//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the CFG and CFGBuilder classes for representing and // building Control-Flow Graphs (CFGs) from ASTs. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_CFG_H #define LLVM_CLANG_CFG_H #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Casting.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/DenseMap.h" #include "clang/AST/Stmt.h" #include "clang/Analysis/Support/BumpVector.h" #include "clang/Basic/SourceLocation.h" #include #include #include namespace clang { class CXXDestructorDecl; class Decl; class Stmt; class Expr; class FieldDecl; class VarDecl; class CXXCtorInitializer; class CXXBaseSpecifier; class CXXBindTemporaryExpr; class CFG; class PrinterHelper; class LangOptions; class ASTContext; /// CFGElement - Represents a top-level expression in a basic block. class CFGElement { public: enum Kind { // main kind Invalid, Statement, Initializer, // dtor kind AutomaticObjectDtor, BaseDtor, MemberDtor, TemporaryDtor, DTOR_BEGIN = AutomaticObjectDtor, DTOR_END = TemporaryDtor }; protected: // The int bits are used to mark the kind. llvm::PointerIntPair Data1; llvm::PointerIntPair Data2; CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = 0) : Data1(const_cast(Ptr1), ((unsigned) kind) & 0x3), Data2(const_cast(Ptr2), (((unsigned) kind) >> 2) & 0x3) {} public: CFGElement() {} Kind getKind() const { unsigned x = Data2.getInt(); x <<= 2; x |= Data1.getInt(); return (Kind) x; } bool isValid() const { return getKind() != Invalid; } operator bool() const { return isValid(); } template const ElemTy *getAs() const { if (llvm::isa(this)) return static_cast(this); return 0; } }; class CFGStmt : public CFGElement { public: CFGStmt(Stmt *S) : CFGElement(Statement, S) {} const Stmt *getStmt() const { return static_cast(Data1.getPointer()); } static bool classof(const CFGElement *E) { return E->getKind() == Statement; } }; /// CFGInitializer - Represents C++ base or member initializer from /// constructor's initialization list. class CFGInitializer : public CFGElement { public: CFGInitializer(CXXCtorInitializer *initializer) : CFGElement(Initializer, initializer) {} CXXCtorInitializer* getInitializer() const { return static_cast(Data1.getPointer()); } static bool classof(const CFGElement *E) { return E->getKind() == Initializer; } }; /// CFGImplicitDtor - Represents C++ object destructor implicitly generated /// by compiler on various occasions. class CFGImplicitDtor : public CFGElement { protected: CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = 0) : CFGElement(kind, data1, data2) { assert(kind >= DTOR_BEGIN && kind <= DTOR_END); } public: const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const; bool isNoReturn(ASTContext &astContext) const; static bool classof(const CFGElement *E) { Kind kind = E->getKind(); return kind >= DTOR_BEGIN && kind <= DTOR_END; } }; /// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated /// for automatic object or temporary bound to const reference at the point /// of leaving its local scope. class CFGAutomaticObjDtor: public CFGImplicitDtor { public: CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt) : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {} const VarDecl *getVarDecl() const { return static_cast(Data1.getPointer()); } // Get statement end of which triggered the destructor call. const Stmt *getTriggerStmt() const { return static_cast(Data2.getPointer()); } static bool classof(const CFGElement *elem) { return elem->getKind() == AutomaticObjectDtor; } }; /// CFGBaseDtor - Represents C++ object destructor implicitly generated for /// base object in destructor. class CFGBaseDtor : public CFGImplicitDtor { public: CFGBaseDtor(const CXXBaseSpecifier *base) : CFGImplicitDtor(BaseDtor, base) {} const CXXBaseSpecifier *getBaseSpecifier() const { return static_cast(Data1.getPointer()); } static bool classof(const CFGElement *E) { return E->getKind() == BaseDtor; } }; /// CFGMemberDtor - Represents C++ object destructor implicitly generated for /// member object in destructor. class CFGMemberDtor : public CFGImplicitDtor { public: CFGMemberDtor(const FieldDecl *field) : CFGImplicitDtor(MemberDtor, field, 0) {} const FieldDecl *getFieldDecl() const { return static_cast(Data1.getPointer()); } static bool classof(const CFGElement *E) { return E->getKind() == MemberDtor; } }; /// CFGTemporaryDtor - Represents C++ object destructor implicitly generated /// at the end of full expression for temporary object. class CFGTemporaryDtor : public CFGImplicitDtor { public: CFGTemporaryDtor(CXXBindTemporaryExpr *expr) : CFGImplicitDtor(TemporaryDtor, expr, 0) {} const CXXBindTemporaryExpr *getBindTemporaryExpr() const { return static_cast(Data1.getPointer()); } static bool classof(const CFGElement *E) { return E->getKind() == TemporaryDtor; } }; /// CFGTerminator - Represents CFGBlock terminator statement. /// /// TemporaryDtorsBranch bit is set to true if the terminator marks a branch /// in control flow of destructors of temporaries. In this case terminator /// statement is the same statement that branches control flow in evaluation /// of matching full expression. class CFGTerminator { llvm::PointerIntPair Data; public: CFGTerminator() {} CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false) : Data(S, TemporaryDtorsBranch) {} Stmt *getStmt() { return Data.getPointer(); } const Stmt *getStmt() const { return Data.getPointer(); } bool isTemporaryDtorsBranch() const { return Data.getInt(); } operator Stmt *() { return getStmt(); } operator const Stmt *() const { return getStmt(); } Stmt *operator->() { return getStmt(); } const Stmt *operator->() const { return getStmt(); } Stmt &operator*() { return *getStmt(); } const Stmt &operator*() const { return *getStmt(); } operator bool() const { return getStmt(); } }; /// CFGBlock - Represents a single basic block in a source-level CFG. /// It consists of: /// /// (1) A set of statements/expressions (which may contain subexpressions). /// (2) A "terminator" statement (not in the set of statements). /// (3) A list of successors and predecessors. /// /// Terminator: The terminator represents the type of control-flow that occurs /// at the end of the basic block. The terminator is a Stmt* referring to an /// AST node that has control-flow: if-statements, breaks, loops, etc. /// If the control-flow is conditional, the condition expression will appear /// within the set of statements in the block (usually the last statement). /// /// Predecessors: the order in the set of predecessors is arbitrary. /// /// Successors: the order in the set of successors is NOT arbitrary. We /// currently have the following orderings based on the terminator: /// /// Terminator Successor Ordering /// ----------------------------------------------------- /// if Then Block; Else Block /// ? operator LHS expression; RHS expression /// &&, || expression that uses result of && or ||, RHS /// /// But note that any of that may be NULL in case of optimized-out edges. /// class CFGBlock { class ElementList { typedef BumpVector ImplTy; ImplTy Impl; public: ElementList(BumpVectorContext &C) : Impl(C, 4) {} typedef std::reverse_iterator iterator; typedef std::reverse_iterator const_iterator; typedef ImplTy::iterator reverse_iterator; typedef ImplTy::const_iterator const_reverse_iterator; typedef ImplTy::const_reference const_reference; void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); } reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E, BumpVectorContext &C) { return Impl.insert(I, Cnt, E, C); } const_reference front() const { return Impl.back(); } const_reference back() const { return Impl.front(); } iterator begin() { return Impl.rbegin(); } iterator end() { return Impl.rend(); } const_iterator begin() const { return Impl.rbegin(); } const_iterator end() const { return Impl.rend(); } reverse_iterator rbegin() { return Impl.begin(); } reverse_iterator rend() { return Impl.end(); } const_reverse_iterator rbegin() const { return Impl.begin(); } const_reverse_iterator rend() const { return Impl.end(); } CFGElement operator[](size_t i) const { assert(i < Impl.size()); return Impl[Impl.size() - 1 - i]; } size_t size() const { return Impl.size(); } bool empty() const { return Impl.empty(); } }; /// Stmts - The set of statements in the basic block. ElementList Elements; /// Label - An (optional) label that prefixes the executable /// statements in the block. When this variable is non-NULL, it is /// either an instance of LabelStmt, SwitchCase or CXXCatchStmt. Stmt *Label; /// Terminator - The terminator for a basic block that /// indicates the type of control-flow that occurs between a block /// and its successors. CFGTerminator Terminator; /// LoopTarget - Some blocks are used to represent the "loop edge" to /// the start of a loop from within the loop body. This Stmt* will be /// refer to the loop statement for such blocks (and be null otherwise). const Stmt *LoopTarget; /// BlockID - A numerical ID assigned to a CFGBlock during construction /// of the CFG. unsigned BlockID; /// Predecessors/Successors - Keep track of the predecessor / successor /// CFG blocks. typedef BumpVector AdjacentBlocks; AdjacentBlocks Preds; AdjacentBlocks Succs; /// NoReturn - This bit is set when the basic block contains a function call /// or implicit destructor that is attributed as 'noreturn'. In that case, /// control cannot technically ever proceed past this block. All such blocks /// will have a single immediate successor: the exit block. This allows them /// to be easily reached from the exit block and using this bit quickly /// recognized without scanning the contents of the block. /// /// Optimization Note: This bit could be profitably folded with Terminator's /// storage if the memory usage of CFGBlock becomes an issue. unsigned HasNoReturnElement : 1; /// Parent - The parent CFG that owns this CFGBlock. CFG *Parent; public: explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent) : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL), BlockID(blockid), Preds(C, 1), Succs(C, 1), HasNoReturnElement(false), Parent(parent) {} ~CFGBlock() {} // Statement iterators typedef ElementList::iterator iterator; typedef ElementList::const_iterator const_iterator; typedef ElementList::reverse_iterator reverse_iterator; typedef ElementList::const_reverse_iterator const_reverse_iterator; CFGElement front() const { return Elements.front(); } CFGElement back() const { return Elements.back(); } iterator begin() { return Elements.begin(); } iterator end() { return Elements.end(); } const_iterator begin() const { return Elements.begin(); } const_iterator end() const { return Elements.end(); } reverse_iterator rbegin() { return Elements.rbegin(); } reverse_iterator rend() { return Elements.rend(); } const_reverse_iterator rbegin() const { return Elements.rbegin(); } const_reverse_iterator rend() const { return Elements.rend(); } unsigned size() const { return Elements.size(); } bool empty() const { return Elements.empty(); } CFGElement operator[](size_t i) const { return Elements[i]; } // CFG iterators typedef AdjacentBlocks::iterator pred_iterator; typedef AdjacentBlocks::const_iterator const_pred_iterator; typedef AdjacentBlocks::reverse_iterator pred_reverse_iterator; typedef AdjacentBlocks::const_reverse_iterator const_pred_reverse_iterator; typedef AdjacentBlocks::iterator succ_iterator; typedef AdjacentBlocks::const_iterator const_succ_iterator; typedef AdjacentBlocks::reverse_iterator succ_reverse_iterator; typedef AdjacentBlocks::const_reverse_iterator const_succ_reverse_iterator; pred_iterator pred_begin() { return Preds.begin(); } pred_iterator pred_end() { return Preds.end(); } const_pred_iterator pred_begin() const { return Preds.begin(); } const_pred_iterator pred_end() const { return Preds.end(); } pred_reverse_iterator pred_rbegin() { return Preds.rbegin(); } pred_reverse_iterator pred_rend() { return Preds.rend(); } const_pred_reverse_iterator pred_rbegin() const { return Preds.rbegin(); } const_pred_reverse_iterator pred_rend() const { return Preds.rend(); } succ_iterator succ_begin() { return Succs.begin(); } succ_iterator succ_end() { return Succs.end(); } const_succ_iterator succ_begin() const { return Succs.begin(); } const_succ_iterator succ_end() const { return Succs.end(); } succ_reverse_iterator succ_rbegin() { return Succs.rbegin(); } succ_reverse_iterator succ_rend() { return Succs.rend(); } const_succ_reverse_iterator succ_rbegin() const { return Succs.rbegin(); } const_succ_reverse_iterator succ_rend() const { return Succs.rend(); } unsigned succ_size() const { return Succs.size(); } bool succ_empty() const { return Succs.empty(); } unsigned pred_size() const { return Preds.size(); } bool pred_empty() const { return Preds.empty(); } class FilterOptions { public: FilterOptions() { IgnoreDefaultsWithCoveredEnums = 0; } unsigned IgnoreDefaultsWithCoveredEnums : 1; }; static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src, const CFGBlock *Dst); template class FilteredCFGBlockIterator { private: IMPL I, E; const FilterOptions F; const CFGBlock *From; public: explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e, const CFGBlock *from, const FilterOptions &f) : I(i), E(e), F(f), From(from) {} bool hasMore() const { return I != E; } FilteredCFGBlockIterator &operator++() { do { ++I; } while (hasMore() && Filter(*I)); return *this; } const CFGBlock *operator*() const { return *I; } private: bool Filter(const CFGBlock *To) { return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To); } }; typedef FilteredCFGBlockIterator filtered_pred_iterator; typedef FilteredCFGBlockIterator filtered_succ_iterator; filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const { return filtered_pred_iterator(pred_begin(), pred_end(), this, f); } filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const { return filtered_succ_iterator(succ_begin(), succ_end(), this, f); } // Manipulation of block contents void setTerminator(Stmt *Statement) { Terminator = Statement; } void setLabel(Stmt *Statement) { Label = Statement; } void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; } void setHasNoReturnElement() { HasNoReturnElement = true; } CFGTerminator getTerminator() { return Terminator; } const CFGTerminator getTerminator() const { return Terminator; } Stmt *getTerminatorCondition(); const Stmt *getTerminatorCondition() const { return const_cast(this)->getTerminatorCondition(); } const Stmt *getLoopTarget() const { return LoopTarget; } Stmt *getLabel() { return Label; } const Stmt *getLabel() const { return Label; } bool hasNoReturnElement() const { return HasNoReturnElement; } unsigned getBlockID() const { return BlockID; } CFG *getParent() const { return Parent; } void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const; void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO, bool ShowColors) const; void printTerminator(raw_ostream &OS, const LangOptions &LO) const; void addSuccessor(CFGBlock *Block, BumpVectorContext &C) { if (Block) Block->Preds.push_back(this, C); Succs.push_back(Block, C); } void appendStmt(Stmt *statement, BumpVectorContext &C) { Elements.push_back(CFGStmt(statement), C); } void appendInitializer(CXXCtorInitializer *initializer, BumpVectorContext &C) { Elements.push_back(CFGInitializer(initializer), C); } void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) { Elements.push_back(CFGBaseDtor(BS), C); } void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) { Elements.push_back(CFGMemberDtor(FD), C); } void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) { Elements.push_back(CFGTemporaryDtor(E), C); } void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) { Elements.push_back(CFGAutomaticObjDtor(VD, S), C); } // Destructors must be inserted in reversed order. So insertion is in two // steps. First we prepare space for some number of elements, then we insert // the elements beginning at the last position in prepared space. iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt, BumpVectorContext &C) { return iterator(Elements.insert(I.base(), Cnt, CFGElement(), C)); } iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) { *I = CFGAutomaticObjDtor(VD, S); return ++I; } }; /// CFG - Represents a source-level, intra-procedural CFG that represents the /// control-flow of a Stmt. The Stmt can represent an entire function body, /// or a single expression. A CFG will always contain one empty block that /// represents the Exit point of the CFG. A CFG will also contain a designated /// Entry block. The CFG solely represents control-flow; it consists of /// CFGBlocks which are simply containers of Stmt*'s in the AST the CFG /// was constructed from. class CFG { public: //===--------------------------------------------------------------------===// // CFG Construction & Manipulation. //===--------------------------------------------------------------------===// class BuildOptions { std::bitset alwaysAddMask; public: typedef llvm::DenseMap ForcedBlkExprs; ForcedBlkExprs **forcedBlkExprs; bool PruneTriviallyFalseEdges; bool AddEHEdges; bool AddInitializers; bool AddImplicitDtors; bool AddTemporaryDtors; bool alwaysAdd(const Stmt *stmt) const { return alwaysAddMask[stmt->getStmtClass()]; } BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) { alwaysAddMask[stmtClass] = val; return *this; } BuildOptions &setAllAlwaysAdd() { alwaysAddMask.set(); return *this; } BuildOptions() : forcedBlkExprs(0), PruneTriviallyFalseEdges(true) ,AddEHEdges(false) ,AddInitializers(false) ,AddImplicitDtors(false) ,AddTemporaryDtors(false) {} }; /// \brief Provides a custom implementation of the iterator class to have the /// same interface as Function::iterator - iterator returns CFGBlock /// (not a pointer to CFGBlock). class graph_iterator { public: typedef const CFGBlock value_type; typedef value_type& reference; typedef value_type* pointer; typedef BumpVector::iterator ImplTy; graph_iterator(const ImplTy &i) : I(i) {} bool operator==(const graph_iterator &X) const { return I == X.I; } bool operator!=(const graph_iterator &X) const { return I != X.I; } reference operator*() const { return **I; } pointer operator->() const { return *I; } operator CFGBlock* () { return *I; } graph_iterator &operator++() { ++I; return *this; } graph_iterator &operator--() { --I; return *this; } private: ImplTy I; }; class const_graph_iterator { public: typedef const CFGBlock value_type; typedef value_type& reference; typedef value_type* pointer; typedef BumpVector::const_iterator ImplTy; const_graph_iterator(const ImplTy &i) : I(i) {} bool operator==(const const_graph_iterator &X) const { return I == X.I; } bool operator!=(const const_graph_iterator &X) const { return I != X.I; } reference operator*() const { return **I; } pointer operator->() const { return *I; } operator CFGBlock* () const { return *I; } const_graph_iterator &operator++() { ++I; return *this; } const_graph_iterator &operator--() { --I; return *this; } private: ImplTy I; }; /// buildCFG - Builds a CFG from an AST. The responsibility to free the /// constructed CFG belongs to the caller. static CFG* buildCFG(const Decl *D, Stmt *AST, ASTContext *C, const BuildOptions &BO); /// createBlock - Create a new block in the CFG. The CFG owns the block; /// the caller should not directly free it. CFGBlock *createBlock(); /// setEntry - Set the entry block of the CFG. This is typically used /// only during CFG construction. Most CFG clients expect that the /// entry block has no predecessors and contains no statements. void setEntry(CFGBlock *B) { Entry = B; } /// setIndirectGotoBlock - Set the block used for indirect goto jumps. /// This is typically used only during CFG construction. void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; } //===--------------------------------------------------------------------===// // Block Iterators //===--------------------------------------------------------------------===// typedef BumpVector CFGBlockListTy; typedef CFGBlockListTy::iterator iterator; typedef CFGBlockListTy::const_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; CFGBlock & front() { return *Blocks.front(); } CFGBlock & back() { return *Blocks.back(); } iterator begin() { return Blocks.begin(); } iterator end() { return Blocks.end(); } const_iterator begin() const { return Blocks.begin(); } const_iterator end() const { return Blocks.end(); } graph_iterator nodes_begin() { return graph_iterator(Blocks.begin()); } graph_iterator nodes_end() { return graph_iterator(Blocks.end()); } const_graph_iterator nodes_begin() const { return const_graph_iterator(Blocks.begin()); } const_graph_iterator nodes_end() const { return const_graph_iterator(Blocks.end()); } reverse_iterator rbegin() { return Blocks.rbegin(); } reverse_iterator rend() { return Blocks.rend(); } const_reverse_iterator rbegin() const { return Blocks.rbegin(); } const_reverse_iterator rend() const { return Blocks.rend(); } CFGBlock & getEntry() { return *Entry; } const CFGBlock & getEntry() const { return *Entry; } CFGBlock & getExit() { return *Exit; } const CFGBlock & getExit() const { return *Exit; } CFGBlock * getIndirectGotoBlock() { return IndirectGotoBlock; } const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; } typedef std::vector::const_iterator try_block_iterator; try_block_iterator try_blocks_begin() const { return TryDispatchBlocks.begin(); } try_block_iterator try_blocks_end() const { return TryDispatchBlocks.end(); } void addTryDispatchBlock(const CFGBlock *block) { TryDispatchBlocks.push_back(block); } //===--------------------------------------------------------------------===// // Member templates useful for various batch operations over CFGs. //===--------------------------------------------------------------------===// template void VisitBlockStmts(CALLBACK& O) const { for (const_iterator I=begin(), E=end(); I != E; ++I) for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end(); BI != BE; ++BI) { if (const CFGStmt *stmt = BI->getAs()) O(const_cast(stmt->getStmt())); } } //===--------------------------------------------------------------------===// // CFG Introspection. //===--------------------------------------------------------------------===// struct BlkExprNumTy { const signed Idx; explicit BlkExprNumTy(signed idx) : Idx(idx) {} explicit BlkExprNumTy() : Idx(-1) {} operator bool() const { return Idx >= 0; } operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; } }; bool isBlkExpr(const Stmt *S) { return getBlkExprNum(S); } bool isBlkExpr(const Stmt *S) const { return const_cast(this)->isBlkExpr(S); } BlkExprNumTy getBlkExprNum(const Stmt *S); unsigned getNumBlkExprs(); /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which /// start at 0). unsigned getNumBlockIDs() const { return NumBlockIDs; } /// size - Return the total number of CFGBlocks within the CFG /// This is simply a renaming of the getNumBlockIDs(). This is necessary /// because the dominator implementation needs such an interface. unsigned size() const { return NumBlockIDs; } //===--------------------------------------------------------------------===// // CFG Debugging: Pretty-Printing and Visualization. //===--------------------------------------------------------------------===// void viewCFG(const LangOptions &LO) const; void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const; void dump(const LangOptions &LO, bool ShowColors) const; //===--------------------------------------------------------------------===// // Internal: constructors and data. //===--------------------------------------------------------------------===// CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0), BlkExprMap(NULL), Blocks(BlkBVC, 10) {} ~CFG(); llvm::BumpPtrAllocator& getAllocator() { return BlkBVC.getAllocator(); } BumpVectorContext &getBumpVectorContext() { return BlkBVC; } private: CFGBlock *Entry; CFGBlock *Exit; CFGBlock* IndirectGotoBlock; // Special block to contain collective dispatch // for indirect gotos unsigned NumBlockIDs; // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h. // It represents a map from Expr* to integers to record the set of // block-level expressions and their "statement number" in the CFG. void * BlkExprMap; BumpVectorContext BlkBVC; CFGBlockListTy Blocks; /// C++ 'try' statements are modeled with an indirect dispatch block. /// This is the collection of such blocks present in the CFG. std::vector TryDispatchBlocks; }; } // end namespace clang //===----------------------------------------------------------------------===// // GraphTraits specializations for CFG basic block graphs (source-level CFGs) //===----------------------------------------------------------------------===// namespace llvm { /// Implement simplify_type for CFGTerminator, so that we can dyn_cast from /// CFGTerminator to a specific Stmt class. template <> struct simplify_type { typedef const ::clang::Stmt *SimpleType; static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) { return Val.getStmt(); } }; template <> struct simplify_type< ::clang::CFGTerminator> { typedef ::clang::Stmt *SimpleType; static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) { return const_cast(Val.getStmt()); } }; // Traits for: CFGBlock template <> struct GraphTraits< ::clang::CFGBlock *> { typedef ::clang::CFGBlock NodeType; typedef ::clang::CFGBlock::succ_iterator ChildIteratorType; static NodeType* getEntryNode(::clang::CFGBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType* N) { return N->succ_begin(); } static inline ChildIteratorType child_end(NodeType* N) { return N->succ_end(); } }; template <> struct GraphTraits< const ::clang::CFGBlock *> { typedef const ::clang::CFGBlock NodeType; typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType; static NodeType* getEntryNode(const clang::CFGBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType* N) { return N->succ_begin(); } static inline ChildIteratorType child_end(NodeType* N) { return N->succ_end(); } }; template <> struct GraphTraits > { typedef ::clang::CFGBlock NodeType; typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse< ::clang::CFGBlock*> G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType* N) { return N->pred_begin(); } static inline ChildIteratorType child_end(NodeType* N) { return N->pred_end(); } }; template <> struct GraphTraits > { typedef const ::clang::CFGBlock NodeType; typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType* N) { return N->pred_begin(); } static inline ChildIteratorType child_end(NodeType* N) { return N->pred_end(); } }; // Traits for: CFG template <> struct GraphTraits< ::clang::CFG* > : public GraphTraits< ::clang::CFGBlock *> { typedef ::clang::CFG::graph_iterator nodes_iterator; static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); } static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();} static nodes_iterator nodes_end(::clang::CFG* F) { return F->nodes_end(); } static unsigned size(::clang::CFG* F) { return F->size(); } }; template <> struct GraphTraits : public GraphTraits { typedef ::clang::CFG::const_graph_iterator nodes_iterator; static NodeType *getEntryNode( const ::clang::CFG* F) { return &F->getEntry(); } static nodes_iterator nodes_begin( const ::clang::CFG* F) { return F->nodes_begin(); } static nodes_iterator nodes_end( const ::clang::CFG* F) { return F->nodes_end(); } static unsigned size(const ::clang::CFG* F) { return F->size(); } }; template <> struct GraphTraits > : public GraphTraits > { typedef ::clang::CFG::graph_iterator nodes_iterator; static NodeType *getEntryNode( ::clang::CFG* F) { return &F->getExit(); } static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();} static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); } }; template <> struct GraphTraits > : public GraphTraits > { typedef ::clang::CFG::const_graph_iterator nodes_iterator; static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); } static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->nodes_begin(); } static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->nodes_end(); } }; } // end llvm namespace #endif