//===- ThreadSafetyUtil.h --------------------------------------*- C++ --*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines some basic utility classes for use by ThreadSafetyTIL.h // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H #include "clang/AST/ExprCXX.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/AlignOf.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Compiler.h" #include #include #include #include #include namespace clang { namespace threadSafety { namespace til { // Simple wrapper class to abstract away from the details of memory management. // SExprs are allocated in pools, and deallocated all at once. class MemRegionRef { private: union AlignmentType { double d; void *p; long double dd; long long ii; }; public: MemRegionRef() : Allocator(nullptr) {} MemRegionRef(llvm::BumpPtrAllocator *A) : Allocator(A) {} void *allocate(size_t Sz) { return Allocator->Allocate(Sz, llvm::AlignOf::Alignment); } template T *allocateT() { return Allocator->Allocate(); } template T *allocateT(size_t NumElems) { return Allocator->Allocate(NumElems); } private: llvm::BumpPtrAllocator *Allocator; }; } // end namespace til } // end namespace threadSafety } // end namespace clang inline void *operator new(size_t Sz, clang::threadSafety::til::MemRegionRef &R) { return R.allocate(Sz); } namespace clang { namespace threadSafety { std::string getSourceLiteralString(const clang::Expr *CE); using llvm::StringRef; using clang::SourceLocation; namespace til { // A simple fixed size array class that does not manage its own memory, // suitable for use with bump pointer allocation. template class SimpleArray { public: SimpleArray() : Data(nullptr), Size(0), Capacity(0) {} SimpleArray(T *Dat, size_t Cp, size_t Sz = 0) : Data(Dat), Size(Sz), Capacity(Cp) {} SimpleArray(MemRegionRef A, size_t Cp) : Data(Cp == 0 ? nullptr : A.allocateT(Cp)), Size(0), Capacity(Cp) {} SimpleArray(SimpleArray &&A) : Data(A.Data), Size(A.Size), Capacity(A.Capacity) { A.Data = nullptr; A.Size = 0; A.Capacity = 0; } SimpleArray &operator=(SimpleArray &&RHS) { if (this != &RHS) { Data = RHS.Data; Size = RHS.Size; Capacity = RHS.Capacity; RHS.Data = nullptr; RHS.Size = RHS.Capacity = 0; } return *this; } // Reserve space for at least Ncp items, reallocating if necessary. void reserve(size_t Ncp, MemRegionRef A) { if (Ncp <= Capacity) return; T *Odata = Data; Data = A.allocateT(Ncp); Capacity = Ncp; memcpy(Data, Odata, sizeof(T) * Size); return; } // Reserve space for at least N more items. void reserveCheck(size_t N, MemRegionRef A) { if (Capacity == 0) reserve(u_max(InitialCapacity, N), A); else if (Size + N < Capacity) reserve(u_max(Size + N, Capacity * 2), A); } typedef T *iterator; typedef const T *const_iterator; size_t size() const { return Size; } size_t capacity() const { return Capacity; } T &operator[](unsigned i) { assert(i < Size && "Array index out of bounds."); return Data[i]; } const T &operator[](unsigned i) const { assert(i < Size && "Array index out of bounds."); return Data[i]; } T &back() { assert(Size && "No elements in the array."); return Data[Size - 1]; } const T &back() const { assert(Size && "No elements in the array."); return Data[Size - 1]; } iterator begin() { return Data; } iterator end() { return Data + Size; } const_iterator begin() const { return Data; } const_iterator end() const { return Data + Size; } const_iterator cbegin() const { return Data; } const_iterator cend() const { return Data + Size; } void push_back(const T &Elem) { assert(Size < Capacity); Data[Size++] = Elem; } // drop last n elements from array void drop(unsigned n = 0) { assert(Size > n); Size -= n; } void setValues(unsigned Sz, const T& C) { assert(Sz <= Capacity); Size = Sz; for (unsigned i = 0; i < Sz; ++i) { Data[i] = C; } } template unsigned append(Iter I, Iter E) { size_t Osz = Size; size_t J = Osz; for (; J < Capacity && I != E; ++J, ++I) Data[J] = *I; Size = J; return J - Osz; } // An adaptor to reverse a simple array class ReverseAdaptor { public: ReverseAdaptor(SimpleArray &Array) : Array(Array) {} // A reverse iterator used by the reverse adaptor class Iterator { public: Iterator(T *Data) : Data(Data) {} T &operator*() { return *Data; } const T &operator*() const { return *Data; } Iterator &operator++() { --Data; return *this; } bool operator!=(Iterator Other) { return Data != Other.Data; } private: T *Data; }; Iterator begin() { return Array.end() - 1; } Iterator end() { return Array.begin() - 1; } const Iterator begin() const { return Array.end() - 1; } const Iterator end() const { return Array.begin() - 1; } private: SimpleArray &Array; }; const ReverseAdaptor reverse() const { return ReverseAdaptor(*this); } ReverseAdaptor reverse() { return ReverseAdaptor(*this); } private: // std::max is annoying here, because it requires a reference, // thus forcing InitialCapacity to be initialized outside the .h file. size_t u_max(size_t i, size_t j) { return (i < j) ? j : i; } static const size_t InitialCapacity = 4; SimpleArray(const SimpleArray &A) LLVM_DELETED_FUNCTION; T *Data; size_t Size; size_t Capacity; }; } // end namespace til // A copy on write vector. // The vector can be in one of three states: // * invalid -- no operations are permitted. // * read-only -- read operations are permitted. // * writable -- read and write operations are permitted. // The init(), destroy(), and makeWritable() methods will change state. template class CopyOnWriteVector { class VectorData { public: VectorData() : NumRefs(1) { } VectorData(const VectorData &VD) : NumRefs(1), Vect(VD.Vect) { } unsigned NumRefs; std::vector Vect; }; // No copy constructor or copy assignment. Use clone() with move assignment. CopyOnWriteVector(const CopyOnWriteVector &V) LLVM_DELETED_FUNCTION; void operator=(const CopyOnWriteVector &V) LLVM_DELETED_FUNCTION; public: CopyOnWriteVector() : Data(nullptr) {} CopyOnWriteVector(CopyOnWriteVector &&V) : Data(V.Data) { V.Data = nullptr; } ~CopyOnWriteVector() { destroy(); } // Returns true if this holds a valid vector. bool valid() const { return Data; } // Returns true if this vector is writable. bool writable() const { return Data && Data->NumRefs == 1; } // If this vector is not valid, initialize it to a valid vector. void init() { if (!Data) { Data = new VectorData(); } } // Destroy this vector; thus making it invalid. void destroy() { if (!Data) return; if (Data->NumRefs <= 1) delete Data; else --Data->NumRefs; Data = nullptr; } // Make this vector writable, creating a copy if needed. void makeWritable() { if (!Data) { Data = new VectorData(); return; } if (Data->NumRefs == 1) return; // already writeable. --Data->NumRefs; Data = new VectorData(*Data); } // Create a lazy copy of this vector. CopyOnWriteVector clone() { return CopyOnWriteVector(Data); } CopyOnWriteVector &operator=(CopyOnWriteVector &&V) { destroy(); Data = V.Data; V.Data = nullptr; return *this; } typedef typename std::vector::const_iterator const_iterator; const std::vector &elements() const { return Data->Vect; } const_iterator begin() const { return elements().cbegin(); } const_iterator end() const { return elements().cend(); } const T& operator[](unsigned i) const { return elements()[i]; } unsigned size() const { return Data ? elements().size() : 0; } // Return true if V and this vector refer to the same data. bool sameAs(const CopyOnWriteVector &V) const { return Data == V.Data; } // Clear vector. The vector must be writable. void clear() { assert(writable() && "Vector is not writable!"); Data->Vect.clear(); } // Push a new element onto the end. The vector must be writable. void push_back(const T &Elem) { assert(writable() && "Vector is not writable!"); Data->Vect.push_back(Elem); } // Gets a mutable reference to the element at index(i). // The vector must be writable. T& elem(unsigned i) { assert(writable() && "Vector is not writable!"); return Data->Vect[i]; } // Drops elements from the back until the vector has size i. void downsize(unsigned i) { assert(writable() && "Vector is not writable!"); Data->Vect.erase(Data->Vect.begin() + i, Data->Vect.end()); } private: CopyOnWriteVector(VectorData *D) : Data(D) { if (!Data) return; ++Data->NumRefs; } VectorData *Data; }; inline std::ostream& operator<<(std::ostream& ss, const StringRef str) { return ss.write(str.data(), str.size()); } } // end namespace threadSafety } // end namespace clang #endif // LLVM_CLANG_THREAD_SAFETY_UTIL_H