access /// specifier as written in the source code to the access specifier /// used for semantic analysis. bool BaseOfClass : 1; /// Access - Access specifier as written in the source code (which /// may be AS_none). The actual type of data stored here is an /// AccessSpecifier, but we use "unsigned" here to work around a /// VC++ bug. unsigned Access : 2; /// InheritConstructors - Whether the class contains a using declaration /// to inherit the named class's constructors. bool InheritConstructors : 1; /// BaseTypeInfo - The type of the base class. This will be a class or struct /// (or a typedef of such). The source code range does not include the /// "virtual" or access specifier. TypeSourceInfo *BaseTypeInfo; public: CXXBaseSpecifier() { } CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A, TypeSourceInfo *TInfo, SourceLocation EllipsisLoc) : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC), Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { } /// getSourceRange - Retrieves the source range that contains the /// entire base specifier. SourceRange getSourceRange() const { return Range; } /// isVirtual - Determines whether the base class is a virtual base /// class (or not). bool isVirtual() const { return Virtual; } /// \brief Determine whether this base class is a base of a class declared /// with the 'class' keyword (vs. one declared with the 'struct' keyword). bool isBaseOfClass() const { return BaseOfClass; } /// \brief Determine whether this base specifier is a pack expansion. bool isPackExpansion() const { return EllipsisLoc.isValid(); } /// \brief Determine whether this base class's constructors get inherited. bool getInheritConstructors() const { return InheritConstructors; } /// \brief Set that this base class's constructors should be inherited. void setInheritConstructors(bool Inherit = true) { InheritConstructors = Inherit; } /// \brief For a pack expansion, determine the location of the ellipsis. SourceLocation getEllipsisLoc() const { return EllipsisLoc; } /// getAccessSpecifier - Returns the access specifier for this base /// specifier. This is the actual base specifier as used for /// semantic analysis, so the result can never be AS_none. To /// retrieve the access specifier as written in the source code, use /// getAccessSpecifierAsWritten(). AccessSpecifier getAccessSpecifier() const { if ((AccessSpecifier)Access == AS_none) return BaseOfClass? AS_private : AS_public; else return (AccessSpecifier)Access; } /// getAccessSpecifierAsWritten - Retrieves the access specifier as /// written in the source code (which may mean that no access /// specifier was explicitly written). Use getAccessSpecifier() to /// retrieve the access specifier for use in semantic analysis. AccessSpecifier getAccessSpecifierAsWritten() const { return (AccessSpecifier)Access; } /// getType - Retrieves the type of the base class. This type will /// always be an unqualified class type. QualType getType() const { return BaseTypeInfo->getType(); } /// getTypeLoc - Retrieves the type and source location of the base class. TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; } }; /// CXXRecordDecl - Represents a C++ struct/union/class. /// FIXME: This class will disappear once we've properly taught RecordDecl /// to deal with C++-specific things. class CXXRecordDecl : public RecordDecl { friend void TagDecl::startDefinition(); struct DefinitionData { DefinitionData(CXXRecordDecl *D); /// UserDeclaredConstructor - True when this class has a /// user-declared constructor. bool UserDeclaredConstructor : 1; /// UserDeclaredCopyConstructor - True when this class has a /// user-declared copy constructor. bool UserDeclaredCopyConstructor : 1; /// UserDeclareMoveConstructor - True when this class has a /// user-declared move constructor. bool UserDeclaredMoveConstructor : 1; /// UserDeclaredCopyAssignment - True when this class has a /// user-declared copy assignment operator. bool UserDeclaredCopyAssignment : 1; /// UserDeclareMoveAssignment - True when this class has a /// user-declared move assignment. bool UserDeclaredMoveAssignment : 1; /// UserDeclaredDestructor - True when this class has a /// user-declared destructor. bool UserDeclaredDestructor : 1; /// Aggregate - True when this class is an aggregate. bool Aggregate : 1; /// PlainOldData - True when this class is a POD-type. bool PlainOldData : 1; /// Empty - true when this class is empty for traits purposes, /// i.e. has no data members other than 0-width bit-fields, has no /// virtual function/base, and doesn't inherit from a non-empty /// class. Doesn't take union-ness into account. bool Empty : 1; /// Polymorphic - True when this class is polymorphic, i.e. has at /// least one virtual member or derives from a polymorphic class. bool Polymorphic : 1; /// Abstract - True when this class is abstract, i.e. has at least /// one pure virtual function, (that can come from a base class). bool Abstract : 1; /// IsStandardLayout - True when this class has standard layout. /// /// C++0x [class]p7. A standard-layout class is a class that: /// * has no non-static data members of type non-standard-layout class (or /// array of such types) or reference, /// * has no virtual functions (10.3) and no virtual base classes (10.1), /// * has the same access control (Clause 11) for all non-static data members /// * has no non-standard-layout base classes, /// * either has no non-static data members in the most derived class and at /// most one base class with non-static data members, or has no base /// classes with non-static data members, and /// * has no base classes of the same type as the first non-static data /// member. bool IsStandardLayout : 1; /// HasNoNonEmptyBases - True when there are no non-empty base classes. /// /// This is a helper bit of state used to implement IsStandardLayout more /// efficiently. bool HasNoNonEmptyBases : 1; /// HasPrivateFields - True when there are private non-static data members. bool HasPrivateFields : 1; /// HasProtectedFields - True when there are protected non-static data /// members. bool HasProtectedFields : 1; /// HasPublicFields - True when there are private non-static data members. bool HasPublicFields : 1; /// \brief True if this class (or any subobject) has mutable fields. bool HasMutableFields : 1; /// HasTrivialDefaultConstructor - True when, if this class has a default /// constructor, this default constructor is trivial. /// /// C++0x [class.ctor]p5 /// A default constructor is trivial if it is not user-provided and if /// -- its class has no virtual functions and no virtual base classes, /// and /// -- no non-static data member of its class has a /// brace-or-equal-initializer, and /// -- all the direct base classes of its class have trivial /// default constructors, and /// -- for all the nonstatic data members of its class that are of class /// type (or array thereof), each such class has a trivial /// default constructor. bool HasTrivialDefaultConstructor : 1; /// HasConstExprNonCopyMoveConstructor - True when this class has at least /// one constexpr constructor which is neither the copy nor move /// constructor. bool HasConstExprNonCopyMoveConstructor : 1; /// HasTrivialCopyConstructor - True when this class has a trivial copy /// constructor. /// /// C++0x [class.copy]p13: /// A copy/move constructor for class X is trivial if it is neither /// user-provided and if /// -- class X has no virtual functions and no virtual base classes, and /// -- the constructor selected to copy/move each direct base class /// subobject is trivial, and /// -- for each non-static data member of X that is of class type (or an /// array thereof), the constructor selected to copy/move that member /// is trivial; /// otherwise the copy/move constructor is non-trivial. bool HasTrivialCopyConstructor : 1; /// HasTrivialMoveConstructor - True when this class has a trivial move /// constructor. /// /// C++0x [class.copy]p13: /// A copy/move constructor for class X is trivial if it is neither /// user-provided and if /// -- class X has no virtual functions and no virtual base classes, and /// -- the constructor selected to copy/move each direct base class /// subobject is trivial, and /// -- for each non-static data member of X that is of class type (or an /// array thereof), the constructor selected to copy/move that member /// is trivial; /// otherwise the copy/move constructor is non-trivial. bool HasTrivialMoveConstructor : 1; /// HasTrivialCopyAssignment - True when this class has a trivial copy /// assignment operator. /// /// C++0x [class.copy]p27: /// A copy/move assignment operator for class X is trivial if it is /// neither user-provided nor deleted and if /// -- class X has no virtual functions and no virtual base classes, and /// -- the assignment operator selected to copy/move each direct base /// class subobject is trivial, and /// -- for each non-static data member of X that is of class type (or an /// array thereof), the assignment operator selected to copy/move /// that member is trivial; /// otherwise the copy/move assignment operator is non-trivial. bool HasTrivialCopyAssignment : 1; /// HasTrivialMoveAssignment - True when this class has a trivial move /// assignment operator. /// /// C++0x [class.copy]p27: /// A copy/move assignment operator for class X is trivial if it is /// neither user-provided nor deleted and if /// -- class X has no virtual functions and no virtual base classes, and /// -- the assignment operator selected to copy/move each direct base /// class subobject is trivial, and /// -- for each non-static data member of X that is of class type (or an /// array thereof), the assignment operator selected to copy/move /// that member is trivial; /// otherwise the copy/move assignment operator is non-trivial. bool HasTrivialMoveAssignment : 1; /// HasTrivialDestructor - True when this class has a trivial destructor. /// /// C++ [class.dtor]p3. A destructor is trivial if it is an /// implicitly-declared destructor and if: /// * all of the direct base classes of its class have trivial destructors /// and /// * for all of the non-static data members of its class that are of class /// type (or array thereof), each such class has a trivial destructor. bool HasTrivialDestructor : 1; /// HasNonLiteralTypeFieldsOrBases - True when this class contains at least /// one non-static data member or base class of non literal type. bool HasNonLiteralTypeFieldsOrBases : 1; /// ComputedVisibleConversions - True when visible conversion functions are /// already computed and are available. bool ComputedVisibleConversions : 1; /// \brief Whether we have a C++0x user-provided default constructor (not /// explicitly deleted or defaulted). bool UserProvidedDefaultConstructor : 1; /// \brief Whether we have already declared the default constructor. bool DeclaredDefaultConstructor : 1; /// \brief Whether we have already declared the copy constructor. bool DeclaredCopyConstructor : 1; /// \brief Whether we have already declared the move constructor. bool DeclaredMoveConstructor : 1; /// \brief Whether we have already declared the copy-assignment operator. bool DeclaredCopyAssignment : 1; /// \brief Whether we have already declared the move-assignment operator. bool DeclaredMoveAssignment : 1; /// \brief Whether we have already declared a destructor within the class. bool DeclaredDestructor : 1; /// NumBases - The number of base class specifiers in Bases. unsigned NumBases; /// NumVBases - The number of virtual base class specifiers in VBases. unsigned NumVBases; /// Bases - Base classes of this class. /// FIXME: This is wasted space for a union. LazyCXXBaseSpecifiersPtr Bases; /// VBases - direct and indirect virtual base classes of this class. LazyCXXBaseSpecifiersPtr VBases; /// Conversions - Overload set containing the conversion functions /// of this C++ class (but not its inherited conversion /// functions). Each of the entries in this overload set is a /// CXXConversionDecl. UnresolvedSet<4> Conversions; /// VisibleConversions - Overload set containing the conversion /// functions of this C++ class and all those inherited conversion /// functions that are visible in this class. Each of the entries /// in this overload set is a CXXConversionDecl or a /// FunctionTemplateDecl. UnresolvedSet<4> VisibleConversions; /// Definition - The declaration which defines this record. CXXRecordDecl *Definition; /// FirstFriend - The first friend declaration in this class, or /// null if there aren't any. This is actually currently stored /// in reverse order. FriendDecl *FirstFriend; /// \brief Retrieve the set of direct base classes. CXXBaseSpecifier *getBases() const { return Bases.get(Definition->getASTContext().getExternalSource()); } /// \brief Retrieve the set of virtual base classes. CXXBaseSpecifier *getVBases() const { return VBases.get(Definition->getASTContext().getExternalSource()); } } *DefinitionData; struct DefinitionData &data() { assert(DefinitionData && "queried property of class with no definition"); return *DefinitionData; } const struct DefinitionData &data() const { assert(DefinitionData && "queried property of class with no definition"); return *DefinitionData; } /// \brief The template or declaration that this declaration /// describes or was instantiated from, respectively. /// /// For non-templates, this value will be NULL. For record /// declarations that describe a class template, this will be a /// pointer to a ClassTemplateDecl. For member /// classes of class template specializations, this will be the /// MemberSpecializationInfo referring to the member class that was /// instantiated or specialized. llvm::PointerUnion TemplateOrInstantiation; friend class DeclContext; /// \brief Notify the class that member has been added. /// /// This routine helps maintain information about the class based on which /// members have been added. It will be invoked by DeclContext::addDecl() /// whenever a member is added to this record. void addedMember(Decl *D); void markedVirtualFunctionPure(); friend void FunctionDecl::setPure(bool); protected: CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl); public: /// base_class_iterator - Iterator that traverses the base classes /// of a class. typedef CXXBaseSpecifier* base_class_iterator; /// base_class_const_iterator - Iterator that traverses the base /// classes of a class. typedef const CXXBaseSpecifier* base_class_const_iterator; /// reverse_base_class_iterator = Iterator that traverses the base classes /// of a class in reverse order. typedef std::reverse_iterator reverse_base_class_iterator; /// reverse_base_class_iterator = Iterator that traverses the base classes /// of a class in reverse order. typedef std::reverse_iterator reverse_base_class_const_iterator; virtual CXXRecordDecl *getCanonicalDecl() { return cast(RecordDecl::getCanonicalDecl()); } virtual const CXXRecordDecl *getCanonicalDecl() const { return cast(RecordDecl::getCanonicalDecl()); } const CXXRecordDecl *getPreviousDeclaration() const { return cast_or_null(RecordDecl::getPreviousDeclaration()); } CXXRecordDecl *getPreviousDeclaration() { return cast_or_null(RecordDecl::getPreviousDeclaration()); } CXXRecordDecl *getDefinition() const { if (!DefinitionData) return 0; return data().Definition; } bool hasDefinition() const { return DefinitionData != 0; } static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl* PrevDecl=0, bool DelayTypeCreation = false); static CXXRecordDecl *Create(const ASTContext &C, EmptyShell Empty); bool isDynamicClass() const { return data().Polymorphic || data().NumVBases != 0; } /// setBases - Sets the base classes of this struct or class. void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases); /// getNumBases - Retrieves the number of base classes of this /// class. unsigned getNumBases() const { return data().NumBases; } base_class_iterator bases_begin() { return data().getBases(); } base_class_const_iterator bases_begin() const { return data().getBases(); } base_class_iterator bases_end() { return bases_begin() + data().NumBases; } base_class_const_iterator bases_end() const { return bases_begin() + data().NumBases; } reverse_base_class_iterator bases_rbegin() { return reverse_base_class_iterator(bases_end()); } reverse_base_class_const_iterator bases_rbegin() const { return reverse_base_class_const_iterator(bases_end()); } reverse_base_class_iterator bases_rend() { return reverse_base_class_iterator(bases_begin()); } reverse_base_class_const_iterator bases_rend() const { return reverse_base_class_const_iterator(bases_begin()); } /// getNumVBases - Retrieves the number of virtual base classes of this /// class. unsigned getNumVBases() const { return data().NumVBases; } base_class_iterator vbases_begin() { return data().getVBases(); } base_class_const_iterator vbases_begin() const { return data().getVBases(); } base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; } base_class_const_iterator vbases_end() const { return vbases_begin() + data().NumVBases; } reverse_base_class_iterator vbases_rbegin() { return reverse_base_class_iterator(vbases_end()); } reverse_base_class_const_iterator vbases_rbegin() const { return reverse_base_class_const_iterator(vbases_end()); } reverse_base_class_iterator vbases_rend() { return reverse_base_class_iterator(vbases_begin()); } reverse_base_class_const_iterator vbases_rend() const { return reverse_base_class_const_iterator(vbases_begin()); } /// \brief Determine whether this class has any dependent base classes. bool hasAnyDependentBases() const; /// Iterator access to method members. The method iterator visits /// all method members of the class, including non-instance methods, /// special methods, etc. typedef specific_decl_iterator method_iterator; /// method_begin - Method begin iterator. Iterates in the order the methods /// were declared. method_iterator method_begin() const { return method_iterator(decls_begin()); } /// method_end - Method end iterator. method_iterator method_end() const { return method_iterator(decls_end()); } /// Iterator access to constructor members. typedef specific_decl_iterator ctor_iterator; ctor_iterator ctor_begin() const { return ctor_iterator(decls_begin()); } ctor_iterator ctor_end() const { return ctor_iterator(decls_end()); } /// An iterator over friend declarations. All of these are defined /// in DeclFriend.h. class friend_iterator; friend_iterator friend_begin() const; friend_iterator friend_end() const; void pushFriendDecl(FriendDecl *FD); /// Determines whether this record has any friends. bool hasFriends() const { return data().FirstFriend != 0; } /// \brief Determine if we need to declare a default constructor for /// this class. /// /// This value is used for lazy creation of default constructors. bool needsImplicitDefaultConstructor() const { return !data().UserDeclaredConstructor && !data().DeclaredDefaultConstructor; } /// hasDeclaredDefaultConstructor - Whether this class's default constructor /// has been declared (either explicitly or implicitly). bool hasDeclaredDefaultConstructor() const { return data().DeclaredDefaultConstructor; } /// hasConstCopyConstructor - Determines whether this class has a /// copy constructor that accepts a const-qualified argument. bool hasConstCopyConstructor() const; /// getCopyConstructor - Returns the copy constructor for this class CXXConstructorDecl *getCopyConstructor(unsigned TypeQuals) const; /// getMoveConstructor - Returns the move constructor for this class CXXConstructorDecl *getMoveConstructor() const; /// \brief Retrieve the copy-assignment operator for this class, if available. /// /// This routine attempts to find the copy-assignment operator for this /// class, using a simplistic form of overload resolution. /// /// \param ArgIsConst Whether the argument to the copy-assignment operator /// is const-qualified. /// /// \returns The copy-assignment operator that can be invoked, or NULL if /// a unique copy-assignment operator could not be found. CXXMethodDecl *getCopyAssignmentOperator(bool ArgIsConst) const; /// getMoveAssignmentOperator - Returns the move assignment operator for this /// class CXXMethodDecl *getMoveAssignmentOperator() const; /// hasUserDeclaredConstructor - Whether this class has any /// user-declared constructors. When true, a default constructor /// will not be implicitly declared. bool hasUserDeclaredConstructor() const { return data().UserDeclaredConstructor; } /// hasUserProvidedDefaultconstructor - Whether this class has a /// user-provided default constructor per C++0x. bool hasUserProvidedDefaultConstructor() const { return data().UserProvidedDefaultConstructor; } /// hasUserDeclaredCopyConstructor - Whether this class has a /// user-declared copy constructor. When false, a copy constructor /// will be implicitly declared. bool hasUserDeclaredCopyConstructor() const { return data().UserDeclaredCopyConstructor; } /// \brief Determine whether this class has had its copy constructor /// declared, either via the user or via an implicit declaration. /// /// This value is used for lazy creation of copy constructors. bool hasDeclaredCopyConstructor() const { return data().DeclaredCopyConstructor; } /// hasUserDeclaredMoveOperation - Whether this class has a user- /// declared move constructor or assignment operator. When false, a /// move constructor and assignment operator may be implicitly declared. bool hasUserDeclaredMoveOperation() const { return data().UserDeclaredMoveConstructor || data().UserDeclaredMoveAssignment; } /// \brief Determine whether this class has had a move constructor /// declared by the user. bool hasUserDeclaredMoveConstructor() const { return data().UserDeclaredMoveConstructor; } /// \brief Determine whether this class has had a move constructor /// declared. bool hasDeclaredMoveConstructor() const { return data().DeclaredMoveConstructor; } /// hasUserDeclaredCopyAssignment - Whether this class has a /// user-declared copy assignment operator. When false, a copy /// assigment operator will be implicitly declared. bool hasUserDeclaredCopyAssignment() const { return data().UserDeclaredCopyAssignment; } /// \brief Determine whether this class has had its copy assignment operator /// declared, either via the user or via an implicit declaration. /// /// This value is used for lazy creation of copy assignment operators. bool hasDeclaredCopyAssignment() const { return data().DeclaredCopyAssignment; } /// \brief Determine whether this class has had a move assignment /// declared by the user. bool hasUserDeclaredMoveAssignment() const { return data().UserDeclaredMoveAssignment; } /// hasDeclaredMoveAssignment - Whether this class has a /// declared move assignment operator. bool hasDeclaredMoveAssignment() const { return data().DeclaredMoveAssignment; } /// hasUserDeclaredDestructor - Whether this class has a /// user-declared destructor. When false, a destructor will be /// implicitly declared. bool hasUserDeclaredDestructor() const { return data().UserDeclaredDestructor; } /// \brief Determine whether this class has had its destructor declared, /// either via the user or via an implicit declaration. /// /// This value is used for lazy creation of destructors. bool hasDeclaredDestructor() const { return data().DeclaredDestructor; } /// getConversions - Retrieve the overload set containing all of the /// conversion functions in this class. UnresolvedSetImpl *getConversionFunctions() { return &data().Conversions; } const UnresolvedSetImpl *getConversionFunctions() const { return &data().Conversions; } typedef UnresolvedSetImpl::iterator conversion_iterator; conversion_iterator conversion_begin() const { return getConversionFunctions()->begin(); } conversion_iterator conversion_end() const { return getConversionFunctions()->end(); } /// Removes a conversion function from this class. The conversion /// function must currently be a member of this class. Furthermore, /// this class must currently be in the process of being defined. void removeConversion(const NamedDecl *Old); /// getVisibleConversionFunctions - get all conversion functions visible /// in current class; including conversion function templates. const UnresolvedSetImpl *getVisibleConversionFunctions(); /// isAggregate - Whether this class is an aggregate (C++ /// [dcl.init.aggr]), which is a class with no user-declared /// constructors, no private or protected non-static data members, /// no base classes, and no virtual functions (C++ [dcl.init.aggr]p1). bool isAggregate() const { return data().Aggregate; } /// isPOD - Whether this class is a POD-type (C++ [class]p4), which is a class /// that is an aggregate that has no non-static non-POD data members, no /// reference data members, no user-defined copy assignment operator and no /// user-defined destructor. bool isPOD() const { return data().PlainOldData; } /// isEmpty - Whether this class is empty (C++0x [meta.unary.prop]), which /// means it has a virtual function, virtual base, data member (other than /// 0-width bit-field) or inherits from a non-empty class. Does NOT include /// a check for union-ness. bool isEmpty() const { return data().Empty; } /// isPolymorphic - Whether this class is polymorphic (C++ [class.virtual]), /// which means that the class contains or inherits a virtual function. bool isPolymorphic() const { return data().Polymorphic; } /// isAbstract - Whether this class is abstract (C++ [class.abstract]), /// which means that the class contains or inherits a pure virtual function. bool isAbstract() const { return data().Abstract; } /// isStandardLayout - Whether this class has standard layout /// (C++ [class]p7) bool isStandardLayout() const { return data().IsStandardLayout; } /// \brief Whether this class, or any of its class subobjects, contains a /// mutable field. bool hasMutableFields() const { return data().HasMutableFields; } // hasTrivialDefaultConstructor - Whether this class has a trivial default // constructor // (C++0x [class.ctor]p5) bool hasTrivialDefaultConstructor() const { return data().HasTrivialDefaultConstructor && (!data().UserDeclaredConstructor || data().DeclaredDefaultConstructor); } // hasConstExprNonCopyMoveConstructor - Whether this class has at least one // constexpr constructor other than the copy or move constructors bool hasConstExprNonCopyMoveConstructor() const { return data().HasConstExprNonCopyMoveConstructor; } // hasTrivialCopyConstructor - Whether this class has a trivial copy // constructor (C++ [class.copy]p6, C++0x [class.copy]p13) bool hasTrivialCopyConstructor() const { return data().HasTrivialCopyConstructor; } // hasTrivialMoveConstructor - Whether this class has a trivial move // constructor (C++0x [class.copy]p13) bool hasTrivialMoveConstructor() const { return data().HasTrivialMoveConstructor; } // hasTrivialCopyAssignment - Whether this class has a trivial copy // assignment operator (C++ [class.copy]p11, C++0x [class.copy]p27) bool hasTrivialCopyAssignment() const { return data().HasTrivialCopyAssignment; } // hasTrivialMoveAssignment - Whether this class has a trivial move // assignment operator (C++0x [class.copy]p27) bool hasTrivialMoveAssignment() const { return data().HasTrivialMoveAssignment; } // hasTrivialDestructor - Whether this class has a trivial destructor // (C++ [class.dtor]p3) bool hasTrivialDestructor() const { return data().HasTrivialDestructor; } // hasNonLiteralTypeFieldsOrBases - Whether this class has a non-literal type // non-static data member or base class. bool hasNonLiteralTypeFieldsOrBases() const { return data().HasNonLiteralTypeFieldsOrBases; } // isTriviallyCopyable - Whether this class is considered trivially copyable // (C++0x [class]p6). bool isTriviallyCopyable() const; // isTrivial - Whether this class is considered trivial // // C++0x [class]p6 // A trivial class is a class that has a trivial default constructor and // is trivially copiable. bool isTrivial() const { return isTriviallyCopyable() && hasTrivialDefaultConstructor(); } /// \brief If this record is an instantiation of a member class, /// retrieves the member class from which it was instantiated. /// /// This routine will return non-NULL for (non-templated) member /// classes of class templates. For example, given: /// /// \code /// template /// struct X { /// struct A { }; /// }; /// \endcode /// /// The declaration for X::A is a (non-templated) CXXRecordDecl /// whose parent is the class template specialization X. For /// this declaration, getInstantiatedFromMemberClass() will return /// the CXXRecordDecl X::A. When a complete definition of /// X::A is required, it will be instantiated from the /// declaration returned by getInstantiatedFromMemberClass(). CXXRecordDecl *getInstantiatedFromMemberClass() const; /// \brief If this class is an instantiation of a member class of a /// class template specialization, retrieves the member specialization /// information. MemberSpecializationInfo *getMemberSpecializationInfo() const; /// \brief Specify that this record is an instantiation of the /// member class RD. void setInstantiationOfMemberClass(CXXRecordDecl *RD, TemplateSpecializationKind TSK); /// \brief Retrieves the class template that is described by this /// class declaration. /// /// Every class template is represented as a ClassTemplateDecl and a /// CXXRecordDecl. The former contains template properties (such as /// the template parameter lists) while the latter contains the /// actual description of the template's /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the /// CXXRecordDecl that from a ClassTemplateDecl, while /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from /// a CXXRecordDecl. ClassTemplateDecl *getDescribedClassTemplate() const { return TemplateOrInstantiation.dyn_cast(); } void setDescribedClassTemplate(ClassTemplateDecl *Template) { TemplateOrInstantiation = Template; } /// \brief Determine whether this particular class is a specialization or /// instantiation of a class template or member class of a class template, /// and how it was instantiated or specialized. TemplateSpecializationKind getTemplateSpecializationKind() const; /// \brief Set the kind of specialization or template instantiation this is. void setTemplateSpecializationKind(TemplateSpecializationKind TSK); /// getDestructor - Returns the destructor decl for this class. CXXDestructorDecl *getDestructor() const; /// isLocalClass - If the class is a local class [class.local], returns /// the enclosing function declaration. const FunctionDecl *isLocalClass() const { if (const CXXRecordDecl *RD = dyn_cast(getDeclContext())) return RD->isLocalClass(); return dyn_cast(getDeclContext()); } /// \brief Determine whether this class is derived from the class \p Base. /// /// This routine only determines whether this class is derived from \p Base, /// but does not account for factors that may make a Derived -> Base class /// ill-formed, such as private/protected inheritance or multiple, ambiguous /// base class subobjects. /// /// \param Base the base class we are searching for. /// /// \returns true if this class is derived from Base, false otherwise. bool isDerivedFrom(const CXXRecordDecl *Base) const; /// \brief Determine whether this class is derived from the type \p Base. /// /// This routine only determines whether this class is derived from \p Base, /// but does not account for factors that may make a Derived -> Base class /// ill-formed, such as private/protected inheritance or multiple, ambiguous /// base class subobjects. /// /// \param Base the base class we are searching for. /// /// \param Paths will contain the paths taken from the current class to the /// given \p Base class. /// /// \returns true if this class is derived from Base, false otherwise. /// /// \todo add a separate paramaeter to configure IsDerivedFrom, rather than /// tangling input and output in \p Paths bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const; /// \brief Determine whether this class is virtually derived from /// the class \p Base. /// /// This routine only determines whether this class is virtually /// derived from \p Base, but does not account for factors that may /// make a Derived -> Base class ill-formed, such as /// private/protected inheritance or multiple, ambiguous base class /// subobjects. /// /// \param Base the base class we are searching for. /// /// \returns true if this class is virtually derived from Base, /// false otherwise. bool isVirtuallyDerivedFrom(CXXRecordDecl *Base) const; /// \brief Determine whether this class is provably not derived from /// the type \p Base. bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const; /// \brief Function type used by forallBases() as a callback. /// /// \param Base the definition of the base class /// /// \returns true if this base matched the search criteria typedef bool ForallBasesCallback(const CXXRecordDecl *BaseDefinition, void *UserData); /// \brief Determines if the given callback holds for all the direct /// or indirect base classes of this type. /// /// The class itself does not count as a base class. This routine /// returns false if the class has non-computable base classes. /// /// \param AllowShortCircuit if false, forces the callback to be called /// for every base class, even if a dependent or non-matching base was /// found. bool forallBases(ForallBasesCallback *BaseMatches, void *UserData, bool AllowShortCircuit = true) const; /// \brief Function type used by lookupInBases() to determine whether a /// specific base class subobject matches the lookup criteria. /// /// \param Specifier the base-class specifier that describes the inheritance /// from the base class we are trying to match. /// /// \param Path the current path, from the most-derived class down to the /// base named by the \p Specifier. /// /// \param UserData a single pointer to user-specified data, provided to /// lookupInBases(). /// /// \returns true if this base matched the search criteria, false otherwise. typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *UserData); /// \brief Look for entities within the base classes of this C++ class, /// transitively searching all base class subobjects. /// /// This routine uses the callback function \p BaseMatches to find base /// classes meeting some search criteria, walking all base class subobjects /// and populating the given \p Paths structure with the paths through the /// inheritance hierarchy that resulted in a match. On a successful search, /// the \p Paths structure can be queried to retrieve the matching paths and /// to determine if there were any ambiguities. /// /// \param BaseMatches callback function used to determine whether a given /// base matches the user-defined search criteria. /// /// \param UserData user data pointer that will be provided to \p BaseMatches. /// /// \param Paths used to record the paths from this class to its base class /// subobjects that match the search criteria. /// /// \returns true if there exists any path from this class to a base class /// subobject that matches the search criteria. bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData, CXXBasePaths &Paths) const; /// \brief Base-class lookup callback that determines whether the given /// base class specifier refers to a specific class declaration. /// /// This callback can be used with \c lookupInBases() to determine whether /// a given derived class has is a base class subobject of a particular type. /// The user data pointer should refer to the canonical CXXRecordDecl of the /// base class that we are searching for. static bool FindBaseClass(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *BaseRecord); /// \brief Base-class lookup callback that determines whether the /// given base class specifier refers to a specific class /// declaration and describes virtual derivation. /// /// This callback can be used with \c lookupInBases() to determine /// whether a given derived class has is a virtual base class /// subobject of a particular type. The user data pointer should /// refer to the canonical CXXRecordDecl of the base class that we /// are searching for. static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *BaseRecord); /// \brief Base-class lookup callback that determines whether there exists /// a tag with the given name. /// /// This callback can be used with \c lookupInBases() to find tag members /// of the given name within a C++ class hierarchy. The user data pointer /// is an opaque \c DeclarationName pointer. static bool FindTagMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *Name); /// \brief Base-class lookup callback that determines whether there exists /// a member with the given name. /// /// This callback can be used with \c lookupInBases() to find members /// of the given name within a C++ class hierarchy. The user data pointer /// is an opaque \c DeclarationName pointer. static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *Name); /// \brief Base-class lookup callback that determines whether there exists /// a member with the given name that can be used in a nested-name-specifier. /// /// This callback can be used with \c lookupInBases() to find membes of /// the given name within a C++ class hierarchy that can occur within /// nested-name-specifiers. static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *UserData); /// \brief Retrieve the final overriders for each virtual member /// function in the class hierarchy where this class is the /// most-derived class in the class hierarchy. void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const; /// \brief Get the indirect primary bases for this class. void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const; /// viewInheritance - Renders and displays an inheritance diagram /// for this C++ class and all of its base classes (transitively) using /// GraphViz. void viewInheritance(ASTContext& Context) const; /// MergeAccess - Calculates the access of a decl that is reached /// along a path. static AccessSpecifier MergeAccess(AccessSpecifier PathAccess, AccessSpecifier DeclAccess) { assert(DeclAccess != AS_none); if (DeclAccess == AS_private) return AS_none; return (PathAccess > DeclAccess ? PathAccess : DeclAccess); } /// \brief Indicates that the definition of this class is now complete. virtual void completeDefinition(); /// \brief Indicates that the definition of this class is now complete, /// and provides a final overrider map to help determine /// /// \param FinalOverriders The final overrider map for this class, which can /// be provided as an optimization for abstract-class checking. If NULL, /// final overriders will be computed if they are needed to complete the /// definition. void completeDefinition(CXXFinalOverriderMap *FinalOverriders); /// \brief Determine whether this class may end up being abstract, even though /// it is not yet known to be abstract. /// /// \returns true if this class is not known to be abstract but has any /// base classes that are abstract. In this case, \c completeDefinition() /// will need to compute final overriders to determine whether the class is /// actually abstract. bool mayBeAbstract() const; static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstCXXRecord && K <= lastCXXRecord; } static bool classof(const CXXRecordDecl *D) { return true; } static bool classof(const ClassTemplateSpecializationDecl *D) { return true; } friend class ASTDeclReader; friend class ASTDeclWriter; friend class ASTReader; friend class ASTWriter; }; /// CXXMethodDecl - Represents a static or instance method of a /// struct/union/class. class CXXMethodDecl : public FunctionDecl { protected: CXXMethodDecl(Kind DK, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isStatic, StorageClass SCAsWritten, bool isInline, SourceLocation EndLocation) : FunctionDecl(DK, RD, StartLoc, NameInfo, T, TInfo, (isStatic ? SC_Static : SC_None), SCAsWritten, isInline) { if (EndLocation.isValid()) setRangeEnd(EndLocation); } public: static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isStatic, StorageClass SCAsWritten, bool isInline, SourceLocation EndLocation); bool isStatic() const { return getStorageClass() == SC_Static; } bool isInstance() const { return !isStatic(); } bool isVirtual() const { CXXMethodDecl *CD = cast(const_cast(this)->getCanonicalDecl()); if (CD->isVirtualAsWritten()) return true; return (CD->begin_overridden_methods() != CD->end_overridden_methods()); } /// \brief Determine whether this is a usual deallocation function /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded /// delete or delete[] operator with a particular signature. bool isUsualDeallocationFunction() const; /// \brief Determine whether this is a copy-assignment operator, regardless /// of whether it was declared implicitly or explicitly. bool isCopyAssignmentOperator() const; /// \brief Determine whether this is a move assignment operator. bool isMoveAssignmentOperator() const; const CXXMethodDecl *getCanonicalDecl() const { return cast(FunctionDecl::getCanonicalDecl()); } CXXMethodDecl *getCanonicalDecl() { return cast(FunctionDecl::getCanonicalDecl()); } /// isUserProvided - True if it is either an implicit constructor or /// if it was defaulted or deleted on first declaration. bool isUserProvided() const { return !(isDeleted() || getCanonicalDecl()->isDefaulted()); } /// void addOverriddenMethod(const CXXMethodDecl *MD); typedef const CXXMethodDecl ** method_iterator; method_iterator begin_overridden_methods() const; method_iterator end_overridden_methods() const; unsigned size_overridden_methods() const; /// getParent - Returns the parent of this method declaration, which /// is the class in which this method is defined. const CXXRecordDecl *getParent() const { return cast(FunctionDecl::getParent()); } /// getParent - Returns the parent of this method declaration, which /// is the class in which this method is defined. CXXRecordDecl *getParent() { return const_cast( cast(FunctionDecl::getParent())); } /// getThisType - Returns the type of 'this' pointer. /// Should only be called for instance methods. QualType getThisType(ASTContext &C) const; unsigned getTypeQualifiers() const { return getType()->getAs()->getTypeQuals(); } /// \brief Retrieve the ref-qualifier associated with this method. /// /// In the following example, \c f() has an lvalue ref-qualifier, \c g() /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier. /// \code /// struct X { /// void f() &; /// void g() &&; /// void h(); /// }; RefQualifierKind getRefQualifier() const { return getType()->getAs()->getRefQualifier(); } bool hasInlineBody() const; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const CXXMethodDecl *D) { return true; } static bool classofKind(Kind K) { return K >= firstCXXMethod && K <= lastCXXMethod; } }; /// CXXCtorInitializer - Represents a C++ base or member /// initializer, which is part of a constructor initializer that /// initializes one non-static member variable or one base class. For /// example, in the following, both 'A(a)' and 'f(3.14159)' are member /// initializers: /// /// @code /// class A { }; /// class B : public A { /// float f; /// public: /// B(A& a) : A(a), f(3.14159) { } /// }; /// @endcode class CXXCtorInitializer { /// \brief Either the base class name (stored as a TypeSourceInfo*), an normal /// field (FieldDecl), anonymous field (IndirectFieldDecl*), or target /// constructor (CXXConstructorDecl*) being initialized. llvm::PointerUnion4 Initializee; /// \brief The source location for the field name or, for a base initializer /// pack expansion, the location of the ellipsis. In the case of a delegating /// constructor, it will still include the type's source location as the /// Initializee points to the CXXConstructorDecl (to allow loop detection). SourceLocation MemberOrEllipsisLocation; /// \brief The argument used to initialize the base or member, which may /// end up constructing an object (when multiple arguments are involved). /// If 0, this is a field initializer, and the in-class member initializer /// will be used. Stmt *Init; /// LParenLoc - Location of the left paren of the ctor-initializer. SourceLocation LParenLoc; /// RParenLoc - Location of the right paren of the ctor-initializer. SourceLocation RParenLoc; /// IsVirtual - If the initializer is a base initializer, this keeps track /// of whether the base is virtual or not. bool IsVirtual : 1; /// IsWritten - Whether or not the initializer is explicitly written /// in the sources. bool IsWritten : 1; /// SourceOrderOrNumArrayIndices - If IsWritten is true, then this /// number keeps track of the textual order of this initializer in the /// original sources, counting from 0; otherwise, if IsWritten is false, /// it stores the number of array index variables stored after this /// object in memory. unsigned SourceOrderOrNumArrayIndices : 14; CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R, VarDecl **Indices, unsigned NumIndices); public: /// CXXCtorInitializer - Creates a new base-class initializer. explicit CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual, SourceLocation L, Expr *Init, SourceLocation R, SourceLocation EllipsisLoc); /// CXXCtorInitializer - Creates a new member initializer. explicit CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R); /// CXXCtorInitializer - Creates a new anonymous field initializer. explicit CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R); /// CXXCtorInitializer - Creates a new delegating Initializer. explicit CXXCtorInitializer(ASTContext &Context, SourceLocation D, SourceLocation L, CXXConstructorDecl *Target, Expr *Init, SourceLocation R); /// \brief Creates a new member initializer that optionally contains /// array indices used to describe an elementwise initialization. static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R, VarDecl **Indices, unsigned NumIndices); /// isBaseInitializer - Returns true when this initializer is /// initializing a base class. bool isBaseInitializer() const { return Initializee.is(); } /// isMemberInitializer - Returns true when this initializer is /// initializing a non-static data member. bool isMemberInitializer() const { return Initializee.is(); } bool isAnyMemberInitializer() const { return isMemberInitializer() || isIndirectMemberInitializer(); } bool isIndirectMemberInitializer() const { return Initializee.is(); } /// isInClassMemberInitializer - Returns true when this initializer is an /// implicit ctor initializer generated for a field with an initializer /// defined on the member declaration. bool isInClassMemberInitializer() const { return !Init; } /// isDelegatingInitializer - Returns true when this initializer is creating /// a delegating constructor. bool isDelegatingInitializer() const { return Initializee.is(); } /// \brief Determine whether this initializer is a pack expansion. bool isPackExpansion() const { return isBaseInitializer() && MemberOrEllipsisLocation.isValid(); } // \brief For a pack expansion, returns the location of the ellipsis. SourceLocation getEllipsisLoc() const { assert(isPackExpansion() && "Initializer is not a pack expansion"); return MemberOrEllipsisLocation; } /// If this is a base class initializer, returns the type of the /// base class with location information. Otherwise, returns an NULL /// type location. TypeLoc getBaseClassLoc() const; /// If this is a base class initializer, returns the type of the base class. /// Otherwise, returns NULL. const Type *getBaseClass() const; /// Returns whether the base is virtual or not. bool isBaseVirtual() const { assert(isBaseInitializer() && "Must call this on base initializer!"); return IsVirtual; } /// \brief Returns the declarator information for a base class initializer. TypeSourceInfo *getBaseClassInfo() const { return Initializee.dyn_cast(); } /// getMember - If this is a member initializer, returns the /// declaration of the non-static data member being /// initialized. Otherwise, returns NULL. FieldDecl *getMember() const { if (isMemberInitializer()) return Initializee.get(); else return 0; } FieldDecl *getAnyMember() const { if (isMemberInitializer()) return Initializee.get(); else if (isIndirectMemberInitializer()) return Initializee.get()->getAnonField(); else return 0; } IndirectFieldDecl *getIndirectMember() const { if (isIndirectMemberInitializer()) return Initializee.get(); else return 0; } CXXConstructorDecl *getTargetConstructor() const { if (isDelegatingInitializer()) return Initializee.get(); else return 0; } SourceLocation getMemberLocation() const { return MemberOrEllipsisLocation; } /// \brief Determine the source location of the initializer. SourceLocation getSourceLocation() const; /// \brief Determine the source range covering the entire initializer. SourceRange getSourceRange() const; /// isWritten - Returns true if this initializer is explicitly written /// in the source code. bool isWritten() const { return IsWritten; } /// \brief Return the source position of the initializer, counting from 0. /// If the initializer was implicit, -1 is returned. int getSourceOrder() const { return IsWritten ? static_cast(SourceOrderOrNumArrayIndices) : -1; } /// \brief Set the source order of this initializer. This method can only /// be called once for each initializer; it cannot be called on an /// initializer having a positive number of (implicit) array indices. void setSourceOrder(int pos) { assert(!IsWritten && "calling twice setSourceOrder() on the same initializer"); assert(SourceOrderOrNumArrayIndices == 0 && "setSourceOrder() used when there are implicit array indices"); assert(pos >= 0 && "setSourceOrder() used to make an initializer implicit"); IsWritten = true; SourceOrderOrNumArrayIndices = static_cast(pos); } SourceLocation getLParenLoc() const { return LParenLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } /// \brief Determine the number of implicit array indices used while /// described an array member initialization. unsigned getNumArrayIndices() const { return IsWritten ? 0 : SourceOrderOrNumArrayIndices; } /// \brief Retrieve a particular array index variable used to /// describe an array member initialization. VarDecl *getArrayIndex(unsigned I) { assert(I < getNumArrayIndices() && "Out of bounds member array index"); return reinterpret_cast(this + 1)[I]; } const VarDecl *getArrayIndex(unsigned I) const { assert(I < getNumArrayIndices() && "Out of bounds member array index"); return reinterpret_cast(this + 1)[I]; } void setArrayIndex(unsigned I, VarDecl *Index) { assert(I < getNumArrayIndices() && "Out of bounds member array index"); reinterpret_cast(this + 1)[I] = Index; } /// \brief Get the initializer. This is 0 if this is an in-class initializer /// for a non-static data member which has not yet been parsed. Expr *getInit() const { if (!Init) return getAnyMember()->getInClassInitializer(); return static_cast(Init); } }; /// CXXConstructorDecl - Represents a C++ constructor within a /// class. For example: /// /// @code /// class X { /// public: /// explicit X(int); // represented by a CXXConstructorDecl. /// }; /// @endcode class CXXConstructorDecl : public CXXMethodDecl { /// IsExplicitSpecified - Whether this constructor declaration has the /// 'explicit' keyword specified. bool IsExplicitSpecified : 1; /// ImplicitlyDefined - Whether this constructor was implicitly /// defined by the compiler. When false, the constructor was defined /// by the user. In C++03, this flag will have the same value as /// Implicit. In C++0x, however, a constructor that is /// explicitly defaulted (i.e., defined with " = default") will have /// @c !Implicit && ImplicitlyDefined. bool ImplicitlyDefined : 1; /// Support for base and member initializers. /// CtorInitializers - The arguments used to initialize the base /// or member. CXXCtorInitializer **CtorInitializers; unsigned NumCtorInitializers; CXXConstructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isExplicitSpecified, bool isInline, bool isImplicitlyDeclared) : CXXMethodDecl(CXXConstructor, RD, StartLoc, NameInfo, T, TInfo, false, SC_None, isInline, SourceLocation()), IsExplicitSpecified(isExplicitSpecified), ImplicitlyDefined(false), CtorInitializers(0), NumCtorInitializers(0) { setImplicit(isImplicitlyDeclared); } public: static CXXConstructorDecl *Create(ASTContext &C, EmptyShell Empty); static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isExplicit, bool isInline, bool isImplicitlyDeclared); /// isExplicitSpecified - Whether this constructor declaration has the /// 'explicit' keyword specified. bool isExplicitSpecified() const { return IsExplicitSpecified; } /// isExplicit - Whether this constructor was marked "explicit" or not. bool isExplicit() const { return cast(getFirstDeclaration()) ->isExplicitSpecified(); } /// isImplicitlyDefined - Whether this constructor was implicitly /// defined. If false, then this constructor was defined by the /// user. This operation can only be invoked if the constructor has /// already been defined. bool isImplicitlyDefined() const { assert(isThisDeclarationADefinition() && "Can only get the implicit-definition flag once the " "constructor has been defined"); return ImplicitlyDefined; } /// setImplicitlyDefined - Set whether this constructor was /// implicitly defined or not. void setImplicitlyDefined(bool ID) { assert(isThisDeclarationADefinition() && "Can only set the implicit-definition flag once the constructor " "has been defined"); ImplicitlyDefined = ID; } /// init_iterator - Iterates through the member/base initializer list. typedef CXXCtorInitializer **init_iterator; /// init_const_iterator - Iterates through the memberbase initializer list. typedef CXXCtorInitializer * const * init_const_iterator; /// init_begin() - Retrieve an iterator to the first initializer. init_iterator init_begin() { return CtorInitializers; } /// begin() - Retrieve an iterator to the first initializer. init_const_iterator init_begin() const { return CtorInitializers; } /// init_end() - Retrieve an iterator past the last initializer. init_iterator init_end() { return CtorInitializers + NumCtorInitializers; } /// end() - Retrieve an iterator past the last initializer. init_const_iterator init_end() const { return CtorInitializers + NumCtorInitializers; } typedef std::reverse_iterator init_reverse_iterator; typedef std::reverse_iterator init_const_reverse_iterator; init_reverse_iterator init_rbegin() { return init_reverse_iterator(init_end()); } init_const_reverse_iterator init_rbegin() const { return init_const_reverse_iterator(init_end()); } init_reverse_iterator init_rend() { return init_reverse_iterator(init_begin()); } init_const_reverse_iterator init_rend() const { return init_const_reverse_iterator(init_begin()); } /// getNumArgs - Determine the number of arguments used to /// initialize the member or base. unsigned getNumCtorInitializers() const { return NumCtorInitializers; } void setNumCtorInitializers(unsigned numCtorInitializers) { NumCtorInitializers = numCtorInitializers; } void setCtorInitializers(CXXCtorInitializer ** initializers) { CtorInitializers = initializers; } /// isDelegatingConstructor - Whether this constructor is a /// delegating constructor bool isDelegatingConstructor() const { return (getNumCtorInitializers() == 1) && CtorInitializers[0]->isDelegatingInitializer(); } /// getTargetConstructor - When this constructor delegates to /// another, retrieve the target CXXConstructorDecl *getTargetConstructor() const { assert(isDelegatingConstructor() && "A non-delegating constructor has no target"); return CtorInitializers[0]->getTargetConstructor(); } /// isDefaultConstructor - Whether this constructor is a default /// constructor (C++ [class.ctor]p5), which can be used to /// default-initialize a class of this type. bool isDefaultConstructor() const; /// isCopyConstructor - Whether this constructor is a copy /// constructor (C++ [class.copy]p2, which can be used to copy the /// class. @p TypeQuals will be set to the qualifiers on the /// argument type. For example, @p TypeQuals would be set to @c /// QualType::Const for the following copy constructor: /// /// @code /// class X { /// public: /// X(const X&); /// }; /// @endcode bool isCopyConstructor(unsigned &TypeQuals) const; /// isCopyConstructor - Whether this constructor is a copy /// constructor (C++ [class.copy]p2, which can be used to copy the /// class. bool isCopyConstructor() const { unsigned TypeQuals = 0; return isCopyConstructor(TypeQuals); } /// \brief Determine whether this constructor is a move constructor /// (C++0x [class.copy]p3), which can be used to move values of the class. /// /// \param TypeQuals If this constructor is a move constructor, will be set /// to the type qualifiers on the referent of the first parameter's type. bool isMoveConstructor(unsigned &TypeQuals) const; /// \brief Determine whether this constructor is a move constructor /// (C++0x [class.copy]p3), which can be used to move values of the class. bool isMoveConstructor() const { unsigned TypeQuals = 0; return isMoveConstructor(TypeQuals); } /// \brief Determine whether this is a copy or move constructor. /// /// \param TypeQuals Will be set to the type qualifiers on the reference /// parameter, if in fact this is a copy or move constructor. bool isCopyOrMoveConstructor(unsigned &TypeQuals) const; /// \brief Determine whether this a copy or move constructor. bool isCopyOrMoveConstructor() const { unsigned Quals; return isCopyOrMoveConstructor(Quals); } /// isConvertingConstructor - Whether this constructor is a /// converting constructor (C++ [class.conv.ctor]), which can be /// used for user-defined conversions. bool isConvertingConstructor(bool AllowExplicit) const; /// \brief Determine whether this is a member template specialization that /// would copy the object to itself. Such constructors are never used to copy /// an object. bool isSpecializationCopyingObject() const; /// \brief Get the constructor that this inheriting constructor is based on. const CXXConstructorDecl *getInheritedConstructor() const; /// \brief Set the constructor that this inheriting constructor is based on. void setInheritedConstructor(const CXXConstructorDecl *BaseCtor); const CXXConstructorDecl *getCanonicalDecl() const { return cast(FunctionDecl::getCanonicalDecl()); } CXXConstructorDecl *getCanonicalDecl() { return cast(FunctionDecl::getCanonicalDecl()); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const CXXConstructorDecl *D) { return true; } static bool classofKind(Kind K) { return K == CXXConstructor; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// CXXDestructorDecl - Represents a C++ destructor within a /// class. For example: /// /// @code /// class X { /// public: /// ~X(); // represented by a CXXDestructorDecl. /// }; /// @endcode class CXXDestructorDecl : public CXXMethodDecl { /// ImplicitlyDefined - Whether this destructor was implicitly /// defined by the compiler. When false, the destructor was defined /// by the user. In C++03, this flag will have the same value as /// Implicit. In C++0x, however, a destructor that is /// explicitly defaulted (i.e., defined with " = default") will have /// @c !Implicit && ImplicitlyDefined. bool ImplicitlyDefined : 1; FunctionDecl *OperatorDelete; CXXDestructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isImplicitlyDeclared) : CXXMethodDecl(CXXDestructor, RD, StartLoc, NameInfo, T, TInfo, false, SC_None, isInline, SourceLocation()), ImplicitlyDefined(false), OperatorDelete(0) { setImplicit(isImplicitlyDeclared); } public: static CXXDestructorDecl *Create(ASTContext& C, EmptyShell Empty); static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo* TInfo, bool isInline, bool isImplicitlyDeclared); /// isImplicitlyDefined - Whether this destructor was implicitly /// defined. If false, then this destructor was defined by the /// user. This operation can only be invoked if the destructor has /// already been defined. bool isImplicitlyDefined() const { assert(isThisDeclarationADefinition() && "Can only get the implicit-definition flag once the destructor has been defined"); return ImplicitlyDefined; } /// setImplicitlyDefined - Set whether this destructor was /// implicitly defined or not. void setImplicitlyDefined(bool ID) { assert(isThisDeclarationADefinition() && "Can only set the implicit-definition flag once the destructor has been defined"); ImplicitlyDefined = ID; } void setOperatorDelete(FunctionDecl *OD) { OperatorDelete = OD; } const FunctionDecl *getOperatorDelete() const { return OperatorDelete; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const CXXDestructorDecl *D) { return true; } static bool classofKind(Kind K) { return K == CXXDestructor; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// CXXConversionDecl - Represents a C++ conversion function within a /// class. For example: /// /// @code /// class X { /// public: /// operator bool(); /// }; /// @endcode class CXXConversionDecl : public CXXMethodDecl { /// IsExplicitSpecified - Whether this conversion function declaration is /// marked "explicit", meaning that it can only be applied when the user /// explicitly wrote a cast. This is a C++0x feature. bool IsExplicitSpecified : 1; CXXConversionDecl(CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isExplicitSpecified, SourceLocation EndLocation) : CXXMethodDecl(CXXConversion, RD, StartLoc, NameInfo, T, TInfo, false, SC_None, isInline, EndLocation), IsExplicitSpecified(isExplicitSpecified) { } public: static CXXConversionDecl *Create(ASTContext &C, EmptyShell Empty); static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isExplicit, SourceLocation EndLocation); /// IsExplicitSpecified - Whether this conversion function declaration is /// marked "explicit", meaning that it can only be applied when the user /// explicitly wrote a cast. This is a C++0x feature. bool isExplicitSpecified() const { return IsExplicitSpecified; } /// isExplicit - Whether this is an explicit conversion operator /// (C++0x only). Explicit conversion operators are only considered /// when the user has explicitly written a cast. bool isExplicit() const { return cast(getFirstDeclaration()) ->isExplicitSpecified(); } /// getConversionType - Returns the type that this conversion /// function is converting to. QualType getConversionType() const { return getType()->getAs()->getResultType(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const CXXConversionDecl *D) { return true; } static bool classofKind(Kind K) { return K == CXXConversion; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// LinkageSpecDecl - This represents a linkage specification. For example: /// extern "C" void foo(); /// class LinkageSpecDecl : public Decl, public DeclContext { public: /// LanguageIDs - Used to represent the language in a linkage /// specification. The values are part of the serialization abi for /// ASTs and cannot be changed without altering that abi. To help /// ensure a stable abi for this, we choose the DW_LANG_ encodings /// from the dwarf standard. enum LanguageIDs { lang_c = /* DW_LANG_C */ 0x0002, lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004 }; private: /// Language - The language for this linkage specification. LanguageIDs Language; /// ExternLoc - The source location for the extern keyword. SourceLocation ExternLoc; /// RBraceLoc - The source location for the right brace (if valid). SourceLocation RBraceLoc; LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, SourceLocation LangLoc, LanguageIDs lang, SourceLocation RBLoc) : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), Language(lang), ExternLoc(ExternLoc), RBraceLoc(RBLoc) { } public: static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation ExternLoc, SourceLocation LangLoc, LanguageIDs Lang, SourceLocation RBraceLoc = SourceLocation()); /// \brief Return the language specified by this linkage specification. LanguageIDs getLanguage() const { return Language; } /// \brief Set the language specified by this linkage specification. void setLanguage(LanguageIDs L) { Language = L; } /// \brief Determines whether this linkage specification had braces in /// its syntactic form. bool hasBraces() const { return RBraceLoc.isValid(); } SourceLocation getExternLoc() const { return ExternLoc; } SourceLocation getRBraceLoc() const { return RBraceLoc; } void setExternLoc(SourceLocation L) { ExternLoc = L; } void setRBraceLoc(SourceLocation L) { RBraceLoc = L; } SourceLocation getLocEnd() const { if (hasBraces()) return getRBraceLoc(); // No braces: get the end location of the (only) declaration in context // (if present). return decls_empty() ? getLocation() : decls_begin()->getLocEnd(); } SourceRange getSourceRange() const { return SourceRange(ExternLoc, getLocEnd()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const LinkageSpecDecl *D) { return true; } static bool classofKind(Kind K) { return K == LinkageSpec; } static DeclContext *castToDeclContext(const LinkageSpecDecl *D) { return static_cast(const_cast(D)); } static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// UsingDirectiveDecl - Represents C++ using-directive. For example: /// /// using namespace std; /// // NB: UsingDirectiveDecl should be Decl not NamedDecl, but we provide // artificial name, for all using-directives in order to store // them in DeclContext effectively. class UsingDirectiveDecl : public NamedDecl { /// \brief The location of the "using" keyword. SourceLocation UsingLoc; /// SourceLocation - Location of 'namespace' token. SourceLocation NamespaceLoc; /// \brief The nested-name-specifier that precedes the namespace. NestedNameSpecifierLoc QualifierLoc; /// NominatedNamespace - Namespace nominated by using-directive. NamedDecl *NominatedNamespace; /// Enclosing context containing both using-directive and nominated /// namespace. DeclContext *CommonAncestor; /// getUsingDirectiveName - Returns special DeclarationName used by /// using-directives. This is only used by DeclContext for storing /// UsingDirectiveDecls in its lookup structure. static DeclarationName getName() { return DeclarationName::getUsingDirectiveName(); } UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc, SourceLocation NamespcLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Nominated, DeclContext *CommonAncestor) : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc), NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc), NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { } public: /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace, with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; } const NamedDecl *getNominatedNamespaceAsWritten() const { return NominatedNamespace; } /// getNominatedNamespace - Returns namespace nominated by using-directive. NamespaceDecl *getNominatedNamespace(); const NamespaceDecl *getNominatedNamespace() const { return const_cast(this)->getNominatedNamespace(); } /// \brief Returns the common ancestor context of this using-directive and /// its nominated namespace. DeclContext *getCommonAncestor() { return CommonAncestor; } const DeclContext *getCommonAncestor() const { return CommonAncestor; } /// \brief Return the location of the "using" keyword. SourceLocation getUsingLoc() const { return UsingLoc; } // FIXME: Could omit 'Key' in name. /// getNamespaceKeyLocation - Returns location of namespace keyword. SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; } /// getIdentLocation - Returns location of identifier. SourceLocation getIdentLocation() const { return getLocation(); } static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceLocation NamespaceLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Nominated, DeclContext *CommonAncestor); SourceRange getSourceRange() const { return SourceRange(UsingLoc, getLocation()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const UsingDirectiveDecl *D) { return true; } static bool classofKind(Kind K) { return K == UsingDirective; } // Friend for getUsingDirectiveName. friend class DeclContext; friend class ASTDeclReader; }; /// NamespaceAliasDecl - Represents a C++ namespace alias. For example: /// /// @code /// namespace Foo = Bar; /// @endcode class NamespaceAliasDecl : public NamedDecl { /// \brief The location of the "namespace" keyword. SourceLocation NamespaceLoc; /// IdentLoc - Location of namespace identifier. Accessed by TargetNameLoc. SourceLocation IdentLoc; /// \brief The nested-name-specifier that precedes the namespace. NestedNameSpecifierLoc QualifierLoc; /// Namespace - The Decl that this alias points to. Can either be a /// NamespaceDecl or a NamespaceAliasDecl. NamedDecl *Namespace; NamespaceAliasDecl(DeclContext *DC, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Namespace) : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc), QualifierLoc(QualifierLoc), Namespace(Namespace) { } friend class ASTDeclReader; public: /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace, with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } /// \brief Retrieve the namespace declaration aliased by this directive. NamespaceDecl *getNamespace() { if (NamespaceAliasDecl *AD = dyn_cast(Namespace)) return AD->getNamespace(); return cast(Namespace); } const NamespaceDecl *getNamespace() const { return const_cast(this)->getNamespace(); } /// Returns the location of the alias name, i.e. 'foo' in /// "namespace foo = ns::bar;". SourceLocation getAliasLoc() const { return getLocation(); } /// Returns the location of the 'namespace' keyword. SourceLocation getNamespaceLoc() const { return NamespaceLoc; } /// Returns the location of the identifier in the named namespace. SourceLocation getTargetNameLoc() const { return IdentLoc; } /// \brief Retrieve the namespace that this alias refers to, which /// may either be a NamespaceDecl or a NamespaceAliasDecl. NamedDecl *getAliasedNamespace() const { return Namespace; } static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Namespace); virtual SourceRange getSourceRange() const { return SourceRange(NamespaceLoc, IdentLoc); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const NamespaceAliasDecl *D) { return true; } static bool classofKind(Kind K) { return K == NamespaceAlias; } }; /// UsingShadowDecl - Represents a shadow declaration introduced into /// a scope by a (resolved) using declaration. For example, /// /// namespace A { /// void foo(); /// } /// namespace B { /// using A::foo(); // <- a UsingDecl /// // Also creates a UsingShadowDecl for A::foo in B /// } /// class UsingShadowDecl : public NamedDecl { /// The referenced declaration. NamedDecl *Underlying; /// \brief The using declaration which introduced this decl or the next using /// shadow declaration contained in the aforementioned using declaration. NamedDecl *UsingOrNextShadow; friend class UsingDecl; UsingShadowDecl(DeclContext *DC, SourceLocation Loc, UsingDecl *Using, NamedDecl *Target) : NamedDecl(UsingShadow, DC, Loc, DeclarationName()), Underlying(Target), UsingOrNextShadow(reinterpret_cast(Using)) { if (Target) { setDeclName(Target->getDeclName()); IdentifierNamespace = Target->getIdentifierNamespace(); } setImplicit(); } public: static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation Loc, UsingDecl *Using, NamedDecl *Target) { return new (C) UsingShadowDecl(DC, Loc, Using, Target); } /// \brief Gets the underlying declaration which has been brought into the /// local scope. NamedDecl *getTargetDecl() const { return Underlying; } /// \brief Sets the underlying declaration which has been brought into the /// local scope. void setTargetDecl(NamedDecl* ND) { assert(ND && "Target decl is null!"); Underlying = ND; IdentifierNamespace = ND->getIdentifierNamespace(); } /// \brief Gets the using declaration to which this declaration is tied. UsingDecl *getUsingDecl() const; /// \brief The next using shadow declaration contained in the shadow decl /// chain of the using declaration which introduced this decl. UsingShadowDecl *getNextUsingShadowDecl() const { return dyn_cast_or_null(UsingOrNextShadow); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const UsingShadowDecl *D) { return true; } static bool classofKind(Kind K) { return K == Decl::UsingShadow; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// UsingDecl - Represents a C++ using-declaration. For example: /// using someNameSpace::someIdentifier; class UsingDecl : public NamedDecl { /// \brief The source location of the "using" location itself. SourceLocation UsingLocation; /// \brief The nested-name-specifier that precedes the name. NestedNameSpecifierLoc QualifierLoc; /// DNLoc - Provides source/type location info for the /// declaration name embedded in the ValueDecl base class. DeclarationNameLoc DNLoc; /// \brief The first shadow declaration of the shadow decl chain associated /// with this using declaration. UsingShadowDecl *FirstUsingShadow; // \brief Has 'typename' keyword. bool IsTypeName; UsingDecl(DeclContext *DC, SourceLocation UL, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, bool IsTypeNameArg) : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()), UsingLocation(UL), QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()), FirstUsingShadow(0),IsTypeName(IsTypeNameArg) { } public: /// \brief Returns the source location of the "using" keyword. SourceLocation getUsingLocation() const { return UsingLocation; } /// \brief Set the source location of the 'using' keyword. void setUsingLocation(SourceLocation L) { UsingLocation = L; } /// \brief Retrieve the nested-name-specifier that qualifies the name, /// with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// \brief Retrieve the nested-name-specifier that qualifies the name. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } DeclarationNameInfo getNameInfo() const { return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); } /// \brief Return true if the using declaration has 'typename'. bool isTypeName() const { return IsTypeName; } /// \brief Sets whether the using declaration has 'typename'. void setTypeName(bool TN) { IsTypeName = TN; } /// \brief Iterates through the using shadow declarations assosiated with /// this using declaration. class shadow_iterator { /// \brief The current using shadow declaration. UsingShadowDecl *Current; public: typedef UsingShadowDecl* value_type; typedef UsingShadowDecl* reference; typedef UsingShadowDecl* pointer; typedef std::forward_iterator_tag iterator_category; typedef std::ptrdiff_t difference_type; shadow_iterator() : Current(0) { } explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { } reference operator*() const { return Current; } pointer operator->() const { return Current; } shadow_iterator& operator++() { Current = Current->getNextUsingShadowDecl(); return *this; } shadow_iterator operator++(int) { shadow_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(shadow_iterator x, shadow_iterator y) { return x.Current == y.Current; } friend bool operator!=(shadow_iterator x, shadow_iterator y) { return x.Current != y.Current; } }; shadow_iterator shadow_begin() const { return shadow_iterator(FirstUsingShadow); } shadow_iterator shadow_end() const { return shadow_iterator(); } /// \brief Return the number of shadowed declarations associated with this /// using declaration. unsigned shadow_size() const { return std::distance(shadow_begin(), shadow_end()); } void addShadowDecl(UsingShadowDecl *S); void removeShadowDecl(UsingShadowDecl *S); static UsingDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation UsingL, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, bool IsTypeNameArg); SourceRange getSourceRange() const { return SourceRange(UsingLocation, getNameInfo().getEndLoc()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const UsingDecl *D) { return true; } static bool classofKind(Kind K) { return K == Using; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// UnresolvedUsingValueDecl - Represents a dependent using /// declaration which was not marked with 'typename'. Unlike /// non-dependent using declarations, these *only* bring through /// non-types; otherwise they would break two-phase lookup. /// /// template class A : public Base { /// using Base::foo; /// }; class UnresolvedUsingValueDecl : public ValueDecl { /// \brief The source location of the 'using' keyword SourceLocation UsingLocation; /// \brief The nested-name-specifier that precedes the name. NestedNameSpecifierLoc QualifierLoc; /// DNLoc - Provides source/type location info for the /// declaration name embedded in the ValueDecl base class. DeclarationNameLoc DNLoc; UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty, SourceLocation UsingLoc, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo) : ValueDecl(UnresolvedUsingValue, DC, NameInfo.getLoc(), NameInfo.getName(), Ty), UsingLocation(UsingLoc), QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) { } public: /// \brief Returns the source location of the 'using' keyword. SourceLocation getUsingLoc() const { return UsingLocation; } /// \brief Set the source location of the 'using' keyword. void setUsingLoc(SourceLocation L) { UsingLocation = L; } /// \brief Retrieve the nested-name-specifier that qualifies the name, /// with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// \brief Retrieve the nested-name-specifier that qualifies the name. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } DeclarationNameInfo getNameInfo() const { return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); } static UnresolvedUsingValueDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo); SourceRange getSourceRange() const { return SourceRange(UsingLocation, getNameInfo().getEndLoc()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const UnresolvedUsingValueDecl *D) { return true; } static bool classofKind(Kind K) { return K == UnresolvedUsingValue; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// UnresolvedUsingTypenameDecl - Represents a dependent using /// declaration which was marked with 'typename'. /// /// template class A : public Base { /// using typename Base::foo; /// }; /// /// The type associated with a unresolved using typename decl is /// currently always a typename type. class UnresolvedUsingTypenameDecl : public TypeDecl { /// \brief The source location of the 'using' keyword SourceLocation UsingLocation; /// \brief The source location of the 'typename' keyword SourceLocation TypenameLocation; /// \brief The nested-name-specifier that precedes the name. NestedNameSpecifierLoc QualifierLoc; UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc, SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TargetNameLoc, IdentifierInfo *TargetName) : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName, UsingLoc), TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { } friend class ASTDeclReader; public: /// \brief Returns the source location of the 'using' keyword. SourceLocation getUsingLoc() const { return getLocStart(); } /// \brief Returns the source location of the 'typename' keyword. SourceLocation getTypenameLoc() const { return TypenameLocation; } /// \brief Retrieve the nested-name-specifier that qualifies the name, /// with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// \brief Retrieve the nested-name-specifier that qualifies the name. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } static UnresolvedUsingTypenameDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TargetNameLoc, DeclarationName TargetName); static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(const UnresolvedUsingTypenameDecl *D) { return true; } static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; } }; /// StaticAssertDecl - Represents a C++0x static_assert declaration. class StaticAssertDecl : public Decl { Expr *AssertExpr; StringLiteral *Message; SourceLocation RParenLoc; StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc, Expr *assertexpr, StringLiteral *message, SourceLocation RParenLoc) : Decl(StaticAssert, DC, StaticAssertLoc), AssertExpr(assertexpr), Message(message), RParenLoc(RParenLoc) { } public: static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StaticAssertLoc, Expr *AssertExpr, StringLiteral *Message, SourceLocation RParenLoc); Expr *getAssertExpr() { return AssertExpr; } const Expr *getAssertExpr() const { return AssertExpr; } StringLiteral *getMessage() { return Message; } const StringLiteral *getMessage() const { return Message; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } SourceRange getSourceRange() const { return SourceRange(getLocation(), getRParenLoc()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classof(StaticAssertDecl *D) { return true; } static bool classofKind(Kind K) { return K == StaticAssert; } friend class ASTDeclReader; }; /// Insertion operator for diagnostics. This allows sending AccessSpecifier's /// into a diagnostic with <<. const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, AccessSpecifier AS); } // end namespace clang #endif