//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Expr interface and subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_EXPR_H #define LLVM_CLANG_AST_EXPR_H #include "clang/AST/APValue.h" #include "clang/AST/Stmt.h" #include "clang/AST/Type.h" #include "clang/AST/DeclAccessPair.h" #include "clang/AST/OperationKinds.h" #include "clang/AST/ASTVector.h" #include "clang/AST/UsuallyTinyPtrVector.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include namespace clang { class ASTContext; class APValue; class Decl; class IdentifierInfo; class ParmVarDecl; class NamedDecl; class ValueDecl; class BlockDecl; class CXXBaseSpecifier; class CXXOperatorCallExpr; class CXXMemberCallExpr; class TemplateArgumentLoc; class TemplateArgumentListInfo; /// \brief A simple array of base specifiers. typedef llvm::SmallVector CXXCastPath; /// Expr - This represents one expression. Note that Expr's are subclasses of /// Stmt. This allows an expression to be transparently used any place a Stmt /// is required. /// class Expr : public Stmt { QualType TR; virtual void ANCHOR(); // key function. protected: /// TypeDependent - Whether this expression is type-dependent /// (C++ [temp.dep.expr]). bool TypeDependent : 1; /// ValueDependent - Whether this expression is value-dependent /// (C++ [temp.dep.constexpr]). bool ValueDependent : 1; /// ValueKind - The value classification of this expression. /// Only actually used by certain subclasses. unsigned ValueKind : 2; enum { BitsRemaining = 28 }; Expr(StmtClass SC, QualType T, bool TD, bool VD) : Stmt(SC), TypeDependent(TD), ValueDependent(VD), ValueKind(0) { setType(T); } /// \brief Construct an empty expression. explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { } public: /// \brief Increases the reference count for this expression. /// /// Invoke the Retain() operation when this expression /// is being shared by another owner. Expr *Retain() { Stmt::Retain(); return this; } QualType getType() const { return TR; } void setType(QualType t) { // In C++, the type of an expression is always adjusted so that it // will not have reference type an expression will never have // reference type (C++ [expr]p6). Use // QualType::getNonReferenceType() to retrieve the non-reference // type. Additionally, inspect Expr::isLvalue to determine whether // an expression that is adjusted in this manner should be // considered an lvalue. assert((t.isNull() || !t->isReferenceType()) && "Expressions can't have reference type"); TR = t; } /// isValueDependent - Determines whether this expression is /// value-dependent (C++ [temp.dep.constexpr]). For example, the /// array bound of "Chars" in the following example is /// value-dependent. /// @code /// template struct meta_string; /// @endcode bool isValueDependent() const { return ValueDependent; } /// \brief Set whether this expression is value-dependent or not. void setValueDependent(bool VD) { ValueDependent = VD; } /// isTypeDependent - Determines whether this expression is /// type-dependent (C++ [temp.dep.expr]), which means that its type /// could change from one template instantiation to the next. For /// example, the expressions "x" and "x + y" are type-dependent in /// the following code, but "y" is not type-dependent: /// @code /// template /// void add(T x, int y) { /// x + y; /// } /// @endcode bool isTypeDependent() const { return TypeDependent; } /// \brief Set whether this expression is type-dependent or not. void setTypeDependent(bool TD) { TypeDependent = TD; } /// SourceLocation tokens are not useful in isolation - they are low level /// value objects created/interpreted by SourceManager. We assume AST /// clients will have a pointer to the respective SourceManager. virtual SourceRange getSourceRange() const = 0; /// getExprLoc - Return the preferred location for the arrow when diagnosing /// a problem with a generic expression. virtual SourceLocation getExprLoc() const { return getLocStart(); } /// isUnusedResultAWarning - Return true if this immediate expression should /// be warned about if the result is unused. If so, fill in Loc and Ranges /// with location to warn on and the source range[s] to report with the /// warning. bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, SourceRange &R2, ASTContext &Ctx) const; /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or /// incomplete type other than void. Nonarray expressions that can be lvalues: /// - name, where name must be a variable /// - e[i] /// - (e), where e must be an lvalue /// - e.name, where e must be an lvalue /// - e->name /// - *e, the type of e cannot be a function type /// - string-constant /// - reference type [C++ [expr]] /// - b ? x : y, where x and y are lvalues of suitable types [C++] /// enum isLvalueResult { LV_Valid, LV_NotObjectType, LV_IncompleteVoidType, LV_DuplicateVectorComponents, LV_InvalidExpression, LV_MemberFunction, LV_SubObjCPropertySetting, LV_ClassTemporary }; isLvalueResult isLvalue(ASTContext &Ctx) const; /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, /// does not have an incomplete type, does not have a const-qualified type, /// and if it is a structure or union, does not have any member (including, /// recursively, any member or element of all contained aggregates or unions) /// with a const-qualified type. /// /// \param Loc [in] [out] - A source location which *may* be filled /// in with the location of the expression making this a /// non-modifiable lvalue, if specified. enum isModifiableLvalueResult { MLV_Valid, MLV_NotObjectType, MLV_IncompleteVoidType, MLV_DuplicateVectorComponents, MLV_InvalidExpression, MLV_LValueCast, // Specialized form of MLV_InvalidExpression. MLV_IncompleteType, MLV_ConstQualified, MLV_ArrayType, MLV_NotBlockQualified, MLV_ReadonlyProperty, MLV_NoSetterProperty, MLV_MemberFunction, MLV_SubObjCPropertySetting, MLV_ClassTemporary }; isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = 0) const; /// \brief The return type of classify(). Represents the C++0x expression /// taxonomy. class Classification { public: /// \brief The various classification results. Most of these mean prvalue. enum Kinds { CL_LValue, CL_XValue, CL_Function, // Functions cannot be lvalues in C. CL_Void, // Void cannot be an lvalue in C. CL_DuplicateVectorComponents, // A vector shuffle with dupes. CL_MemberFunction, // An expression referring to a member function CL_SubObjCPropertySetting, CL_ClassTemporary, // A prvalue of class type CL_PRValue // A prvalue for any other reason, of any other type }; /// \brief The results of modification testing. enum ModifiableType { CM_Untested, // testModifiable was false. CM_Modifiable, CM_RValue, // Not modifiable because it's an rvalue CM_Function, // Not modifiable because it's a function; C++ only CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext CM_NotBlockQualified, // Not captured in the closure CM_NoSetterProperty,// Implicit assignment to ObjC property without setter CM_ConstQualified, CM_ArrayType, CM_IncompleteType }; private: friend class Expr; unsigned short Kind; unsigned short Modifiable; explicit Classification(Kinds k, ModifiableType m) : Kind(k), Modifiable(m) {} public: Classification() {} Kinds getKind() const { return static_cast(Kind); } ModifiableType getModifiable() const { assert(Modifiable != CM_Untested && "Did not test for modifiability."); return static_cast(Modifiable); } bool isLValue() const { return Kind == CL_LValue; } bool isXValue() const { return Kind == CL_XValue; } bool isGLValue() const { return Kind <= CL_XValue; } bool isPRValue() const { return Kind >= CL_Function; } bool isRValue() const { return Kind >= CL_XValue; } bool isModifiable() const { return getModifiable() == CM_Modifiable; } }; /// \brief classify - Classify this expression according to the C++0x /// expression taxonomy. /// /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the /// old lvalue vs rvalue. This function determines the type of expression this /// is. There are three expression types: /// - lvalues are classical lvalues as in C++03. /// - prvalues are equivalent to rvalues in C++03. /// - xvalues are expressions yielding unnamed rvalue references, e.g. a /// function returning an rvalue reference. /// lvalues and xvalues are collectively referred to as glvalues, while /// prvalues and xvalues together form rvalues. Classification Classify(ASTContext &Ctx) const { return ClassifyImpl(Ctx, 0); } /// \brief classifyModifiable - Classify this expression according to the /// C++0x expression taxonomy, and see if it is valid on the left side /// of an assignment. /// /// This function extends classify in that it also tests whether the /// expression is modifiable (C99 6.3.2.1p1). /// \param Loc A source location that might be filled with a relevant location /// if the expression is not modifiable. Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{ return ClassifyImpl(Ctx, &Loc); } private: Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const; public: /// \brief If this expression refers to a bit-field, retrieve the /// declaration of that bit-field. FieldDecl *getBitField(); const FieldDecl *getBitField() const { return const_cast(this)->getBitField(); } /// \brief Returns whether this expression refers to a vector element. bool refersToVectorElement() const; /// isKnownToHaveBooleanValue - Return true if this is an integer expression /// that is known to return 0 or 1. This happens for _Bool/bool expressions /// but also int expressions which are produced by things like comparisons in /// C. bool isKnownToHaveBooleanValue() const; /// isIntegerConstantExpr - Return true if this expression is a valid integer /// constant expression, and, if so, return its value in Result. If not a /// valid i-c-e, return false and fill in Loc (if specified) with the location /// of the invalid expression. bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, SourceLocation *Loc = 0, bool isEvaluated = true) const; bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const { llvm::APSInt X; return isIntegerConstantExpr(X, Ctx, Loc); } /// isConstantInitializer - Returns true if this expression is a constant /// initializer, which can be emitted at compile-time. bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const; /// EvalResult is a struct with detailed info about an evaluated expression. struct EvalResult { /// Val - This is the value the expression can be folded to. APValue Val; /// HasSideEffects - Whether the evaluated expression has side effects. /// For example, (f() && 0) can be folded, but it still has side effects. bool HasSideEffects; /// Diag - If the expression is unfoldable, then Diag contains a note /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret /// position for the error, and DiagExpr is the expression that caused /// the error. /// If the expression is foldable, but not an integer constant expression, /// Diag contains a note diagnostic that describes why it isn't an integer /// constant expression. If the expression *is* an integer constant /// expression, then Diag will be zero. unsigned Diag; const Expr *DiagExpr; SourceLocation DiagLoc; EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {} // isGlobalLValue - Return true if the evaluated lvalue expression // is global. bool isGlobalLValue() const; // hasSideEffects - Return true if the evaluated expression has // side effects. bool hasSideEffects() const { return HasSideEffects; } }; /// Evaluate - Return true if this is a constant which we can fold using /// any crazy technique (that has nothing to do with language standards) that /// we want to. If this function returns true, it returns the folded constant /// in Result. bool Evaluate(EvalResult &Result, ASTContext &Ctx) const; /// EvaluateAsBooleanCondition - Return true if this is a constant /// which we we can fold and convert to a boolean condition using /// any crazy technique that we want to. bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const; /// isEvaluatable - Call Evaluate to see if this expression can be constant /// folded, but discard the result. bool isEvaluatable(ASTContext &Ctx) const; /// HasSideEffects - This routine returns true for all those expressions /// which must be evaluated each time and must not be optimization away /// or evaluated at compile time. Example is a function call, volatile /// variable read. bool HasSideEffects(ASTContext &Ctx) const; /// EvaluateAsInt - Call Evaluate and return the folded integer. This /// must be called on an expression that constant folds to an integer. llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const; /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue /// with link time known address. bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const; /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue. bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const; /// \brief Enumeration used to describe how \c isNullPointerConstant() /// should cope with value-dependent expressions. enum NullPointerConstantValueDependence { /// \brief Specifies that the expression should never be value-dependent. NPC_NeverValueDependent = 0, /// \brief Specifies that a value-dependent expression of integral or /// dependent type should be considered a null pointer constant. NPC_ValueDependentIsNull, /// \brief Specifies that a value-dependent expression should be considered /// to never be a null pointer constant. NPC_ValueDependentIsNotNull }; /// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an /// integer constant expression with the value zero, or if this is one that is /// cast to void*. bool isNullPointerConstant(ASTContext &Ctx, NullPointerConstantValueDependence NPC) const; /// isOBJCGCCandidate - Return true if this expression may be used in a read/ /// write barrier. bool isOBJCGCCandidate(ASTContext &Ctx) const; /// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return /// its subexpression. If that subexpression is also a ParenExpr, /// then this method recursively returns its subexpression, and so forth. /// Otherwise, the method returns the current Expr. Expr *IgnoreParens(); /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr /// or CastExprs, returning their operand. Expr *IgnoreParenCasts(); /// IgnoreParenImpCasts - Ignore parentheses and implicit casts. Strip off any /// ParenExpr or ImplicitCastExprs, returning their operand. Expr *IgnoreParenImpCasts(); /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the /// value (including ptr->int casts of the same size). Strip off any /// ParenExpr or CastExprs, returning their operand. Expr *IgnoreParenNoopCasts(ASTContext &Ctx); /// \brief Determine whether this expression is a default function argument. /// /// Default arguments are implicitly generated in the abstract syntax tree /// by semantic analysis for function calls, object constructions, etc. in /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes; /// this routine also looks through any implicit casts to determine whether /// the expression is a default argument. bool isDefaultArgument() const; /// \brief Determine whether this expression directly creates a /// temporary object (of class type). bool isTemporaryObject() const { return getTemporaryObject() != 0; } /// \brief If this expression directly creates a temporary object of /// class type, return the expression that actually constructs that /// temporary object. const Expr *getTemporaryObject() const; const Expr *IgnoreParens() const { return const_cast(this)->IgnoreParens(); } const Expr *IgnoreParenCasts() const { return const_cast(this)->IgnoreParenCasts(); } const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const { return const_cast(this)->IgnoreParenNoopCasts(Ctx); } static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs); static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs); static bool classof(const Stmt *T) { return T->getStmtClass() >= firstExprConstant && T->getStmtClass() <= lastExprConstant; } static bool classof(const Expr *) { return true; } }; //===----------------------------------------------------------------------===// // Primary Expressions. //===----------------------------------------------------------------------===// /// \brief Represents the qualifier that may precede a C++ name, e.g., the /// "std::" in "std::sort". struct NameQualifier { /// \brief The nested name specifier. NestedNameSpecifier *NNS; /// \brief The source range covered by the nested name specifier. SourceRange Range; }; /// \brief Represents an explicit template argument list in C++, e.g., /// the "" in "sort". struct ExplicitTemplateArgumentList { /// \brief The source location of the left angle bracket ('<'); SourceLocation LAngleLoc; /// \brief The source location of the right angle bracket ('>'); SourceLocation RAngleLoc; /// \brief The number of template arguments in TemplateArgs. /// The actual template arguments (if any) are stored after the /// ExplicitTemplateArgumentList structure. unsigned NumTemplateArgs; /// \brief Retrieve the template arguments TemplateArgumentLoc *getTemplateArgs() { return reinterpret_cast (this + 1); } /// \brief Retrieve the template arguments const TemplateArgumentLoc *getTemplateArgs() const { return reinterpret_cast (this + 1); } void initializeFrom(const TemplateArgumentListInfo &List); void copyInto(TemplateArgumentListInfo &List) const; static std::size_t sizeFor(unsigned NumTemplateArgs); static std::size_t sizeFor(const TemplateArgumentListInfo &List); }; /// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function, /// enum, etc. class DeclRefExpr : public Expr { enum { // Flag on DecoratedD that specifies when this declaration reference // expression has a C++ nested-name-specifier. HasQualifierFlag = 0x01, // Flag on DecoratedD that specifies when this declaration reference // expression has an explicit C++ template argument list. HasExplicitTemplateArgumentListFlag = 0x02 }; // DecoratedD - The declaration that we are referencing, plus two bits to // indicate whether (1) the declaration's name was explicitly qualified and // (2) the declaration's name was followed by an explicit template // argument list. llvm::PointerIntPair DecoratedD; // Loc - The location of the declaration name itself. SourceLocation Loc; /// DNLoc - Provides source/type location info for the /// declaration name embedded in DecoratedD. DeclarationNameLoc DNLoc; /// \brief Retrieve the qualifier that preceded the declaration name, if any. NameQualifier *getNameQualifier() { if ((DecoratedD.getInt() & HasQualifierFlag) == 0) return 0; return reinterpret_cast (this + 1); } /// \brief Retrieve the qualifier that preceded the member name, if any. const NameQualifier *getNameQualifier() const { return const_cast(this)->getNameQualifier(); } DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange, ValueDecl *D, SourceLocation NameLoc, const TemplateArgumentListInfo *TemplateArgs, QualType T); DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange, ValueDecl *D, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs, QualType T); /// \brief Construct an empty declaration reference expression. explicit DeclRefExpr(EmptyShell Empty) : Expr(DeclRefExprClass, Empty) { } /// \brief Computes the type- and value-dependence flags for this /// declaration reference expression. void computeDependence(); public: DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) : Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) { computeDependence(); } static DeclRefExpr *Create(ASTContext &Context, NestedNameSpecifier *Qualifier, SourceRange QualifierRange, ValueDecl *D, SourceLocation NameLoc, QualType T, const TemplateArgumentListInfo *TemplateArgs = 0); static DeclRefExpr *Create(ASTContext &Context, NestedNameSpecifier *Qualifier, SourceRange QualifierRange, ValueDecl *D, const DeclarationNameInfo &NameInfo, QualType T, const TemplateArgumentListInfo *TemplateArgs = 0); /// \brief Construct an empty declaration reference expression. static DeclRefExpr *CreateEmpty(ASTContext &Context, bool HasQualifier, unsigned NumTemplateArgs); ValueDecl *getDecl() { return DecoratedD.getPointer(); } const ValueDecl *getDecl() const { return DecoratedD.getPointer(); } void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); } DeclarationNameInfo getNameInfo() const { return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc); } SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } virtual SourceRange getSourceRange() const; /// \brief Determine whether this declaration reference was preceded by a /// C++ nested-name-specifier, e.g., \c N::foo. bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; } /// \brief If the name was qualified, retrieves the source range of /// the nested-name-specifier that precedes the name. Otherwise, /// returns an empty source range. SourceRange getQualifierRange() const { if (!hasQualifier()) return SourceRange(); return getNameQualifier()->Range; } /// \brief If the name was qualified, retrieves the nested-name-specifier /// that precedes the name. Otherwise, returns NULL. NestedNameSpecifier *getQualifier() const { if (!hasQualifier()) return 0; return getNameQualifier()->NNS; } bool hasExplicitTemplateArgs() const { return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag); } /// \brief Retrieve the explicit template argument list that followed the /// member template name. ExplicitTemplateArgumentList &getExplicitTemplateArgs() { assert(hasExplicitTemplateArgs()); if ((DecoratedD.getInt() & HasQualifierFlag) == 0) return *reinterpret_cast(this + 1); return *reinterpret_cast( getNameQualifier() + 1); } /// \brief Retrieve the explicit template argument list that followed the /// member template name. const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const { return const_cast(this)->getExplicitTemplateArgs(); } /// \brief Retrieves the optional explicit template arguments. /// This points to the same data as getExplicitTemplateArgs(), but /// returns null if there are no explicit template arguments. const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const { if (!hasExplicitTemplateArgs()) return 0; return &getExplicitTemplateArgs(); } /// \brief Copies the template arguments (if present) into the given /// structure. void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const { if (hasExplicitTemplateArgs()) getExplicitTemplateArgs().copyInto(List); } /// \brief Retrieve the location of the left angle bracket following the /// member name ('<'), if any. SourceLocation getLAngleLoc() const { if (!hasExplicitTemplateArgs()) return SourceLocation(); return getExplicitTemplateArgs().LAngleLoc; } /// \brief Retrieve the template arguments provided as part of this /// template-id. const TemplateArgumentLoc *getTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0; return getExplicitTemplateArgs().getTemplateArgs(); } /// \brief Retrieve the number of template arguments provided as part of this /// template-id. unsigned getNumTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0; return getExplicitTemplateArgs().NumTemplateArgs; } /// \brief Retrieve the location of the right angle bracket following the /// template arguments ('>'). SourceLocation getRAngleLoc() const { if (!hasExplicitTemplateArgs()) return SourceLocation(); return getExplicitTemplateArgs().RAngleLoc; } static bool classof(const Stmt *T) { return T->getStmtClass() == DeclRefExprClass; } static bool classof(const DeclRefExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); friend class ASTStmtReader; friend class ASTStmtWriter; }; /// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__. class PredefinedExpr : public Expr { public: enum IdentType { Func, Function, PrettyFunction, /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the /// 'virtual' keyword is omitted for virtual member functions. PrettyFunctionNoVirtual }; private: SourceLocation Loc; IdentType Type; public: PredefinedExpr(SourceLocation l, QualType type, IdentType IT) : Expr(PredefinedExprClass, type, type->isDependentType(), type->isDependentType()), Loc(l), Type(IT) {} /// \brief Construct an empty predefined expression. explicit PredefinedExpr(EmptyShell Empty) : Expr(PredefinedExprClass, Empty) { } IdentType getIdentType() const { return Type; } void setIdentType(IdentType IT) { Type = IT; } SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } static std::string ComputeName(IdentType IT, const Decl *CurrentDecl); virtual SourceRange getSourceRange() const { return SourceRange(Loc); } static bool classof(const Stmt *T) { return T->getStmtClass() == PredefinedExprClass; } static bool classof(const PredefinedExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without /// leaking memory. /// /// For large floats/integers, APFloat/APInt will allocate memory from the heap /// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator /// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with /// the APFloat/APInt values will never get freed. APNumericStorage uses /// ASTContext's allocator for memory allocation. class APNumericStorage { unsigned BitWidth; union { uint64_t VAL; ///< Used to store the <= 64 bits integer value. uint64_t *pVal; ///< Used to store the >64 bits integer value. }; bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; } APNumericStorage(const APNumericStorage&); // do not implement APNumericStorage& operator=(const APNumericStorage&); // do not implement protected: APNumericStorage() : BitWidth(0), VAL(0) { } llvm::APInt getIntValue() const { unsigned NumWords = llvm::APInt::getNumWords(BitWidth); if (NumWords > 1) return llvm::APInt(BitWidth, NumWords, pVal); else return llvm::APInt(BitWidth, VAL); } void setIntValue(ASTContext &C, const llvm::APInt &Val); }; class APIntStorage : public APNumericStorage { public: llvm::APInt getValue() const { return getIntValue(); } void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); } }; class APFloatStorage : public APNumericStorage { public: llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); } void setValue(ASTContext &C, const llvm::APFloat &Val) { setIntValue(C, Val.bitcastToAPInt()); } }; class IntegerLiteral : public Expr { APIntStorage Num; SourceLocation Loc; /// \brief Construct an empty integer literal. explicit IntegerLiteral(EmptyShell Empty) : Expr(IntegerLiteralClass, Empty) { } public: // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy, // or UnsignedLongLongTy IntegerLiteral(ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l) : Expr(IntegerLiteralClass, type, false, false), Loc(l) { assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); setValue(C, V); } // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy, // or UnsignedLongLongTy static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l); static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty); llvm::APInt getValue() const { return Num.getValue(); } virtual SourceRange getSourceRange() const { return SourceRange(Loc); } /// \brief Retrieve the location of the literal. SourceLocation getLocation() const { return Loc; } void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); } void setLocation(SourceLocation Location) { Loc = Location; } static bool classof(const Stmt *T) { return T->getStmtClass() == IntegerLiteralClass; } static bool classof(const IntegerLiteral *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; class CharacterLiteral : public Expr { unsigned Value; SourceLocation Loc; bool IsWide; public: // type should be IntTy CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l) : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l), IsWide(iswide) { } /// \brief Construct an empty character literal. CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { } SourceLocation getLocation() const { return Loc; } bool isWide() const { return IsWide; } virtual SourceRange getSourceRange() const { return SourceRange(Loc); } unsigned getValue() const { return Value; } void setLocation(SourceLocation Location) { Loc = Location; } void setWide(bool W) { IsWide = W; } void setValue(unsigned Val) { Value = Val; } static bool classof(const Stmt *T) { return T->getStmtClass() == CharacterLiteralClass; } static bool classof(const CharacterLiteral *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; class FloatingLiteral : public Expr { APFloatStorage Num; bool IsExact : 1; SourceLocation Loc; FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L) : Expr(FloatingLiteralClass, Type, false, false), IsExact(isexact), Loc(L) { setValue(C, V); } /// \brief Construct an empty floating-point literal. explicit FloatingLiteral(EmptyShell Empty) : Expr(FloatingLiteralClass, Empty), IsExact(false) { } public: static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L); static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty); llvm::APFloat getValue() const { return Num.getValue(); } void setValue(ASTContext &C, const llvm::APFloat &Val) { Num.setValue(C, Val); } bool isExact() const { return IsExact; } void setExact(bool E) { IsExact = E; } /// getValueAsApproximateDouble - This returns the value as an inaccurate /// double. Note that this may cause loss of precision, but is useful for /// debugging dumps, etc. double getValueAsApproximateDouble() const; SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } virtual SourceRange getSourceRange() const { return SourceRange(Loc); } static bool classof(const Stmt *T) { return T->getStmtClass() == FloatingLiteralClass; } static bool classof(const FloatingLiteral *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// ImaginaryLiteral - We support imaginary integer and floating point literals, /// like "1.0i". We represent these as a wrapper around FloatingLiteral and /// IntegerLiteral classes. Instances of this class always have a Complex type /// whose element type matches the subexpression. /// class ImaginaryLiteral : public Expr { Stmt *Val; public: ImaginaryLiteral(Expr *val, QualType Ty) : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {} /// \brief Build an empty imaginary literal. explicit ImaginaryLiteral(EmptyShell Empty) : Expr(ImaginaryLiteralClass, Empty) { } const Expr *getSubExpr() const { return cast(Val); } Expr *getSubExpr() { return cast(Val); } void setSubExpr(Expr *E) { Val = E; } virtual SourceRange getSourceRange() const { return Val->getSourceRange(); } static bool classof(const Stmt *T) { return T->getStmtClass() == ImaginaryLiteralClass; } static bool classof(const ImaginaryLiteral *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// StringLiteral - This represents a string literal expression, e.g. "foo" /// or L"bar" (wide strings). The actual string is returned by getStrData() /// is NOT null-terminated, and the length of the string is determined by /// calling getByteLength(). The C type for a string is always a /// ConstantArrayType. In C++, the char type is const qualified, in C it is /// not. /// /// Note that strings in C can be formed by concatenation of multiple string /// literal pptokens in translation phase #6. This keeps track of the locations /// of each of these pieces. /// /// Strings in C can also be truncated and extended by assigning into arrays, /// e.g. with constructs like: /// char X[2] = "foobar"; /// In this case, getByteLength() will return 6, but the string literal will /// have type "char[2]". class StringLiteral : public Expr { const char *StrData; unsigned ByteLength; bool IsWide; unsigned NumConcatenated; SourceLocation TokLocs[1]; StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {} public: /// This is the "fully general" constructor that allows representation of /// strings formed from multiple concatenated tokens. static StringLiteral *Create(ASTContext &C, const char *StrData, unsigned ByteLength, bool Wide, QualType Ty, const SourceLocation *Loc, unsigned NumStrs); /// Simple constructor for string literals made from one token. static StringLiteral *Create(ASTContext &C, const char *StrData, unsigned ByteLength, bool Wide, QualType Ty, SourceLocation Loc) { return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1); } /// \brief Construct an empty string literal. static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs); llvm::StringRef getString() const { return llvm::StringRef(StrData, ByteLength); } unsigned getByteLength() const { return ByteLength; } /// \brief Sets the string data to the given string data. void setString(ASTContext &C, llvm::StringRef Str); bool isWide() const { return IsWide; } void setWide(bool W) { IsWide = W; } bool containsNonAsciiOrNull() const { llvm::StringRef Str = getString(); for (unsigned i = 0, e = Str.size(); i != e; ++i) if (!isascii(Str[i]) || !Str[i]) return true; return false; } /// getNumConcatenated - Get the number of string literal tokens that were /// concatenated in translation phase #6 to form this string literal. unsigned getNumConcatenated() const { return NumConcatenated; } SourceLocation getStrTokenLoc(unsigned TokNum) const { assert(TokNum < NumConcatenated && "Invalid tok number"); return TokLocs[TokNum]; } void setStrTokenLoc(unsigned TokNum, SourceLocation L) { assert(TokNum < NumConcatenated && "Invalid tok number"); TokLocs[TokNum] = L; } typedef const SourceLocation *tokloc_iterator; tokloc_iterator tokloc_begin() const { return TokLocs; } tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; } virtual SourceRange getSourceRange() const { return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]); } static bool classof(const Stmt *T) { return T->getStmtClass() == StringLiteralClass; } static bool classof(const StringLiteral *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// ParenExpr - This represents a parethesized expression, e.g. "(1)". This /// AST node is only formed if full location information is requested. class ParenExpr : public Expr { SourceLocation L, R; Stmt *Val; public: ParenExpr(SourceLocation l, SourceLocation r, Expr *val) : Expr(ParenExprClass, val->getType(), val->isTypeDependent(), val->isValueDependent()), L(l), R(r), Val(val) {} /// \brief Construct an empty parenthesized expression. explicit ParenExpr(EmptyShell Empty) : Expr(ParenExprClass, Empty) { } const Expr *getSubExpr() const { return cast(Val); } Expr *getSubExpr() { return cast(Val); } void setSubExpr(Expr *E) { Val = E; } virtual SourceRange getSourceRange() const { return SourceRange(L, R); } /// \brief Get the location of the left parentheses '('. SourceLocation getLParen() const { return L; } void setLParen(SourceLocation Loc) { L = Loc; } /// \brief Get the location of the right parentheses ')'. SourceLocation getRParen() const { return R; } void setRParen(SourceLocation Loc) { R = Loc; } static bool classof(const Stmt *T) { return T->getStmtClass() == ParenExprClass; } static bool classof(const ParenExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// UnaryOperator - This represents the unary-expression's (except sizeof and /// alignof), the postinc/postdec operators from postfix-expression, and various /// extensions. /// /// Notes on various nodes: /// /// Real/Imag - These return the real/imag part of a complex operand. If /// applied to a non-complex value, the former returns its operand and the /// later returns zero in the type of the operand. /// class UnaryOperator : public Expr { public: typedef UnaryOperatorKind Opcode; private: unsigned Opc : 5; SourceLocation Loc; Stmt *Val; public: UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l) : Expr(UnaryOperatorClass, type, input->isTypeDependent() || type->isDependentType(), input->isValueDependent()), Opc(opc), Loc(l), Val(input) {} /// \brief Build an empty unary operator. explicit UnaryOperator(EmptyShell Empty) : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { } Opcode getOpcode() const { return static_cast(Opc); } void setOpcode(Opcode O) { Opc = O; } Expr *getSubExpr() const { return cast(Val); } void setSubExpr(Expr *E) { Val = E; } /// getOperatorLoc - Return the location of the operator. SourceLocation getOperatorLoc() const { return Loc; } void setOperatorLoc(SourceLocation L) { Loc = L; } /// isPostfix - Return true if this is a postfix operation, like x++. static bool isPostfix(Opcode Op) { return Op == UO_PostInc || Op == UO_PostDec; } /// isPostfix - Return true if this is a prefix operation, like --x. static bool isPrefix(Opcode Op) { return Op == UO_PreInc || Op == UO_PreDec; } bool isPrefix() const { return isPrefix(getOpcode()); } bool isPostfix() const { return isPostfix(getOpcode()); } bool isIncrementOp() const { return Opc == UO_PreInc || Opc == UO_PostInc; } bool isIncrementDecrementOp() const { return Opc <= UO_PreDec; } static bool isArithmeticOp(Opcode Op) { return Op >= UO_Plus && Op <= UO_LNot; } bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); } /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it /// corresponds to, e.g. "sizeof" or "[pre]++" static const char *getOpcodeStr(Opcode Op); /// \brief Retrieve the unary opcode that corresponds to the given /// overloaded operator. static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix); /// \brief Retrieve the overloaded operator kind that corresponds to /// the given unary opcode. static OverloadedOperatorKind getOverloadedOperator(Opcode Opc); virtual SourceRange getSourceRange() const { if (isPostfix()) return SourceRange(Val->getLocStart(), Loc); else return SourceRange(Loc, Val->getLocEnd()); } virtual SourceLocation getExprLoc() const { return Loc; } static bool classof(const Stmt *T) { return T->getStmtClass() == UnaryOperatorClass; } static bool classof(const UnaryOperator *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// OffsetOfExpr - [C99 7.17] - This represents an expression of the form /// offsetof(record-type, member-designator). For example, given: /// @code /// struct S { /// float f; /// double d; /// }; /// struct T { /// int i; /// struct S s[10]; /// }; /// @endcode /// we can represent and evaluate the expression @c offsetof(struct T, s[2].d). class OffsetOfExpr : public Expr { public: // __builtin_offsetof(type, identifier(.identifier|[expr])*) class OffsetOfNode { public: /// \brief The kind of offsetof node we have. enum Kind { /// \brief An index into an array. Array = 0x00, /// \brief A field. Field = 0x01, /// \brief A field in a dependent type, known only by its name. Identifier = 0x02, /// \brief An implicit indirection through a C++ base class, when the /// field found is in a base class. Base = 0x03 }; private: enum { MaskBits = 2, Mask = 0x03 }; /// \brief The source range that covers this part of the designator. SourceRange Range; /// \brief The data describing the designator, which comes in three /// different forms, depending on the lower two bits. /// - An unsigned index into the array of Expr*'s stored after this node /// in memory, for [constant-expression] designators. /// - A FieldDecl*, for references to a known field. /// - An IdentifierInfo*, for references to a field with a given name /// when the class type is dependent. /// - A CXXBaseSpecifier*, for references that look at a field in a /// base class. uintptr_t Data; public: /// \brief Create an offsetof node that refers to an array element. OffsetOfNode(SourceLocation LBracketLoc, unsigned Index, SourceLocation RBracketLoc) : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { } /// \brief Create an offsetof node that refers to a field. OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field, SourceLocation NameLoc) : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc), Data(reinterpret_cast(Field) | OffsetOfNode::Field) { } /// \brief Create an offsetof node that refers to an identifier. OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name, SourceLocation NameLoc) : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc), Data(reinterpret_cast(Name) | Identifier) { } /// \brief Create an offsetof node that refers into a C++ base class. explicit OffsetOfNode(const CXXBaseSpecifier *Base) : Range(), Data(reinterpret_cast(Base) | OffsetOfNode::Base) {} /// \brief Determine what kind of offsetof node this is. Kind getKind() const { return static_cast(Data & Mask); } /// \brief For an array element node, returns the index into the array /// of expressions. unsigned getArrayExprIndex() const { assert(getKind() == Array); return Data >> 2; } /// \brief For a field offsetof node, returns the field. FieldDecl *getField() const { assert(getKind() == Field); return reinterpret_cast(Data & ~(uintptr_t)Mask); } /// \brief For a field or identifier offsetof node, returns the name of /// the field. IdentifierInfo *getFieldName() const; /// \brief For a base class node, returns the base specifier. CXXBaseSpecifier *getBase() const { assert(getKind() == Base); return reinterpret_cast(Data & ~(uintptr_t)Mask); } /// \brief Retrieve the source range that covers this offsetof node. /// /// For an array element node, the source range contains the locations of /// the square brackets. For a field or identifier node, the source range /// contains the location of the period (if there is one) and the /// identifier. SourceRange getRange() const { return Range; } }; private: SourceLocation OperatorLoc, RParenLoc; // Base type; TypeSourceInfo *TSInfo; // Number of sub-components (i.e. instances of OffsetOfNode). unsigned NumComps; // Number of sub-expressions (i.e. array subscript expressions). unsigned NumExprs; OffsetOfExpr(ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, OffsetOfNode* compsPtr, unsigned numComps, Expr** exprsPtr, unsigned numExprs, SourceLocation RParenLoc); explicit OffsetOfExpr(unsigned numComps, unsigned numExprs) : Expr(OffsetOfExprClass, EmptyShell()), TSInfo(0), NumComps(numComps), NumExprs(numExprs) {} public: static OffsetOfExpr *Create(ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, OffsetOfNode* compsPtr, unsigned numComps, Expr** exprsPtr, unsigned numExprs, SourceLocation RParenLoc); static OffsetOfExpr *CreateEmpty(ASTContext &C, unsigned NumComps, unsigned NumExprs); /// getOperatorLoc - Return the location of the operator. SourceLocation getOperatorLoc() const { return OperatorLoc; } void setOperatorLoc(SourceLocation L) { OperatorLoc = L; } /// \brief Return the location of the right parentheses. SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation R) { RParenLoc = R; } TypeSourceInfo *getTypeSourceInfo() const { return TSInfo; } void setTypeSourceInfo(TypeSourceInfo *tsi) { TSInfo = tsi; } const OffsetOfNode &getComponent(unsigned Idx) { assert(Idx < NumComps && "Subscript out of range"); return reinterpret_cast (this + 1)[Idx]; } void setComponent(unsigned Idx, OffsetOfNode ON) { assert(Idx < NumComps && "Subscript out of range"); reinterpret_cast (this + 1)[Idx] = ON; } unsigned getNumComponents() const { return NumComps; } Expr* getIndexExpr(unsigned Idx) { assert(Idx < NumExprs && "Subscript out of range"); return reinterpret_cast( reinterpret_cast(this+1) + NumComps)[Idx]; } void setIndexExpr(unsigned Idx, Expr* E) { assert(Idx < NumComps && "Subscript out of range"); reinterpret_cast( reinterpret_cast(this+1) + NumComps)[Idx] = E; } unsigned getNumExpressions() const { return NumExprs; } virtual SourceRange getSourceRange() const { return SourceRange(OperatorLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == OffsetOfExprClass; } static bool classof(const OffsetOfExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of /// types and expressions. class SizeOfAlignOfExpr : public Expr { bool isSizeof : 1; // true if sizeof, false if alignof. bool isType : 1; // true if operand is a type, false if an expression union { TypeSourceInfo *Ty; Stmt *Ex; } Argument; SourceLocation OpLoc, RParenLoc; public: SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo, QualType resultType, SourceLocation op, SourceLocation rp) : Expr(SizeOfAlignOfExprClass, resultType, false, // Never type-dependent (C++ [temp.dep.expr]p3). // Value-dependent if the argument is type-dependent. TInfo->getType()->isDependentType()), isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) { Argument.Ty = TInfo; } SizeOfAlignOfExpr(bool issizeof, Expr *E, QualType resultType, SourceLocation op, SourceLocation rp) : Expr(SizeOfAlignOfExprClass, resultType, false, // Never type-dependent (C++ [temp.dep.expr]p3). // Value-dependent if the argument is type-dependent. E->isTypeDependent()), isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) { Argument.Ex = E; } /// \brief Construct an empty sizeof/alignof expression. explicit SizeOfAlignOfExpr(EmptyShell Empty) : Expr(SizeOfAlignOfExprClass, Empty) { } bool isSizeOf() const { return isSizeof; } void setSizeof(bool S) { isSizeof = S; } bool isArgumentType() const { return isType; } QualType getArgumentType() const { return getArgumentTypeInfo()->getType(); } TypeSourceInfo *getArgumentTypeInfo() const { assert(isArgumentType() && "calling getArgumentType() when arg is expr"); return Argument.Ty; } Expr *getArgumentExpr() { assert(!isArgumentType() && "calling getArgumentExpr() when arg is type"); return static_cast(Argument.Ex); } const Expr *getArgumentExpr() const { return const_cast(this)->getArgumentExpr(); } void setArgument(Expr *E) { Argument.Ex = E; isType = false; } void setArgument(TypeSourceInfo *TInfo) { Argument.Ty = TInfo; isType = true; } /// Gets the argument type, or the type of the argument expression, whichever /// is appropriate. QualType getTypeOfArgument() const { return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType(); } SourceLocation getOperatorLoc() const { return OpLoc; } void setOperatorLoc(SourceLocation L) { OpLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } virtual SourceRange getSourceRange() const { return SourceRange(OpLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == SizeOfAlignOfExprClass; } static bool classof(const SizeOfAlignOfExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; //===----------------------------------------------------------------------===// // Postfix Operators. //===----------------------------------------------------------------------===// /// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting. class ArraySubscriptExpr : public Expr { enum { LHS, RHS, END_EXPR=2 }; Stmt* SubExprs[END_EXPR]; SourceLocation RBracketLoc; public: ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t, SourceLocation rbracketloc) : Expr(ArraySubscriptExprClass, t, lhs->isTypeDependent() || rhs->isTypeDependent(), lhs->isValueDependent() || rhs->isValueDependent()), RBracketLoc(rbracketloc) { SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; } /// \brief Create an empty array subscript expression. explicit ArraySubscriptExpr(EmptyShell Shell) : Expr(ArraySubscriptExprClass, Shell) { } /// An array access can be written A[4] or 4[A] (both are equivalent). /// - getBase() and getIdx() always present the normalized view: A[4]. /// In this case getBase() returns "A" and getIdx() returns "4". /// - getLHS() and getRHS() present the syntactic view. e.g. for /// 4[A] getLHS() returns "4". /// Note: Because vector element access is also written A[4] we must /// predicate the format conversion in getBase and getIdx only on the /// the type of the RHS, as it is possible for the LHS to be a vector of /// integer type Expr *getLHS() { return cast(SubExprs[LHS]); } const Expr *getLHS() const { return cast(SubExprs[LHS]); } void setLHS(Expr *E) { SubExprs[LHS] = E; } Expr *getRHS() { return cast(SubExprs[RHS]); } const Expr *getRHS() const { return cast(SubExprs[RHS]); } void setRHS(Expr *E) { SubExprs[RHS] = E; } Expr *getBase() { return cast(getRHS()->getType()->isIntegerType() ? getLHS():getRHS()); } const Expr *getBase() const { return cast(getRHS()->getType()->isIntegerType() ? getLHS():getRHS()); } Expr *getIdx() { return cast(getRHS()->getType()->isIntegerType() ? getRHS():getLHS()); } const Expr *getIdx() const { return cast(getRHS()->getType()->isIntegerType() ? getRHS():getLHS()); } virtual SourceRange getSourceRange() const { return SourceRange(getLHS()->getLocStart(), RBracketLoc); } SourceLocation getRBracketLoc() const { return RBracketLoc; } void setRBracketLoc(SourceLocation L) { RBracketLoc = L; } virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); } static bool classof(const Stmt *T) { return T->getStmtClass() == ArraySubscriptExprClass; } static bool classof(const ArraySubscriptExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]). /// CallExpr itself represents a normal function call, e.g., "f(x, 2)", /// while its subclasses may represent alternative syntax that (semantically) /// results in a function call. For example, CXXOperatorCallExpr is /// a subclass for overloaded operator calls that use operator syntax, e.g., /// "str1 + str2" to resolve to a function call. class CallExpr : public Expr { enum { FN=0, ARGS_START=1 }; Stmt **SubExprs; unsigned NumArgs; SourceLocation RParenLoc; protected: // This version of the constructor is for derived classes. CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs, QualType t, SourceLocation rparenloc); public: CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t, SourceLocation rparenloc); /// \brief Build an empty call expression. CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty); const Expr *getCallee() const { return cast(SubExprs[FN]); } Expr *getCallee() { return cast(SubExprs[FN]); } void setCallee(Expr *F) { SubExprs[FN] = F; } Decl *getCalleeDecl(); const Decl *getCalleeDecl() const { return const_cast(this)->getCalleeDecl(); } /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0. FunctionDecl *getDirectCallee(); const FunctionDecl *getDirectCallee() const { return const_cast(this)->getDirectCallee(); } /// getNumArgs - Return the number of actual arguments to this call. /// unsigned getNumArgs() const { return NumArgs; } /// getArg - Return the specified argument. Expr *getArg(unsigned Arg) { assert(Arg < NumArgs && "Arg access out of range!"); return cast(SubExprs[Arg+ARGS_START]); } const Expr *getArg(unsigned Arg) const { assert(Arg < NumArgs && "Arg access out of range!"); return cast(SubExprs[Arg+ARGS_START]); } /// setArg - Set the specified argument. void setArg(unsigned Arg, Expr *ArgExpr) { assert(Arg < NumArgs && "Arg access out of range!"); SubExprs[Arg+ARGS_START] = ArgExpr; } /// setNumArgs - This changes the number of arguments present in this call. /// Any orphaned expressions are deleted by this, and any new operands are set /// to null. void setNumArgs(ASTContext& C, unsigned NumArgs); typedef ExprIterator arg_iterator; typedef ConstExprIterator const_arg_iterator; arg_iterator arg_begin() { return SubExprs+ARGS_START; } arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); } const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; } const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();} /// getNumCommas - Return the number of commas that must have been present in /// this function call. unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; } /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If /// not, return 0. unsigned isBuiltinCall(ASTContext &Context) const; /// getCallReturnType - Get the return type of the call expr. This is not /// always the type of the expr itself, if the return type is a reference /// type. QualType getCallReturnType() const; SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } virtual SourceRange getSourceRange() const { return SourceRange(getCallee()->getLocStart(), RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() >= firstCallExprConstant && T->getStmtClass() <= lastCallExprConstant; } static bool classof(const CallExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F. /// class MemberExpr : public Expr { /// Extra data stored in some member expressions. struct MemberNameQualifier : public NameQualifier { DeclAccessPair FoundDecl; }; /// Base - the expression for the base pointer or structure references. In /// X.F, this is "X". Stmt *Base; /// MemberDecl - This is the decl being referenced by the field/member name. /// In X.F, this is the decl referenced by F. ValueDecl *MemberDecl; /// MemberLoc - This is the location of the member name. SourceLocation MemberLoc; /// MemberDNLoc - Provides source/type location info for the /// declaration name embedded in MemberDecl. DeclarationNameLoc MemberDNLoc; /// IsArrow - True if this is "X->F", false if this is "X.F". bool IsArrow : 1; /// \brief True if this member expression used a nested-name-specifier to /// refer to the member, e.g., "x->Base::f", or found its member via a using /// declaration. When true, a MemberNameQualifier /// structure is allocated immediately after the MemberExpr. bool HasQualifierOrFoundDecl : 1; /// \brief True if this member expression specified a template argument list /// explicitly, e.g., x->f. When true, an ExplicitTemplateArgumentList /// structure (and its TemplateArguments) are allocated immediately after /// the MemberExpr or, if the member expression also has a qualifier, after /// the MemberNameQualifier structure. bool HasExplicitTemplateArgumentList : 1; /// \brief Retrieve the qualifier that preceded the member name, if any. MemberNameQualifier *getMemberQualifier() { assert(HasQualifierOrFoundDecl); return reinterpret_cast (this + 1); } /// \brief Retrieve the qualifier that preceded the member name, if any. const MemberNameQualifier *getMemberQualifier() const { return const_cast(this)->getMemberQualifier(); } public: MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo, QualType ty) : Expr(MemberExprClass, ty, base->isTypeDependent(), base->isValueDependent()), Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()), MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow), HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) { assert(memberdecl->getDeclName() == NameInfo.getName()); } // NOTE: this constructor should be used only when it is known that // the member name can not provide additional syntactic info // (i.e., source locations for C++ operator names or type source info // for constructors, destructors and conversion oeprators). MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl, SourceLocation l, QualType ty) : Expr(MemberExprClass, ty, base->isTypeDependent(), base->isValueDependent()), Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(), IsArrow(isarrow), HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {} static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow, NestedNameSpecifier *qual, SourceRange qualrange, ValueDecl *memberdecl, DeclAccessPair founddecl, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *targs, QualType ty); void setBase(Expr *E) { Base = E; } Expr *getBase() const { return cast(Base); } /// \brief Retrieve the member declaration to which this expression refers. /// /// The returned declaration will either be a FieldDecl or (in C++) /// a CXXMethodDecl. ValueDecl *getMemberDecl() const { return MemberDecl; } void setMemberDecl(ValueDecl *D) { MemberDecl = D; } /// \brief Retrieves the declaration found by lookup. DeclAccessPair getFoundDecl() const { if (!HasQualifierOrFoundDecl) return DeclAccessPair::make(getMemberDecl(), getMemberDecl()->getAccess()); return getMemberQualifier()->FoundDecl; } /// \brief Determines whether this member expression actually had /// a C++ nested-name-specifier prior to the name of the member, e.g., /// x->Base::foo. bool hasQualifier() const { return getQualifier() != 0; } /// \brief If the member name was qualified, retrieves the source range of /// the nested-name-specifier that precedes the member name. Otherwise, /// returns an empty source range. SourceRange getQualifierRange() const { if (!HasQualifierOrFoundDecl) return SourceRange(); return getMemberQualifier()->Range; } /// \brief If the member name was qualified, retrieves the /// nested-name-specifier that precedes the member name. Otherwise, returns /// NULL. NestedNameSpecifier *getQualifier() const { if (!HasQualifierOrFoundDecl) return 0; return getMemberQualifier()->NNS; } /// \brief Determines whether this member expression actually had a C++ /// template argument list explicitly specified, e.g., x.f. bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgumentList; } /// \brief Copies the template arguments (if present) into the given /// structure. void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const { if (hasExplicitTemplateArgs()) getExplicitTemplateArgs().copyInto(List); } /// \brief Retrieve the explicit template argument list that /// follow the member template name. This must only be called on an /// expression with explicit template arguments. ExplicitTemplateArgumentList &getExplicitTemplateArgs() { assert(HasExplicitTemplateArgumentList); if (!HasQualifierOrFoundDecl) return *reinterpret_cast(this + 1); return *reinterpret_cast( getMemberQualifier() + 1); } /// \brief Retrieve the explicit template argument list that /// followed the member template name. This must only be called on /// an expression with explicit template arguments. const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const { return const_cast(this)->getExplicitTemplateArgs(); } /// \brief Retrieves the optional explicit template arguments. /// This points to the same data as getExplicitTemplateArgs(), but /// returns null if there are no explicit template arguments. const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const { if (!hasExplicitTemplateArgs()) return 0; return &getExplicitTemplateArgs(); } /// \brief Retrieve the location of the left angle bracket following the /// member name ('<'), if any. SourceLocation getLAngleLoc() const { if (!HasExplicitTemplateArgumentList) return SourceLocation(); return getExplicitTemplateArgs().LAngleLoc; } /// \brief Retrieve the template arguments provided as part of this /// template-id. const TemplateArgumentLoc *getTemplateArgs() const { if (!HasExplicitTemplateArgumentList) return 0; return getExplicitTemplateArgs().getTemplateArgs(); } /// \brief Retrieve the number of template arguments provided as part of this /// template-id. unsigned getNumTemplateArgs() const { if (!HasExplicitTemplateArgumentList) return 0; return getExplicitTemplateArgs().NumTemplateArgs; } /// \brief Retrieve the location of the right angle bracket following the /// template arguments ('>'). SourceLocation getRAngleLoc() const { if (!HasExplicitTemplateArgumentList) return SourceLocation(); return getExplicitTemplateArgs().RAngleLoc; } /// \brief Retrieve the member declaration name info. DeclarationNameInfo getMemberNameInfo() const { return DeclarationNameInfo(MemberDecl->getDeclName(), MemberLoc, MemberDNLoc); } bool isArrow() const { return IsArrow; } void setArrow(bool A) { IsArrow = A; } /// getMemberLoc - Return the location of the "member", in X->F, it is the /// location of 'F'. SourceLocation getMemberLoc() const { return MemberLoc; } void setMemberLoc(SourceLocation L) { MemberLoc = L; } virtual SourceRange getSourceRange() const { // If we have an implicit base (like a C++ implicit this), // make sure not to return its location SourceLocation EndLoc = (HasExplicitTemplateArgumentList) ? getRAngleLoc() : getMemberNameInfo().getEndLoc(); SourceLocation BaseLoc = getBase()->getLocStart(); if (BaseLoc.isInvalid()) return SourceRange(MemberLoc, EndLoc); return SourceRange(BaseLoc, EndLoc); } virtual SourceLocation getExprLoc() const { return MemberLoc; } static bool classof(const Stmt *T) { return T->getStmtClass() == MemberExprClass; } static bool classof(const MemberExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// CompoundLiteralExpr - [C99 6.5.2.5] /// class CompoundLiteralExpr : public Expr { /// LParenLoc - If non-null, this is the location of the left paren in a /// compound literal like "(int){4}". This can be null if this is a /// synthesized compound expression. SourceLocation LParenLoc; /// The type as written. This can be an incomplete array type, in /// which case the actual expression type will be different. TypeSourceInfo *TInfo; Stmt *Init; bool FileScope; public: // FIXME: Can compound literals be value-dependent? CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo, QualType T, Expr *init, bool fileScope) : Expr(CompoundLiteralExprClass, T, tinfo->getType()->isDependentType(), false), LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {} /// \brief Construct an empty compound literal. explicit CompoundLiteralExpr(EmptyShell Empty) : Expr(CompoundLiteralExprClass, Empty) { } const Expr *getInitializer() const { return cast(Init); } Expr *getInitializer() { return cast(Init); } void setInitializer(Expr *E) { Init = E; } bool isFileScope() const { return FileScope; } void setFileScope(bool FS) { FileScope = FS; } SourceLocation getLParenLoc() const { return LParenLoc; } void setLParenLoc(SourceLocation L) { LParenLoc = L; } TypeSourceInfo *getTypeSourceInfo() const { return TInfo; } void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; } virtual SourceRange getSourceRange() const { // FIXME: Init should never be null. if (!Init) return SourceRange(); if (LParenLoc.isInvalid()) return Init->getSourceRange(); return SourceRange(LParenLoc, Init->getLocEnd()); } static bool classof(const Stmt *T) { return T->getStmtClass() == CompoundLiteralExprClass; } static bool classof(const CompoundLiteralExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// CastExpr - Base class for type casts, including both implicit /// casts (ImplicitCastExpr) and explicit casts that have some /// representation in the source code (ExplicitCastExpr's derived /// classes). class CastExpr : public Expr { public: typedef clang::CastKind CastKind; private: unsigned Kind : 5; unsigned BasePathSize : BitsRemaining - 5; Stmt *Op; void CheckBasePath() const { #ifndef NDEBUG switch (getCastKind()) { case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_DerivedToBaseMemberPointer: case CK_BaseToDerived: case CK_BaseToDerivedMemberPointer: assert(!path_empty() && "Cast kind should have a base path!"); break; // These should not have an inheritance path. case CK_Unknown: case CK_BitCast: case CK_LValueBitCast: case CK_NoOp: case CK_Dynamic: case CK_ToUnion: case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: case CK_NullToMemberPointer: case CK_UserDefinedConversion: case CK_ConstructorConversion: case CK_IntegralToPointer: case CK_PointerToIntegral: case CK_ToVoid: case CK_VectorSplat: case CK_IntegralCast: case CK_IntegralToFloating: case CK_FloatingToIntegral: case CK_FloatingCast: case CK_MemberPointerToBoolean: case CK_AnyPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: case CK_ObjCObjectLValueCast: assert(path_empty() && "Cast kind should not have a base path!"); break; } #endif } const CXXBaseSpecifier * const *path_buffer() const { return const_cast(this)->path_buffer(); } CXXBaseSpecifier **path_buffer(); protected: CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op, unsigned BasePathSize) : Expr(SC, ty, // Cast expressions are type-dependent if the type is // dependent (C++ [temp.dep.expr]p3). ty->isDependentType(), // Cast expressions are value-dependent if the type is // dependent or if the subexpression is value-dependent. ty->isDependentType() || (op && op->isValueDependent())), Kind(kind), BasePathSize(BasePathSize), Op(op) { CheckBasePath(); } /// \brief Construct an empty cast. CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize) : Expr(SC, Empty), BasePathSize(BasePathSize) { } public: CastKind getCastKind() const { return static_cast(Kind); } void setCastKind(CastKind K) { Kind = K; } const char *getCastKindName() const; Expr *getSubExpr() { return cast(Op); } const Expr *getSubExpr() const { return cast(Op); } void setSubExpr(Expr *E) { Op = E; } /// \brief Retrieve the cast subexpression as it was written in the source /// code, looking through any implicit casts or other intermediate nodes /// introduced by semantic analysis. Expr *getSubExprAsWritten(); const Expr *getSubExprAsWritten() const { return const_cast(this)->getSubExprAsWritten(); } typedef CXXBaseSpecifier **path_iterator; typedef const CXXBaseSpecifier * const *path_const_iterator; bool path_empty() const { return BasePathSize == 0; } unsigned path_size() const { return BasePathSize; } path_iterator path_begin() { return path_buffer(); } path_iterator path_end() { return path_buffer() + path_size(); } path_const_iterator path_begin() const { return path_buffer(); } path_const_iterator path_end() const { return path_buffer() + path_size(); } void setCastPath(const CXXCastPath &Path); static bool classof(const Stmt *T) { return T->getStmtClass() >= firstCastExprConstant && T->getStmtClass() <= lastCastExprConstant; } static bool classof(const CastExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// ImplicitCastExpr - Allows us to explicitly represent implicit type /// conversions, which have no direct representation in the original /// source code. For example: converting T[]->T*, void f()->void /// (*f)(), float->double, short->int, etc. /// /// In C, implicit casts always produce rvalues. However, in C++, an /// implicit cast whose result is being bound to a reference will be /// an lvalue or xvalue. For example: /// /// @code /// class Base { }; /// class Derived : public Base { }; /// Derived &&ref(); /// void f(Derived d) { /// Base& b = d; // initializer is an ImplicitCastExpr /// // to an lvalue of type Base /// Base&& r = ref(); // initializer is an ImplicitCastExpr /// // to an xvalue of type Base /// } /// @endcode class ImplicitCastExpr : public CastExpr { private: ImplicitCastExpr(QualType ty, CastKind kind, Expr *op, unsigned BasePathLength, ExprValueKind VK) : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePathLength) { ValueKind = VK; } /// \brief Construct an empty implicit cast. explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize) : CastExpr(ImplicitCastExprClass, Shell, PathSize) { } public: enum OnStack_t { OnStack }; ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op, ExprValueKind VK) : CastExpr(ImplicitCastExprClass, ty, kind, op, 0) { ValueKind = VK; } static ImplicitCastExpr *Create(ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat); static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize); virtual SourceRange getSourceRange() const { return getSubExpr()->getSourceRange(); } /// getValueKind - The value kind that this cast produces. ExprValueKind getValueKind() const { return static_cast(ValueKind); } /// setValueKind - Set the value kind this cast produces. void setValueKind(ExprValueKind Cat) { ValueKind = Cat; } static bool classof(const Stmt *T) { return T->getStmtClass() == ImplicitCastExprClass; } static bool classof(const ImplicitCastExpr *) { return true; } }; /// ExplicitCastExpr - An explicit cast written in the source /// code. /// /// This class is effectively an abstract class, because it provides /// the basic representation of an explicitly-written cast without /// specifying which kind of cast (C cast, functional cast, static /// cast, etc.) was written; specific derived classes represent the /// particular style of cast and its location information. /// /// Unlike implicit casts, explicit cast nodes have two different /// types: the type that was written into the source code, and the /// actual type of the expression as determined by semantic /// analysis. These types may differ slightly. For example, in C++ one /// can cast to a reference type, which indicates that the resulting /// expression will be an lvalue or xvalue. The reference type, however, /// will not be used as the type of the expression. class ExplicitCastExpr : public CastExpr { /// TInfo - Source type info for the (written) type /// this expression is casting to. TypeSourceInfo *TInfo; protected: ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind, Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy) : CastExpr(SC, exprTy, kind, op, PathSize), TInfo(writtenTy) {} /// \brief Construct an empty explicit cast. ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize) : CastExpr(SC, Shell, PathSize) { } public: /// getTypeInfoAsWritten - Returns the type source info for the type /// that this expression is casting to. TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; } void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; } /// getTypeAsWritten - Returns the type that this expression is /// casting to, as written in the source code. QualType getTypeAsWritten() const { return TInfo->getType(); } static bool classof(const Stmt *T) { return T->getStmtClass() >= firstExplicitCastExprConstant && T->getStmtClass() <= lastExplicitCastExprConstant; } static bool classof(const ExplicitCastExpr *) { return true; } }; /// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style /// cast in C++ (C++ [expr.cast]), which uses the syntax /// (Type)expr. For example: @c (int)f. class CStyleCastExpr : public ExplicitCastExpr { SourceLocation LPLoc; // the location of the left paren SourceLocation RPLoc; // the location of the right paren CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy, SourceLocation l, SourceLocation r) : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, PathSize, writtenTy), LPLoc(l), RPLoc(r) {} /// \brief Construct an empty C-style explicit cast. explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize) : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { } public: static CStyleCastExpr *Create(ASTContext &Context, QualType T, CastKind K, Expr *Op, const CXXCastPath *BasePath, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation R); static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize); SourceLocation getLParenLoc() const { return LPLoc; } void setLParenLoc(SourceLocation L) { LPLoc = L; } SourceLocation getRParenLoc() const { return RPLoc; } void setRParenLoc(SourceLocation L) { RPLoc = L; } virtual SourceRange getSourceRange() const { return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd()); } static bool classof(const Stmt *T) { return T->getStmtClass() == CStyleCastExprClass; } static bool classof(const CStyleCastExpr *) { return true; } }; /// \brief A builtin binary operation expression such as "x + y" or "x <= y". /// /// This expression node kind describes a builtin binary operation, /// such as "x + y" for integer values "x" and "y". The operands will /// already have been converted to appropriate types (e.g., by /// performing promotions or conversions). /// /// In C++, where operators may be overloaded, a different kind of /// expression node (CXXOperatorCallExpr) is used to express the /// invocation of an overloaded operator with operator syntax. Within /// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is /// used to store an expression "x + y" depends on the subexpressions /// for x and y. If neither x or y is type-dependent, and the "+" /// operator resolves to a built-in operation, BinaryOperator will be /// used to express the computation (x and y may still be /// value-dependent). If either x or y is type-dependent, or if the /// "+" resolves to an overloaded operator, CXXOperatorCallExpr will /// be used to express the computation. class BinaryOperator : public Expr { public: typedef BinaryOperatorKind Opcode; private: unsigned Opc : 6; SourceLocation OpLoc; enum { LHS, RHS, END_EXPR }; Stmt* SubExprs[END_EXPR]; public: BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, SourceLocation opLoc) : Expr(BinaryOperatorClass, ResTy, lhs->isTypeDependent() || rhs->isTypeDependent(), lhs->isValueDependent() || rhs->isValueDependent()), Opc(opc), OpLoc(opLoc) { SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; assert(!isCompoundAssignmentOp() && "Use ArithAssignBinaryOperator for compound assignments"); } /// \brief Construct an empty binary operator. explicit BinaryOperator(EmptyShell Empty) : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { } SourceLocation getOperatorLoc() const { return OpLoc; } void setOperatorLoc(SourceLocation L) { OpLoc = L; } Opcode getOpcode() const { return static_cast(Opc); } void setOpcode(Opcode O) { Opc = O; } Expr *getLHS() const { return cast(SubExprs[LHS]); } void setLHS(Expr *E) { SubExprs[LHS] = E; } Expr *getRHS() const { return cast(SubExprs[RHS]); } void setRHS(Expr *E) { SubExprs[RHS] = E; } virtual SourceRange getSourceRange() const { return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd()); } /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it /// corresponds to, e.g. "<<=". static const char *getOpcodeStr(Opcode Op); const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); } /// \brief Retrieve the binary opcode that corresponds to the given /// overloaded operator. static Opcode getOverloadedOpcode(OverloadedOperatorKind OO); /// \brief Retrieve the overloaded operator kind that corresponds to /// the given binary opcode. static OverloadedOperatorKind getOverloadedOperator(Opcode Opc); /// predicates to categorize the respective opcodes. bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; } static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; } bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); } static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; } bool isShiftOp() const { return isShiftOp(getOpcode()); } static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; } bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); } static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; } bool isRelationalOp() const { return isRelationalOp(getOpcode()); } static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; } bool isEqualityOp() const { return isEqualityOp(getOpcode()); } static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; } bool isComparisonOp() const { return isComparisonOp(getOpcode()); } static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; } bool isLogicalOp() const { return isLogicalOp(getOpcode()); } bool isAssignmentOp() const { return Opc >= BO_Assign && Opc <= BO_OrAssign; } bool isCompoundAssignmentOp() const { return Opc > BO_Assign && Opc <= BO_OrAssign; } bool isShiftAssignOp() const { return Opc == BO_ShlAssign || Opc == BO_ShrAssign; } static bool classof(const Stmt *S) { return S->getStmtClass() >= firstBinaryOperatorConstant && S->getStmtClass() <= lastBinaryOperatorConstant; } static bool classof(const BinaryOperator *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); protected: BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, SourceLocation opLoc, bool dead) : Expr(CompoundAssignOperatorClass, ResTy, lhs->isTypeDependent() || rhs->isTypeDependent(), lhs->isValueDependent() || rhs->isValueDependent()), Opc(opc), OpLoc(opLoc) { SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; } BinaryOperator(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty), Opc(BO_MulAssign) { } }; /// CompoundAssignOperator - For compound assignments (e.g. +=), we keep /// track of the type the operation is performed in. Due to the semantics of /// these operators, the operands are promoted, the aritmetic performed, an /// implicit conversion back to the result type done, then the assignment takes /// place. This captures the intermediate type which the computation is done /// in. class CompoundAssignOperator : public BinaryOperator { QualType ComputationLHSType; QualType ComputationResultType; public: CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType, QualType CompLHSType, QualType CompResultType, SourceLocation OpLoc) : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true), ComputationLHSType(CompLHSType), ComputationResultType(CompResultType) { assert(isCompoundAssignmentOp() && "Only should be used for compound assignments"); } /// \brief Build an empty compound assignment operator expression. explicit CompoundAssignOperator(EmptyShell Empty) : BinaryOperator(CompoundAssignOperatorClass, Empty) { } // The two computation types are the type the LHS is converted // to for the computation and the type of the result; the two are // distinct in a few cases (specifically, int+=ptr and ptr-=ptr). QualType getComputationLHSType() const { return ComputationLHSType; } void setComputationLHSType(QualType T) { ComputationLHSType = T; } QualType getComputationResultType() const { return ComputationResultType; } void setComputationResultType(QualType T) { ComputationResultType = T; } static bool classof(const CompoundAssignOperator *) { return true; } static bool classof(const Stmt *S) { return S->getStmtClass() == CompoundAssignOperatorClass; } }; /// ConditionalOperator - The ?: operator. Note that LHS may be null when the /// GNU "missing LHS" extension is in use. /// class ConditionalOperator : public Expr { enum { COND, LHS, RHS, END_EXPR }; Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides. Stmt* Save; SourceLocation QuestionLoc, ColonLoc; public: ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs, SourceLocation CLoc, Expr *rhs, Expr *save, QualType t) : Expr(ConditionalOperatorClass, t, // FIXME: the type of the conditional operator doesn't // depend on the type of the conditional, but the standard // seems to imply that it could. File a bug! ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())), (cond->isValueDependent() || (lhs && lhs->isValueDependent()) || (rhs && rhs->isValueDependent()))), QuestionLoc(QLoc), ColonLoc(CLoc) { SubExprs[COND] = cond; SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; Save = save; } /// \brief Build an empty conditional operator. explicit ConditionalOperator(EmptyShell Empty) : Expr(ConditionalOperatorClass, Empty) { } // getCond - Return the expression representing the condition for // the ?: operator. Expr *getCond() const { return cast(SubExprs[COND]); } void setCond(Expr *E) { SubExprs[COND] = E; } // getTrueExpr - Return the subexpression representing the value of the ?: // expression if the condition evaluates to true. Expr *getTrueExpr() const { return cast(!Save ? SubExprs[LHS] : SubExprs[COND]); } // getFalseExpr - Return the subexpression representing the value of the ?: // expression if the condition evaluates to false. This is the same as getRHS. Expr *getFalseExpr() const { return cast(SubExprs[RHS]); } // getSaveExpr - In most cases this value will be null. Except a GCC extension // allows the left subexpression to be omitted, and instead of that condition // be returned. e.g: x ?: y is shorthand for x ? x : y, except that the // expression "x" is only evaluated once. Under this senario, this function // returns the original, non-converted condition expression for the ?:operator Expr *getSaveExpr() const { return Save? cast(Save) : (Expr*)0; } Expr *getLHS() const { return Save ? 0 : cast(SubExprs[LHS]); } void setLHS(Expr *E) { SubExprs[LHS] = E; } Expr *getRHS() const { return cast(SubExprs[RHS]); } void setRHS(Expr *E) { SubExprs[RHS] = E; } Expr *getSAVE() const { return Save? cast(Save) : (Expr*)0; } void setSAVE(Expr *E) { Save = E; } SourceLocation getQuestionLoc() const { return QuestionLoc; } void setQuestionLoc(SourceLocation L) { QuestionLoc = L; } SourceLocation getColonLoc() const { return ColonLoc; } void setColonLoc(SourceLocation L) { ColonLoc = L; } virtual SourceRange getSourceRange() const { return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd()); } static bool classof(const Stmt *T) { return T->getStmtClass() == ConditionalOperatorClass; } static bool classof(const ConditionalOperator *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// AddrLabelExpr - The GNU address of label extension, representing &&label. class AddrLabelExpr : public Expr { SourceLocation AmpAmpLoc, LabelLoc; LabelStmt *Label; public: AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L, QualType t) : Expr(AddrLabelExprClass, t, false, false), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {} /// \brief Build an empty address of a label expression. explicit AddrLabelExpr(EmptyShell Empty) : Expr(AddrLabelExprClass, Empty) { } SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; } void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; } SourceLocation getLabelLoc() const { return LabelLoc; } void setLabelLoc(SourceLocation L) { LabelLoc = L; } virtual SourceRange getSourceRange() const { return SourceRange(AmpAmpLoc, LabelLoc); } LabelStmt *getLabel() const { return Label; } void setLabel(LabelStmt *S) { Label = S; } static bool classof(const Stmt *T) { return T->getStmtClass() == AddrLabelExprClass; } static bool classof(const AddrLabelExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}). /// The StmtExpr contains a single CompoundStmt node, which it evaluates and /// takes the value of the last subexpression. class StmtExpr : public Expr { Stmt *SubStmt; SourceLocation LParenLoc, RParenLoc; public: // FIXME: Does type-dependence need to be computed differently? StmtExpr(CompoundStmt *substmt, QualType T, SourceLocation lp, SourceLocation rp) : Expr(StmtExprClass, T, T->isDependentType(), false), SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { } /// \brief Build an empty statement expression. explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { } CompoundStmt *getSubStmt() { return cast(SubStmt); } const CompoundStmt *getSubStmt() const { return cast(SubStmt); } void setSubStmt(CompoundStmt *S) { SubStmt = S; } virtual SourceRange getSourceRange() const { return SourceRange(LParenLoc, RParenLoc); } SourceLocation getLParenLoc() const { return LParenLoc; } void setLParenLoc(SourceLocation L) { LParenLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } static bool classof(const Stmt *T) { return T->getStmtClass() == StmtExprClass; } static bool classof(const StmtExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p. /// This AST node represents a function that returns 1 if two *types* (not /// expressions) are compatible. The result of this built-in function can be /// used in integer constant expressions. class TypesCompatibleExpr : public Expr { TypeSourceInfo *TInfo1; TypeSourceInfo *TInfo2; SourceLocation BuiltinLoc, RParenLoc; public: TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc, TypeSourceInfo *tinfo1, TypeSourceInfo *tinfo2, SourceLocation RP) : Expr(TypesCompatibleExprClass, ReturnType, false, false), TInfo1(tinfo1), TInfo2(tinfo2), BuiltinLoc(BLoc), RParenLoc(RP) {} /// \brief Build an empty __builtin_type_compatible_p expression. explicit TypesCompatibleExpr(EmptyShell Empty) : Expr(TypesCompatibleExprClass, Empty) { } TypeSourceInfo *getArgTInfo1() const { return TInfo1; } void setArgTInfo1(TypeSourceInfo *TInfo) { TInfo1 = TInfo; } TypeSourceInfo *getArgTInfo2() const { return TInfo2; } void setArgTInfo2(TypeSourceInfo *TInfo) { TInfo2 = TInfo; } QualType getArgType1() const { return TInfo1->getType(); } QualType getArgType2() const { return TInfo2->getType(); } SourceLocation getBuiltinLoc() const { return BuiltinLoc; } void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } virtual SourceRange getSourceRange() const { return SourceRange(BuiltinLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == TypesCompatibleExprClass; } static bool classof(const TypesCompatibleExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// ShuffleVectorExpr - clang-specific builtin-in function /// __builtin_shufflevector. /// This AST node represents a operator that does a constant /// shuffle, similar to LLVM's shufflevector instruction. It takes /// two vectors and a variable number of constant indices, /// and returns the appropriately shuffled vector. class ShuffleVectorExpr : public Expr { SourceLocation BuiltinLoc, RParenLoc; // SubExprs - the list of values passed to the __builtin_shufflevector // function. The first two are vectors, and the rest are constant // indices. The number of values in this list is always // 2+the number of indices in the vector type. Stmt **SubExprs; unsigned NumExprs; public: // FIXME: Can a shufflevector be value-dependent? Does type-dependence need // to be computed differently? ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr, QualType Type, SourceLocation BLoc, SourceLocation RP) : Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false), BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) { SubExprs = new (C) Stmt*[nexpr]; for (unsigned i = 0; i < nexpr; i++) SubExprs[i] = args[i]; } /// \brief Build an empty vector-shuffle expression. explicit ShuffleVectorExpr(EmptyShell Empty) : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { } SourceLocation getBuiltinLoc() const { return BuiltinLoc; } void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } virtual SourceRange getSourceRange() const { return SourceRange(BuiltinLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == ShuffleVectorExprClass; } static bool classof(const ShuffleVectorExpr *) { return true; } /// getNumSubExprs - Return the size of the SubExprs array. This includes the /// constant expression, the actual arguments passed in, and the function /// pointers. unsigned getNumSubExprs() const { return NumExprs; } /// getExpr - Return the Expr at the specified index. Expr *getExpr(unsigned Index) { assert((Index < NumExprs) && "Arg access out of range!"); return cast(SubExprs[Index]); } const Expr *getExpr(unsigned Index) const { assert((Index < NumExprs) && "Arg access out of range!"); return cast(SubExprs[Index]); } void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs); unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) { assert((N < NumExprs - 2) && "Shuffle idx out of range!"); return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue(); } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// ChooseExpr - GNU builtin-in function __builtin_choose_expr. /// This AST node is similar to the conditional operator (?:) in C, with /// the following exceptions: /// - the test expression must be a integer constant expression. /// - the expression returned acts like the chosen subexpression in every /// visible way: the type is the same as that of the chosen subexpression, /// and all predicates (whether it's an l-value, whether it's an integer /// constant expression, etc.) return the same result as for the chosen /// sub-expression. class ChooseExpr : public Expr { enum { COND, LHS, RHS, END_EXPR }; Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides. SourceLocation BuiltinLoc, RParenLoc; public: ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t, SourceLocation RP, bool TypeDependent, bool ValueDependent) : Expr(ChooseExprClass, t, TypeDependent, ValueDependent), BuiltinLoc(BLoc), RParenLoc(RP) { SubExprs[COND] = cond; SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; } /// \brief Build an empty __builtin_choose_expr. explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { } /// isConditionTrue - Return whether the condition is true (i.e. not /// equal to zero). bool isConditionTrue(ASTContext &C) const; /// getChosenSubExpr - Return the subexpression chosen according to the /// condition. Expr *getChosenSubExpr(ASTContext &C) const { return isConditionTrue(C) ? getLHS() : getRHS(); } Expr *getCond() const { return cast(SubExprs[COND]); } void setCond(Expr *E) { SubExprs[COND] = E; } Expr *getLHS() const { return cast(SubExprs[LHS]); } void setLHS(Expr *E) { SubExprs[LHS] = E; } Expr *getRHS() const { return cast(SubExprs[RHS]); } void setRHS(Expr *E) { SubExprs[RHS] = E; } SourceLocation getBuiltinLoc() const { return BuiltinLoc; } void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } virtual SourceRange getSourceRange() const { return SourceRange(BuiltinLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == ChooseExprClass; } static bool classof(const ChooseExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// GNUNullExpr - Implements the GNU __null extension, which is a name /// for a null pointer constant that has integral type (e.g., int or /// long) and is the same size and alignment as a pointer. The __null /// extension is typically only used by system headers, which define /// NULL as __null in C++ rather than using 0 (which is an integer /// that may not match the size of a pointer). class GNUNullExpr : public Expr { /// TokenLoc - The location of the __null keyword. SourceLocation TokenLoc; public: GNUNullExpr(QualType Ty, SourceLocation Loc) : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { } /// \brief Build an empty GNU __null expression. explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { } /// getTokenLocation - The location of the __null token. SourceLocation getTokenLocation() const { return TokenLoc; } void setTokenLocation(SourceLocation L) { TokenLoc = L; } virtual SourceRange getSourceRange() const { return SourceRange(TokenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == GNUNullExprClass; } static bool classof(const GNUNullExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// VAArgExpr, used for the builtin function __builtin_va_arg. class VAArgExpr : public Expr { Stmt *Val; TypeSourceInfo *TInfo; SourceLocation BuiltinLoc, RParenLoc; public: VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo, SourceLocation RPLoc, QualType t) : Expr(VAArgExprClass, t, t->isDependentType(), false), Val(e), TInfo(TInfo), BuiltinLoc(BLoc), RParenLoc(RPLoc) { } /// \brief Create an empty __builtin_va_arg expression. explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { } const Expr *getSubExpr() const { return cast(Val); } Expr *getSubExpr() { return cast(Val); } void setSubExpr(Expr *E) { Val = E; } TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; } void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; } SourceLocation getBuiltinLoc() const { return BuiltinLoc; } void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } virtual SourceRange getSourceRange() const { return SourceRange(BuiltinLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == VAArgExprClass; } static bool classof(const VAArgExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// @brief Describes an C or C++ initializer list. /// /// InitListExpr describes an initializer list, which can be used to /// initialize objects of different types, including /// struct/class/union types, arrays, and vectors. For example: /// /// @code /// struct foo x = { 1, { 2, 3 } }; /// @endcode /// /// Prior to semantic analysis, an initializer list will represent the /// initializer list as written by the user, but will have the /// placeholder type "void". This initializer list is called the /// syntactic form of the initializer, and may contain C99 designated /// initializers (represented as DesignatedInitExprs), initializations /// of subobject members without explicit braces, and so on. Clients /// interested in the original syntax of the initializer list should /// use the syntactic form of the initializer list. /// /// After semantic analysis, the initializer list will represent the /// semantic form of the initializer, where the initializations of all /// subobjects are made explicit with nested InitListExpr nodes and /// C99 designators have been eliminated by placing the designated /// initializations into the subobject they initialize. Additionally, /// any "holes" in the initialization, where no initializer has been /// specified for a particular subobject, will be replaced with /// implicitly-generated ImplicitValueInitExpr expressions that /// value-initialize the subobjects. Note, however, that the /// initializer lists may still have fewer initializers than there are /// elements to initialize within the object. /// /// Given the semantic form of the initializer list, one can retrieve /// the original syntactic form of that initializer list (if it /// exists) using getSyntacticForm(). Since many initializer lists /// have the same syntactic and semantic forms, getSyntacticForm() may /// return NULL, indicating that the current initializer list also /// serves as its syntactic form. class InitListExpr : public Expr { // FIXME: Eliminate this vector in favor of ASTContext allocation typedef ASTVector InitExprsTy; InitExprsTy InitExprs; SourceLocation LBraceLoc, RBraceLoc; /// Contains the initializer list that describes the syntactic form /// written in the source code. InitListExpr *SyntacticForm; /// If this initializer list initializes a union, specifies which /// field within the union will be initialized. FieldDecl *UnionFieldInit; /// Whether this initializer list originally had a GNU array-range /// designator in it. This is a temporary marker used by CodeGen. bool HadArrayRangeDesignator; public: InitListExpr(ASTContext &C, SourceLocation lbraceloc, Expr **initexprs, unsigned numinits, SourceLocation rbraceloc); /// \brief Build an empty initializer list. explicit InitListExpr(ASTContext &C, EmptyShell Empty) : Expr(InitListExprClass, Empty), InitExprs(C) { } unsigned getNumInits() const { return InitExprs.size(); } const Expr* getInit(unsigned Init) const { assert(Init < getNumInits() && "Initializer access out of range!"); return cast_or_null(InitExprs[Init]); } Expr* getInit(unsigned Init) { assert(Init < getNumInits() && "Initializer access out of range!"); return cast_or_null(InitExprs[Init]); } void setInit(unsigned Init, Expr *expr) { assert(Init < getNumInits() && "Initializer access out of range!"); InitExprs[Init] = expr; } /// \brief Reserve space for some number of initializers. void reserveInits(ASTContext &C, unsigned NumInits); /// @brief Specify the number of initializers /// /// If there are more than @p NumInits initializers, the remaining /// initializers will be destroyed. If there are fewer than @p /// NumInits initializers, NULL expressions will be added for the /// unknown initializers. void resizeInits(ASTContext &Context, unsigned NumInits); /// @brief Updates the initializer at index @p Init with the new /// expression @p expr, and returns the old expression at that /// location. /// /// When @p Init is out of range for this initializer list, the /// initializer list will be extended with NULL expressions to /// accomodate the new entry. Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr); /// \brief If this initializes a union, specifies which field in the /// union to initialize. /// /// Typically, this field is the first named field within the /// union. However, a designated initializer can specify the /// initialization of a different field within the union. FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; } void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; } // Explicit InitListExpr's originate from source code (and have valid source // locations). Implicit InitListExpr's are created by the semantic analyzer. bool isExplicit() { return LBraceLoc.isValid() && RBraceLoc.isValid(); } SourceLocation getLBraceLoc() const { return LBraceLoc; } void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; } SourceLocation getRBraceLoc() const { return RBraceLoc; } void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; } /// @brief Retrieve the initializer list that describes the /// syntactic form of the initializer. /// /// InitListExpr *getSyntacticForm() const { return SyntacticForm; } void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; } bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; } void sawArrayRangeDesignator(bool ARD = true) { HadArrayRangeDesignator = ARD; } virtual SourceRange getSourceRange() const { return SourceRange(LBraceLoc, RBraceLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == InitListExprClass; } static bool classof(const InitListExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); typedef InitExprsTy::iterator iterator; typedef InitExprsTy::const_iterator const_iterator; typedef InitExprsTy::reverse_iterator reverse_iterator; typedef InitExprsTy::const_reverse_iterator const_reverse_iterator; iterator begin() { return InitExprs.begin(); } const_iterator begin() const { return InitExprs.begin(); } iterator end() { return InitExprs.end(); } const_iterator end() const { return InitExprs.end(); } reverse_iterator rbegin() { return InitExprs.rbegin(); } const_reverse_iterator rbegin() const { return InitExprs.rbegin(); } reverse_iterator rend() { return InitExprs.rend(); } const_reverse_iterator rend() const { return InitExprs.rend(); } }; /// @brief Represents a C99 designated initializer expression. /// /// A designated initializer expression (C99 6.7.8) contains one or /// more designators (which can be field designators, array /// designators, or GNU array-range designators) followed by an /// expression that initializes the field or element(s) that the /// designators refer to. For example, given: /// /// @code /// struct point { /// double x; /// double y; /// }; /// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 }; /// @endcode /// /// The InitListExpr contains three DesignatedInitExprs, the first of /// which covers @c [2].y=1.0. This DesignatedInitExpr will have two /// designators, one array designator for @c [2] followed by one field /// designator for @c .y. The initalization expression will be 1.0. class DesignatedInitExpr : public Expr { public: /// \brief Forward declaration of the Designator class. class Designator; private: /// The location of the '=' or ':' prior to the actual initializer /// expression. SourceLocation EqualOrColonLoc; /// Whether this designated initializer used the GNU deprecated /// syntax rather than the C99 '=' syntax. bool GNUSyntax : 1; /// The number of designators in this initializer expression. unsigned NumDesignators : 15; /// \brief The designators in this designated initialization /// expression. Designator *Designators; /// The number of subexpressions of this initializer expression, /// which contains both the initializer and any additional /// expressions used by array and array-range designators. unsigned NumSubExprs : 16; DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators, const Designator *Designators, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr **IndexExprs, unsigned NumIndexExprs, Expr *Init); explicit DesignatedInitExpr(unsigned NumSubExprs) : Expr(DesignatedInitExprClass, EmptyShell()), NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { } public: /// A field designator, e.g., ".x". struct FieldDesignator { /// Refers to the field that is being initialized. The low bit /// of this field determines whether this is actually a pointer /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When /// initially constructed, a field designator will store an /// IdentifierInfo*. After semantic analysis has resolved that /// name, the field designator will instead store a FieldDecl*. uintptr_t NameOrField; /// The location of the '.' in the designated initializer. unsigned DotLoc; /// The location of the field name in the designated initializer. unsigned FieldLoc; }; /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]". struct ArrayOrRangeDesignator { /// Location of the first index expression within the designated /// initializer expression's list of subexpressions. unsigned Index; /// The location of the '[' starting the array range designator. unsigned LBracketLoc; /// The location of the ellipsis separating the start and end /// indices. Only valid for GNU array-range designators. unsigned EllipsisLoc; /// The location of the ']' terminating the array range designator. unsigned RBracketLoc; }; /// @brief Represents a single C99 designator. /// /// @todo This class is infuriatingly similar to clang::Designator, /// but minor differences (storing indices vs. storing pointers) /// keep us from reusing it. Try harder, later, to rectify these /// differences. class Designator { /// @brief The kind of designator this describes. enum { FieldDesignator, ArrayDesignator, ArrayRangeDesignator } Kind; union { /// A field designator, e.g., ".x". struct FieldDesignator Field; /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]". struct ArrayOrRangeDesignator ArrayOrRange; }; friend class DesignatedInitExpr; public: Designator() {} /// @brief Initializes a field designator. Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc, SourceLocation FieldLoc) : Kind(FieldDesignator) { Field.NameOrField = reinterpret_cast(FieldName) | 0x01; Field.DotLoc = DotLoc.getRawEncoding(); Field.FieldLoc = FieldLoc.getRawEncoding(); } /// @brief Initializes an array designator. Designator(unsigned Index, SourceLocation LBracketLoc, SourceLocation RBracketLoc) : Kind(ArrayDesignator) { ArrayOrRange.Index = Index; ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding(); ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding(); ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding(); } /// @brief Initializes a GNU array-range designator. Designator(unsigned Index, SourceLocation LBracketLoc, SourceLocation EllipsisLoc, SourceLocation RBracketLoc) : Kind(ArrayRangeDesignator) { ArrayOrRange.Index = Index; ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding(); ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding(); ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding(); } bool isFieldDesignator() const { return Kind == FieldDesignator; } bool isArrayDesignator() const { return Kind == ArrayDesignator; } bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; } IdentifierInfo * getFieldName(); FieldDecl *getField() { assert(Kind == FieldDesignator && "Only valid on a field designator"); if (Field.NameOrField & 0x01) return 0; else return reinterpret_cast(Field.NameOrField); } void setField(FieldDecl *FD) { assert(Kind == FieldDesignator && "Only valid on a field designator"); Field.NameOrField = reinterpret_cast(FD); } SourceLocation getDotLoc() const { assert(Kind == FieldDesignator && "Only valid on a field designator"); return SourceLocation::getFromRawEncoding(Field.DotLoc); } SourceLocation getFieldLoc() const { assert(Kind == FieldDesignator && "Only valid on a field designator"); return SourceLocation::getFromRawEncoding(Field.FieldLoc); } SourceLocation getLBracketLoc() const { assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) && "Only valid on an array or array-range designator"); return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc); } SourceLocation getRBracketLoc() const { assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) && "Only valid on an array or array-range designator"); return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc); } SourceLocation getEllipsisLoc() const { assert(Kind == ArrayRangeDesignator && "Only valid on an array-range designator"); return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc); } unsigned getFirstExprIndex() const { assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) && "Only valid on an array or array-range designator"); return ArrayOrRange.Index; } SourceLocation getStartLocation() const { if (Kind == FieldDesignator) return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc(); else return getLBracketLoc(); } }; static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators, unsigned NumDesignators, Expr **IndexExprs, unsigned NumIndexExprs, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr *Init); static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs); /// @brief Returns the number of designators in this initializer. unsigned size() const { return NumDesignators; } // Iterator access to the designators. typedef Designator* designators_iterator; designators_iterator designators_begin() { return Designators; } designators_iterator designators_end() { return Designators + NumDesignators; } Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; } void setDesignators(ASTContext &C, const Designator *Desigs, unsigned NumDesigs); Expr *getArrayIndex(const Designator& D); Expr *getArrayRangeStart(const Designator& D); Expr *getArrayRangeEnd(const Designator& D); /// @brief Retrieve the location of the '=' that precedes the /// initializer value itself, if present. SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; } void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; } /// @brief Determines whether this designated initializer used the /// deprecated GNU syntax for designated initializers. bool usesGNUSyntax() const { return GNUSyntax; } void setGNUSyntax(bool GNU) { GNUSyntax = GNU; } /// @brief Retrieve the initializer value. Expr *getInit() const { return cast(*const_cast(this)->child_begin()); } void setInit(Expr *init) { *child_begin() = init; } /// \brief Retrieve the total number of subexpressions in this /// designated initializer expression, including the actual /// initialized value and any expressions that occur within array /// and array-range designators. unsigned getNumSubExprs() const { return NumSubExprs; } Expr *getSubExpr(unsigned Idx) { assert(Idx < NumSubExprs && "Subscript out of range"); char* Ptr = static_cast(static_cast(this)); Ptr += sizeof(DesignatedInitExpr); return reinterpret_cast(reinterpret_cast(Ptr))[Idx]; } void setSubExpr(unsigned Idx, Expr *E) { assert(Idx < NumSubExprs && "Subscript out of range"); char* Ptr = static_cast(static_cast(this)); Ptr += sizeof(DesignatedInitExpr); reinterpret_cast(reinterpret_cast(Ptr))[Idx] = E; } /// \brief Replaces the designator at index @p Idx with the series /// of designators in [First, Last). void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First, const Designator *Last); virtual SourceRange getSourceRange() const; static bool classof(const Stmt *T) { return T->getStmtClass() == DesignatedInitExprClass; } static bool classof(const DesignatedInitExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// \brief Represents an implicitly-generated value initialization of /// an object of a given type. /// /// Implicit value initializations occur within semantic initializer /// list expressions (InitListExpr) as placeholders for subobject /// initializations not explicitly specified by the user. /// /// \see InitListExpr class ImplicitValueInitExpr : public Expr { public: explicit ImplicitValueInitExpr(QualType ty) : Expr(ImplicitValueInitExprClass, ty, false, false) { } /// \brief Construct an empty implicit value initialization. explicit ImplicitValueInitExpr(EmptyShell Empty) : Expr(ImplicitValueInitExprClass, Empty) { } static bool classof(const Stmt *T) { return T->getStmtClass() == ImplicitValueInitExprClass; } static bool classof(const ImplicitValueInitExpr *) { return true; } virtual SourceRange getSourceRange() const { return SourceRange(); } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; class ParenListExpr : public Expr { Stmt **Exprs; unsigned NumExprs; SourceLocation LParenLoc, RParenLoc; public: ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs, unsigned numexprs, SourceLocation rparenloc); /// \brief Build an empty paren list. explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { } unsigned getNumExprs() const { return NumExprs; } const Expr* getExpr(unsigned Init) const { assert(Init < getNumExprs() && "Initializer access out of range!"); return cast_or_null(Exprs[Init]); } Expr* getExpr(unsigned Init) { assert(Init < getNumExprs() && "Initializer access out of range!"); return cast_or_null(Exprs[Init]); } Expr **getExprs() { return reinterpret_cast(Exprs); } SourceLocation getLParenLoc() const { return LParenLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } virtual SourceRange getSourceRange() const { return SourceRange(LParenLoc, RParenLoc); } static bool classof(const Stmt *T) { return T->getStmtClass() == ParenListExprClass; } static bool classof(const ParenListExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); friend class ASTStmtReader; friend class ASTStmtWriter; }; //===----------------------------------------------------------------------===// // Clang Extensions //===----------------------------------------------------------------------===// /// ExtVectorElementExpr - This represents access to specific elements of a /// vector, and may occur on the left hand side or right hand side. For example /// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector. /// /// Note that the base may have either vector or pointer to vector type, just /// like a struct field reference. /// class ExtVectorElementExpr : public Expr { Stmt *Base; IdentifierInfo *Accessor; SourceLocation AccessorLoc; public: ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor, SourceLocation loc) : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(), base->isValueDependent()), Base(base), Accessor(&accessor), AccessorLoc(loc) {} /// \brief Build an empty vector element expression. explicit ExtVectorElementExpr(EmptyShell Empty) : Expr(ExtVectorElementExprClass, Empty) { } const Expr *getBase() const { return cast(Base); } Expr *getBase() { return cast(Base); } void setBase(Expr *E) { Base = E; } IdentifierInfo &getAccessor() const { return *Accessor; } void setAccessor(IdentifierInfo *II) { Accessor = II; } SourceLocation getAccessorLoc() const { return AccessorLoc; } void setAccessorLoc(SourceLocation L) { AccessorLoc = L; } /// getNumElements - Get the number of components being selected. unsigned getNumElements() const; /// containsDuplicateElements - Return true if any element access is /// repeated. bool containsDuplicateElements() const; /// getEncodedElementAccess - Encode the elements accessed into an llvm /// aggregate Constant of ConstantInt(s). void getEncodedElementAccess(llvm::SmallVectorImpl &Elts) const; virtual SourceRange getSourceRange() const { return SourceRange(getBase()->getLocStart(), AccessorLoc); } /// isArrow - Return true if the base expression is a pointer to vector, /// return false if the base expression is a vector. bool isArrow() const; static bool classof(const Stmt *T) { return T->getStmtClass() == ExtVectorElementExprClass; } static bool classof(const ExtVectorElementExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// BlockExpr - Adaptor class for mixing a BlockDecl with expressions. /// ^{ statement-body } or ^(int arg1, float arg2){ statement-body } class BlockExpr : public Expr { protected: BlockDecl *TheBlock; bool HasBlockDeclRefExprs; public: BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs) : Expr(BlockExprClass, ty, ty->isDependentType(), false), TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {} /// \brief Build an empty block expression. explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { } const BlockDecl *getBlockDecl() const { return TheBlock; } BlockDecl *getBlockDecl() { return TheBlock; } void setBlockDecl(BlockDecl *BD) { TheBlock = BD; } // Convenience functions for probing the underlying BlockDecl. SourceLocation getCaretLocation() const; const Stmt *getBody() const; Stmt *getBody(); virtual SourceRange getSourceRange() const { return SourceRange(getCaretLocation(), getBody()->getLocEnd()); } /// getFunctionType - Return the underlying function type for this block. const FunctionType *getFunctionType() const; /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr /// inside of the block that reference values outside the block. bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; } void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; } static bool classof(const Stmt *T) { return T->getStmtClass() == BlockExprClass; } static bool classof(const BlockExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; /// BlockDeclRefExpr - A reference to a declared variable, function, /// enum, etc. class BlockDeclRefExpr : public Expr { ValueDecl *D; SourceLocation Loc; bool IsByRef : 1; bool ConstQualAdded : 1; Stmt *CopyConstructorVal; public: // FIXME: Fix type/value dependence! BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef, bool constAdded = false, Stmt *copyConstructorVal = 0) : Expr(BlockDeclRefExprClass, t, (!t.isNull() && t->isDependentType()),false), D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded), CopyConstructorVal(copyConstructorVal) {} // \brief Build an empty reference to a declared variable in a // block. explicit BlockDeclRefExpr(EmptyShell Empty) : Expr(BlockDeclRefExprClass, Empty) { } ValueDecl *getDecl() { return D; } const ValueDecl *getDecl() const { return D; } void setDecl(ValueDecl *VD) { D = VD; } SourceLocation getLocation() const { return Loc; } void setLocation(SourceLocation L) { Loc = L; } virtual SourceRange getSourceRange() const { return SourceRange(Loc); } bool isByRef() const { return IsByRef; } void setByRef(bool BR) { IsByRef = BR; } bool isConstQualAdded() const { return ConstQualAdded; } void setConstQualAdded(bool C) { ConstQualAdded = C; } const Expr *getCopyConstructorExpr() const { return cast_or_null(CopyConstructorVal); } Expr *getCopyConstructorExpr() { return cast_or_null(CopyConstructorVal); } void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; } static bool classof(const Stmt *T) { return T->getStmtClass() == BlockDeclRefExprClass; } static bool classof(const BlockDeclRefExpr *) { return true; } // Iterators virtual child_iterator child_begin(); virtual child_iterator child_end(); }; } // end namespace clang #endif