//===--- Diagnostic.h - C Language Family Diagnostic Handling ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Diagnostic-related interfaces. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_DIAGNOSTIC_H #define LLVM_CLANG_DIAGNOSTIC_H #include "clang/Basic/DiagnosticIDs.h" #include "clang/Basic/SourceLocation.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IntrusiveRefCntPtr.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/Support/type_traits.h" #include #include namespace clang { class DiagnosticClient; class DiagnosticBuilder; class IdentifierInfo; class DeclContext; class LangOptions; class Preprocessor; class DiagnosticErrorTrap; class StoredDiagnostic; /// \brief Annotates a diagnostic with some code that should be /// inserted, removed, or replaced to fix the problem. /// /// This kind of hint should be used when we are certain that the /// introduction, removal, or modification of a particular (small!) /// amount of code will correct a compilation error. The compiler /// should also provide full recovery from such errors, such that /// suppressing the diagnostic output can still result in successful /// compilation. class FixItHint { public: /// \brief Code that should be replaced to correct the error. Empty for an /// insertion hint. CharSourceRange RemoveRange; /// \brief The actual code to insert at the insertion location, as a /// string. std::string CodeToInsert; /// \brief Empty code modification hint, indicating that no code /// modification is known. FixItHint() : RemoveRange() { } bool isNull() const { return !RemoveRange.isValid(); } /// \brief Create a code modification hint that inserts the given /// code string at a specific location. static FixItHint CreateInsertion(SourceLocation InsertionLoc, llvm::StringRef Code) { FixItHint Hint; Hint.RemoveRange = CharSourceRange(SourceRange(InsertionLoc, InsertionLoc), false); Hint.CodeToInsert = Code; return Hint; } /// \brief Create a code modification hint that removes the given /// source range. static FixItHint CreateRemoval(CharSourceRange RemoveRange) { FixItHint Hint; Hint.RemoveRange = RemoveRange; return Hint; } static FixItHint CreateRemoval(SourceRange RemoveRange) { return CreateRemoval(CharSourceRange::getTokenRange(RemoveRange)); } /// \brief Create a code modification hint that replaces the given /// source range with the given code string. static FixItHint CreateReplacement(CharSourceRange RemoveRange, llvm::StringRef Code) { FixItHint Hint; Hint.RemoveRange = RemoveRange; Hint.CodeToInsert = Code; return Hint; } static FixItHint CreateReplacement(SourceRange RemoveRange, llvm::StringRef Code) { return CreateReplacement(CharSourceRange::getTokenRange(RemoveRange), Code); } }; /// Diagnostic - This concrete class is used by the front-end to report /// problems and issues. It massages the diagnostics (e.g. handling things like /// "report warnings as errors" and passes them off to the DiagnosticClient for /// reporting to the user. Diagnostic is tied to one translation unit and /// one SourceManager. class Diagnostic : public llvm::RefCountedBase { public: /// Level - The level of the diagnostic, after it has been through mapping. enum Level { Ignored = DiagnosticIDs::Ignored, Note = DiagnosticIDs::Note, Warning = DiagnosticIDs::Warning, Error = DiagnosticIDs::Error, Fatal = DiagnosticIDs::Fatal }; /// ExtensionHandling - How do we handle otherwise-unmapped extension? This /// is controlled by -pedantic and -pedantic-errors. enum ExtensionHandling { Ext_Ignore, Ext_Warn, Ext_Error }; enum ArgumentKind { ak_std_string, // std::string ak_c_string, // const char * ak_sint, // int ak_uint, // unsigned ak_identifierinfo, // IdentifierInfo ak_qualtype, // QualType ak_declarationname, // DeclarationName ak_nameddecl, // NamedDecl * ak_nestednamespec, // NestedNameSpecifier * ak_declcontext // DeclContext * }; /// Specifies which overload candidates to display when overload resolution /// fails. enum OverloadsShown { Ovl_All, ///< Show all overloads. Ovl_Best ///< Show just the "best" overload candidates. }; /// ArgumentValue - This typedef represents on argument value, which is a /// union discriminated by ArgumentKind, with a value. typedef std::pair ArgumentValue; private: unsigned char AllExtensionsSilenced; // Used by __extension__ bool IgnoreAllWarnings; // Ignore all warnings: -w bool WarningsAsErrors; // Treat warnings like errors: bool ErrorsAsFatal; // Treat errors like fatal errors. bool SuppressSystemWarnings; // Suppress warnings in system headers. bool SuppressAllDiagnostics; // Suppress all diagnostics. OverloadsShown ShowOverloads; // Which overload candidates to show. unsigned ErrorLimit; // Cap of # errors emitted, 0 -> no limit. unsigned TemplateBacktraceLimit; // Cap on depth of template backtrace stack, // 0 -> no limit. ExtensionHandling ExtBehavior; // Map extensions onto warnings or errors? llvm::IntrusiveRefCntPtr Diags; DiagnosticClient *Client; bool OwnsDiagClient; SourceManager *SourceMgr; /// \brief Mapping information for diagnostics. Mapping info is /// packed into four bits per diagnostic. The low three bits are the mapping /// (an instance of diag::Mapping), or zero if unset. The high bit is set /// when the mapping was established as a user mapping. If the high bit is /// clear, then the low bits are set to the default value, and should be /// mapped with -pedantic, -Werror, etc. /// /// A new DiagState is created and kept around when diagnostic pragmas modify /// the state so that we know what is the diagnostic state at any given /// source location. class DiagState { llvm::DenseMap DiagMap; public: typedef llvm::DenseMap::const_iterator iterator; void setMapping(diag::kind Diag, unsigned Map) { DiagMap[Diag] = Map; } diag::Mapping getMapping(diag::kind Diag) const { iterator I = DiagMap.find(Diag); if (I != DiagMap.end()) return (diag::Mapping)I->second; return diag::Mapping(); } iterator begin() const { return DiagMap.begin(); } iterator end() const { return DiagMap.end(); } }; /// \brief Keeps and automatically disposes all DiagStates that we create. std::list DiagStates; /// \brief Represents a point in source where the diagnostic state was /// modified because of a pragma. 'Loc' can be null if the point represents /// the diagnostic state modifications done through the command-line. struct DiagStatePoint { DiagState *State; FullSourceLoc Loc; DiagStatePoint(DiagState *State, FullSourceLoc Loc) : State(State), Loc(Loc) { } bool operator<(const DiagStatePoint &RHS) const { // If Loc is invalid it means it came from , in which case // we regard it as coming before any valid source location. if (RHS.Loc.isInvalid()) return false; if (Loc.isInvalid()) return true; return Loc.isBeforeInTranslationUnitThan(RHS.Loc); } }; /// \brief A vector of all DiagStatePoints representing changes in diagnostic /// state due to diagnostic pragmas. The vector is always sorted according to /// the SourceLocation of the DiagStatePoint. typedef std::vector DiagStatePointsTy; mutable DiagStatePointsTy DiagStatePoints; /// \brief Keeps the DiagState that was active during each diagnostic 'push' /// so we can get back at it when we 'pop'. std::vector DiagStateOnPushStack; DiagState *GetCurDiagState() const { assert(!DiagStatePoints.empty()); return DiagStatePoints.back().State; } void PushDiagStatePoint(DiagState *State, SourceLocation L) { FullSourceLoc Loc(L, *SourceMgr); // Make sure that DiagStatePoints is always sorted according to Loc. assert((Loc.isValid() || DiagStatePoints.empty()) && "Adding invalid loc point after another point"); assert((Loc.isInvalid() || DiagStatePoints.empty() || DiagStatePoints.back().Loc.isInvalid() || DiagStatePoints.back().Loc.isBeforeInTranslationUnitThan(Loc)) && "Previous point loc comes after or is the same as new one"); DiagStatePoints.push_back(DiagStatePoint(State, FullSourceLoc(Loc, *SourceMgr))); } /// \brief Finds the DiagStatePoint that contains the diagnostic state of /// the given source location. DiagStatePointsTy::iterator GetDiagStatePointForLoc(SourceLocation Loc) const; /// ErrorOccurred / FatalErrorOccurred - This is set to true when an error or /// fatal error is emitted, and is sticky. bool ErrorOccurred; bool FatalErrorOccurred; /// \brief Indicates that an unrecoverable error has occurred. bool UnrecoverableErrorOccurred; /// \brief Toggles for DiagnosticErrorTrap to check whether an error occurred /// during a parsing section, e.g. during parsing a function. bool TrapErrorOccurred; bool TrapUnrecoverableErrorOccurred; /// LastDiagLevel - This is the level of the last diagnostic emitted. This is /// used to emit continuation diagnostics with the same level as the /// diagnostic that they follow. DiagnosticIDs::Level LastDiagLevel; unsigned NumWarnings; // Number of warnings reported unsigned NumErrors; // Number of errors reported unsigned NumErrorsSuppressed; // Number of errors suppressed /// ArgToStringFn - A function pointer that converts an opaque diagnostic /// argument to a strings. This takes the modifiers and argument that was /// present in the diagnostic. /// /// The PrevArgs array (whose length is NumPrevArgs) indicates the previous /// arguments formatted for this diagnostic. Implementations of this function /// can use this information to avoid redundancy across arguments. /// /// This is a hack to avoid a layering violation between libbasic and libsema. typedef void (*ArgToStringFnTy)( ArgumentKind Kind, intptr_t Val, const char *Modifier, unsigned ModifierLen, const char *Argument, unsigned ArgumentLen, const ArgumentValue *PrevArgs, unsigned NumPrevArgs, llvm::SmallVectorImpl &Output, void *Cookie, llvm::SmallVectorImpl &QualTypeVals); void *ArgToStringCookie; ArgToStringFnTy ArgToStringFn; /// \brief ID of the "delayed" diagnostic, which is a (typically /// fatal) diagnostic that had to be delayed because it was found /// while emitting another diagnostic. unsigned DelayedDiagID; /// \brief First string argument for the delayed diagnostic. std::string DelayedDiagArg1; /// \brief Second string argument for the delayed diagnostic. std::string DelayedDiagArg2; public: explicit Diagnostic(const llvm::IntrusiveRefCntPtr &Diags, DiagnosticClient *client = 0, bool ShouldOwnClient = true); ~Diagnostic(); const llvm::IntrusiveRefCntPtr &getDiagnosticIDs() const { return Diags; } DiagnosticClient *getClient() { return Client; } const DiagnosticClient *getClient() const { return Client; } /// \brief Return the current diagnostic client along with ownership of that /// client. DiagnosticClient *takeClient() { OwnsDiagClient = false; return Client; } bool hasSourceManager() const { return SourceMgr != 0; } SourceManager &getSourceManager() const { assert(SourceMgr && "SourceManager not set!"); return *SourceMgr; } void setSourceManager(SourceManager *SrcMgr) { SourceMgr = SrcMgr; } //===--------------------------------------------------------------------===// // Diagnostic characterization methods, used by a client to customize how // diagnostics are emitted. // /// pushMappings - Copies the current DiagMappings and pushes the new copy /// onto the top of the stack. void pushMappings(SourceLocation Loc); /// popMappings - Pops the current DiagMappings off the top of the stack /// causing the new top of the stack to be the active mappings. Returns /// true if the pop happens, false if there is only one DiagMapping on the /// stack. bool popMappings(SourceLocation Loc); /// \brief Set the diagnostic client associated with this diagnostic object. /// /// \param ShouldOwnClient true if the diagnostic object should take /// ownership of \c client. void setClient(DiagnosticClient *client, bool ShouldOwnClient = true); /// setErrorLimit - Specify a limit for the number of errors we should /// emit before giving up. Zero disables the limit. void setErrorLimit(unsigned Limit) { ErrorLimit = Limit; } /// \brief Specify the maximum number of template instantiation /// notes to emit along with a given diagnostic. void setTemplateBacktraceLimit(unsigned Limit) { TemplateBacktraceLimit = Limit; } /// \brief Retrieve the maximum number of template instantiation /// nodes to emit along with a given diagnostic. unsigned getTemplateBacktraceLimit() const { return TemplateBacktraceLimit; } /// setIgnoreAllWarnings - When set to true, any unmapped warnings are /// ignored. If this and WarningsAsErrors are both set, then this one wins. void setIgnoreAllWarnings(bool Val) { IgnoreAllWarnings = Val; } bool getIgnoreAllWarnings() const { return IgnoreAllWarnings; } /// setWarningsAsErrors - When set to true, any warnings reported are issued /// as errors. void setWarningsAsErrors(bool Val) { WarningsAsErrors = Val; } bool getWarningsAsErrors() const { return WarningsAsErrors; } /// setErrorsAsFatal - When set to true, any error reported is made a /// fatal error. void setErrorsAsFatal(bool Val) { ErrorsAsFatal = Val; } bool getErrorsAsFatal() const { return ErrorsAsFatal; } /// setSuppressSystemWarnings - When set to true mask warnings that /// come from system headers. void setSuppressSystemWarnings(bool Val) { SuppressSystemWarnings = Val; } bool getSuppressSystemWarnings() const { return SuppressSystemWarnings; } /// \brief Suppress all diagnostics, to silence the front end when we /// know that we don't want any more diagnostics to be passed along to the /// client void setSuppressAllDiagnostics(bool Val = true) { SuppressAllDiagnostics = Val; } bool getSuppressAllDiagnostics() const { return SuppressAllDiagnostics; } /// \brief Specify which overload candidates to show when overload resolution /// fails. By default, we show all candidates. void setShowOverloads(OverloadsShown Val) { ShowOverloads = Val; } OverloadsShown getShowOverloads() const { return ShowOverloads; } /// \brief Pretend that the last diagnostic issued was ignored. This can /// be used by clients who suppress diagnostics themselves. void setLastDiagnosticIgnored() { LastDiagLevel = DiagnosticIDs::Ignored; } /// setExtensionHandlingBehavior - This controls whether otherwise-unmapped /// extension diagnostics are mapped onto ignore/warning/error. This /// corresponds to the GCC -pedantic and -pedantic-errors option. void setExtensionHandlingBehavior(ExtensionHandling H) { ExtBehavior = H; } ExtensionHandling getExtensionHandlingBehavior() const { return ExtBehavior; } /// AllExtensionsSilenced - This is a counter bumped when an __extension__ /// block is encountered. When non-zero, all extension diagnostics are /// entirely silenced, no matter how they are mapped. void IncrementAllExtensionsSilenced() { ++AllExtensionsSilenced; } void DecrementAllExtensionsSilenced() { --AllExtensionsSilenced; } bool hasAllExtensionsSilenced() { return AllExtensionsSilenced != 0; } /// \brief This allows the client to specify that certain /// warnings are ignored. Notes can never be mapped, errors can only be /// mapped to fatal, and WARNINGs and EXTENSIONs can be mapped arbitrarily. /// /// \param Loc The source location that this change of diagnostic state should /// take affect. It can be null if we are setting the latest state. void setDiagnosticMapping(diag::kind Diag, diag::Mapping Map, SourceLocation Loc); /// setDiagnosticGroupMapping - Change an entire diagnostic group (e.g. /// "unknown-pragmas" to have the specified mapping. This returns true and /// ignores the request if "Group" was unknown, false otherwise. /// /// 'Loc' is the source location that this change of diagnostic state should /// take affect. It can be null if we are setting the state from command-line. bool setDiagnosticGroupMapping(llvm::StringRef Group, diag::Mapping Map, SourceLocation Loc = SourceLocation()) { return Diags->setDiagnosticGroupMapping(Group, Map, Loc, *this); } bool hasErrorOccurred() const { return ErrorOccurred; } bool hasFatalErrorOccurred() const { return FatalErrorOccurred; } /// \brief Determine whether any kind of unrecoverable error has occurred. bool hasUnrecoverableErrorOccurred() const { return FatalErrorOccurred || UnrecoverableErrorOccurred; } unsigned getNumWarnings() const { return NumWarnings; } void setNumWarnings(unsigned NumWarnings) { this->NumWarnings = NumWarnings; } /// getCustomDiagID - Return an ID for a diagnostic with the specified message /// and level. If this is the first request for this diagnosic, it is /// registered and created, otherwise the existing ID is returned. unsigned getCustomDiagID(Level L, llvm::StringRef Message) { return Diags->getCustomDiagID((DiagnosticIDs::Level)L, Message); } /// ConvertArgToString - This method converts a diagnostic argument (as an /// intptr_t) into the string that represents it. void ConvertArgToString(ArgumentKind Kind, intptr_t Val, const char *Modifier, unsigned ModLen, const char *Argument, unsigned ArgLen, const ArgumentValue *PrevArgs, unsigned NumPrevArgs, llvm::SmallVectorImpl &Output, llvm::SmallVectorImpl &QualTypeVals) const { ArgToStringFn(Kind, Val, Modifier, ModLen, Argument, ArgLen, PrevArgs, NumPrevArgs, Output, ArgToStringCookie, QualTypeVals); } void SetArgToStringFn(ArgToStringFnTy Fn, void *Cookie) { ArgToStringFn = Fn; ArgToStringCookie = Cookie; } /// \brief Reset the state of the diagnostic object to its initial /// configuration. void Reset(); //===--------------------------------------------------------------------===// // Diagnostic classification and reporting interfaces. // /// \brief Based on the way the client configured the Diagnostic /// object, classify the specified diagnostic ID into a Level, consumable by /// the DiagnosticClient. /// /// \param Loc The source location we are interested in finding out the /// diagnostic state. Can be null in order to query the latest state. Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc, diag::Mapping *mapping = 0) const { return (Level)Diags->getDiagnosticLevel(DiagID, Loc, *this, mapping); } /// Report - Issue the message to the client. @c DiagID is a member of the /// @c diag::kind enum. This actually returns aninstance of DiagnosticBuilder /// which emits the diagnostics (through @c ProcessDiag) when it is destroyed. /// @c Pos represents the source location associated with the diagnostic, /// which can be an invalid location if no position information is available. inline DiagnosticBuilder Report(SourceLocation Pos, unsigned DiagID); inline DiagnosticBuilder Report(unsigned DiagID); void Report(const StoredDiagnostic &storedDiag); /// \brief Determine whethere there is already a diagnostic in flight. bool isDiagnosticInFlight() const { return CurDiagID != ~0U; } /// \brief Set the "delayed" diagnostic that will be emitted once /// the current diagnostic completes. /// /// If a diagnostic is already in-flight but the front end must /// report a problem (e.g., with an inconsistent file system /// state), this routine sets a "delayed" diagnostic that will be /// emitted after the current diagnostic completes. This should /// only be used for fatal errors detected at inconvenient /// times. If emitting a delayed diagnostic causes a second delayed /// diagnostic to be introduced, that second delayed diagnostic /// will be ignored. /// /// \param DiagID The ID of the diagnostic being delayed. /// /// \param Arg1 A string argument that will be provided to the /// diagnostic. A copy of this string will be stored in the /// Diagnostic object itself. /// /// \param Arg2 A string argument that will be provided to the /// diagnostic. A copy of this string will be stored in the /// Diagnostic object itself. void SetDelayedDiagnostic(unsigned DiagID, llvm::StringRef Arg1 = "", llvm::StringRef Arg2 = ""); /// \brief Clear out the current diagnostic. void Clear() { CurDiagID = ~0U; } private: /// \brief Report the delayed diagnostic. void ReportDelayed(); /// getDiagnosticMappingInfo - Return the mapping info currently set for the /// specified builtin diagnostic. This returns the high bit encoding, or zero /// if the field is completely uninitialized. diag::Mapping getDiagnosticMappingInfo(diag::kind Diag, DiagState *State) const { return State->getMapping(Diag); } void setDiagnosticMappingInternal(unsigned DiagId, unsigned Map, DiagState *State, bool isUser, bool isPragma) const { if (isUser) Map |= 8; // Set the high bit for user mappings. if (isPragma) Map |= 0x10; // Set the bit for diagnostic pragma mappings. State->setMapping((diag::kind)DiagId, Map); } // This is private state used by DiagnosticBuilder. We put it here instead of // in DiagnosticBuilder in order to keep DiagnosticBuilder a small lightweight // object. This implementation choice means that we can only have one // diagnostic "in flight" at a time, but this seems to be a reasonable // tradeoff to keep these objects small. Assertions verify that only one // diagnostic is in flight at a time. friend class DiagnosticIDs; friend class DiagnosticBuilder; friend class DiagnosticInfo; friend class PartialDiagnostic; friend class DiagnosticErrorTrap; /// CurDiagLoc - This is the location of the current diagnostic that is in /// flight. SourceLocation CurDiagLoc; /// CurDiagID - This is the ID of the current diagnostic that is in flight. /// This is set to ~0U when there is no diagnostic in flight. unsigned CurDiagID; enum { /// MaxArguments - The maximum number of arguments we can hold. We currently /// only support up to 10 arguments (%0-%9). A single diagnostic with more /// than that almost certainly has to be simplified anyway. MaxArguments = 10 }; /// NumDiagArgs - This contains the number of entries in Arguments. signed char NumDiagArgs; /// NumRanges - This is the number of ranges in the DiagRanges array. unsigned char NumDiagRanges; /// \brief The number of code modifications hints in the /// FixItHints array. unsigned char NumFixItHints; /// DiagArgumentsKind - This is an array of ArgumentKind::ArgumentKind enum /// values, with one for each argument. This specifies whether the argument /// is in DiagArgumentsStr or in DiagArguments. unsigned char DiagArgumentsKind[MaxArguments]; /// DiagArgumentsStr - This holds the values of each string argument for the /// current diagnostic. This value is only used when the corresponding /// ArgumentKind is ak_std_string. std::string DiagArgumentsStr[MaxArguments]; /// DiagArgumentsVal - The values for the various substitution positions. This /// is used when the argument is not an std::string. The specific value is /// mangled into an intptr_t and the interpretation depends on exactly what /// sort of argument kind it is. intptr_t DiagArgumentsVal[MaxArguments]; /// DiagRanges - The list of ranges added to this diagnostic. It currently /// only support 10 ranges, could easily be extended if needed. CharSourceRange DiagRanges[10]; enum { MaxFixItHints = 3 }; /// FixItHints - If valid, provides a hint with some code /// to insert, remove, or modify at a particular position. FixItHint FixItHints[MaxFixItHints]; /// ProcessDiag - This is the method used to report a diagnostic that is /// finally fully formed. /// /// \returns true if the diagnostic was emitted, false if it was /// suppressed. bool ProcessDiag() { return Diags->ProcessDiag(*this); } friend class ASTReader; friend class ASTWriter; }; /// \brief RAII class that determines when any errors have occurred /// between the time the instance was created and the time it was /// queried. class DiagnosticErrorTrap { Diagnostic &Diag; public: explicit DiagnosticErrorTrap(Diagnostic &Diag) : Diag(Diag) { reset(); } /// \brief Determine whether any errors have occurred since this /// object instance was created. bool hasErrorOccurred() const { return Diag.TrapErrorOccurred; } /// \brief Determine whether any unrecoverable errors have occurred since this /// object instance was created. bool hasUnrecoverableErrorOccurred() const { return Diag.TrapUnrecoverableErrorOccurred; } // Set to initial state of "no errors occurred". void reset() { Diag.TrapErrorOccurred = false; Diag.TrapUnrecoverableErrorOccurred = false; } }; //===----------------------------------------------------------------------===// // DiagnosticBuilder //===----------------------------------------------------------------------===// /// DiagnosticBuilder - This is a little helper class used to produce /// diagnostics. This is constructed by the Diagnostic::Report method, and /// allows insertion of extra information (arguments and source ranges) into the /// currently "in flight" diagnostic. When the temporary for the builder is /// destroyed, the diagnostic is issued. /// /// Note that many of these will be created as temporary objects (many call /// sites), so we want them to be small and we never want their address taken. /// This ensures that compilers with somewhat reasonable optimizers will promote /// the common fields to registers, eliminating increments of the NumArgs field, /// for example. class DiagnosticBuilder { mutable Diagnostic *DiagObj; mutable unsigned NumArgs, NumRanges, NumFixItHints; void operator=(const DiagnosticBuilder&); // DO NOT IMPLEMENT friend class Diagnostic; explicit DiagnosticBuilder(Diagnostic *diagObj) : DiagObj(diagObj), NumArgs(0), NumRanges(0), NumFixItHints(0) {} friend class PartialDiagnostic; protected: void FlushCounts(); public: /// Copy constructor. When copied, this "takes" the diagnostic info from the /// input and neuters it. DiagnosticBuilder(const DiagnosticBuilder &D) { DiagObj = D.DiagObj; D.DiagObj = 0; NumArgs = D.NumArgs; NumRanges = D.NumRanges; NumFixItHints = D.NumFixItHints; } /// \brief Simple enumeration value used to give a name to the /// suppress-diagnostic constructor. enum SuppressKind { Suppress }; /// \brief Create an empty DiagnosticBuilder object that represents /// no actual diagnostic. explicit DiagnosticBuilder(SuppressKind) : DiagObj(0), NumArgs(0), NumRanges(0), NumFixItHints(0) { } /// \brief Force the diagnostic builder to emit the diagnostic now. /// /// Once this function has been called, the DiagnosticBuilder object /// should not be used again before it is destroyed. /// /// \returns true if a diagnostic was emitted, false if the /// diagnostic was suppressed. bool Emit(); /// Destructor - The dtor emits the diagnostic if it hasn't already /// been emitted. ~DiagnosticBuilder() { Emit(); } /// isActive - Determine whether this diagnostic is still active. bool isActive() const { return DiagObj != 0; } /// \brief Retrieve the active diagnostic ID. /// /// \pre \c isActive() unsigned getDiagID() const { assert(isActive() && "Diagnostic is inactive"); return DiagObj->CurDiagID; } /// \brief Clear out the current diagnostic. void Clear() { DiagObj = 0; } /// Operator bool: conversion of DiagnosticBuilder to bool always returns /// true. This allows is to be used in boolean error contexts like: /// return Diag(...); operator bool() const { return true; } void AddString(llvm::StringRef S) const { assert(NumArgs < Diagnostic::MaxArguments && "Too many arguments to diagnostic!"); if (DiagObj) { DiagObj->DiagArgumentsKind[NumArgs] = Diagnostic::ak_std_string; DiagObj->DiagArgumentsStr[NumArgs++] = S; } } void AddTaggedVal(intptr_t V, Diagnostic::ArgumentKind Kind) const { assert(NumArgs < Diagnostic::MaxArguments && "Too many arguments to diagnostic!"); if (DiagObj) { DiagObj->DiagArgumentsKind[NumArgs] = Kind; DiagObj->DiagArgumentsVal[NumArgs++] = V; } } void AddSourceRange(const CharSourceRange &R) const { assert(NumRanges < sizeof(DiagObj->DiagRanges)/sizeof(DiagObj->DiagRanges[0]) && "Too many arguments to diagnostic!"); if (DiagObj) DiagObj->DiagRanges[NumRanges++] = R; } void AddFixItHint(const FixItHint &Hint) const { assert(NumFixItHints < Diagnostic::MaxFixItHints && "Too many fix-it hints!"); if (DiagObj) DiagObj->FixItHints[NumFixItHints++] = Hint; } }; inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, llvm::StringRef S) { DB.AddString(S); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const char *Str) { DB.AddTaggedVal(reinterpret_cast(Str), Diagnostic::ak_c_string); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, int I) { DB.AddTaggedVal(I, Diagnostic::ak_sint); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,bool I) { DB.AddTaggedVal(I, Diagnostic::ak_sint); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, unsigned I) { DB.AddTaggedVal(I, Diagnostic::ak_uint); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const IdentifierInfo *II) { DB.AddTaggedVal(reinterpret_cast(II), Diagnostic::ak_identifierinfo); return DB; } // Adds a DeclContext to the diagnostic. The enable_if template magic is here // so that we only match those arguments that are (statically) DeclContexts; // other arguments that derive from DeclContext (e.g., RecordDecls) will not // match. template inline typename llvm::enable_if, const DiagnosticBuilder &>::type operator<<(const DiagnosticBuilder &DB, T *DC) { DB.AddTaggedVal(reinterpret_cast(DC), Diagnostic::ak_declcontext); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const SourceRange &R) { DB.AddSourceRange(CharSourceRange::getTokenRange(R)); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const CharSourceRange &R) { DB.AddSourceRange(R); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const FixItHint &Hint) { DB.AddFixItHint(Hint); return DB; } /// Report - Issue the message to the client. DiagID is a member of the /// diag::kind enum. This actually returns a new instance of DiagnosticBuilder /// which emits the diagnostics (through ProcessDiag) when it is destroyed. inline DiagnosticBuilder Diagnostic::Report(SourceLocation Loc, unsigned DiagID){ assert(CurDiagID == ~0U && "Multiple diagnostics in flight at once!"); CurDiagLoc = Loc; CurDiagID = DiagID; return DiagnosticBuilder(this); } inline DiagnosticBuilder Diagnostic::Report(unsigned DiagID) { return Report(SourceLocation(), DiagID); } //===----------------------------------------------------------------------===// // DiagnosticInfo //===----------------------------------------------------------------------===// /// DiagnosticInfo - This is a little helper class (which is basically a smart /// pointer that forward info from Diagnostic) that allows clients to enquire /// about the currently in-flight diagnostic. class DiagnosticInfo { const Diagnostic *DiagObj; llvm::StringRef StoredDiagMessage; public: explicit DiagnosticInfo(const Diagnostic *DO) : DiagObj(DO) {} DiagnosticInfo(const Diagnostic *DO, llvm::StringRef storedDiagMessage) : DiagObj(DO), StoredDiagMessage(storedDiagMessage) {} const Diagnostic *getDiags() const { return DiagObj; } unsigned getID() const { return DiagObj->CurDiagID; } const SourceLocation &getLocation() const { return DiagObj->CurDiagLoc; } bool hasSourceManager() const { return DiagObj->hasSourceManager(); } SourceManager &getSourceManager() const { return DiagObj->getSourceManager();} unsigned getNumArgs() const { return DiagObj->NumDiagArgs; } /// getArgKind - Return the kind of the specified index. Based on the kind /// of argument, the accessors below can be used to get the value. Diagnostic::ArgumentKind getArgKind(unsigned Idx) const { assert(Idx < getNumArgs() && "Argument index out of range!"); return (Diagnostic::ArgumentKind)DiagObj->DiagArgumentsKind[Idx]; } /// getArgStdStr - Return the provided argument string specified by Idx. const std::string &getArgStdStr(unsigned Idx) const { assert(getArgKind(Idx) == Diagnostic::ak_std_string && "invalid argument accessor!"); return DiagObj->DiagArgumentsStr[Idx]; } /// getArgCStr - Return the specified C string argument. const char *getArgCStr(unsigned Idx) const { assert(getArgKind(Idx) == Diagnostic::ak_c_string && "invalid argument accessor!"); return reinterpret_cast(DiagObj->DiagArgumentsVal[Idx]); } /// getArgSInt - Return the specified signed integer argument. int getArgSInt(unsigned Idx) const { assert(getArgKind(Idx) == Diagnostic::ak_sint && "invalid argument accessor!"); return (int)DiagObj->DiagArgumentsVal[Idx]; } /// getArgUInt - Return the specified unsigned integer argument. unsigned getArgUInt(unsigned Idx) const { assert(getArgKind(Idx) == Diagnostic::ak_uint && "invalid argument accessor!"); return (unsigned)DiagObj->DiagArgumentsVal[Idx]; } /// getArgIdentifier - Return the specified IdentifierInfo argument. const IdentifierInfo *getArgIdentifier(unsigned Idx) const { assert(getArgKind(Idx) == Diagnostic::ak_identifierinfo && "invalid argument accessor!"); return reinterpret_cast(DiagObj->DiagArgumentsVal[Idx]); } /// getRawArg - Return the specified non-string argument in an opaque form. intptr_t getRawArg(unsigned Idx) const { assert(getArgKind(Idx) != Diagnostic::ak_std_string && "invalid argument accessor!"); return DiagObj->DiagArgumentsVal[Idx]; } /// getNumRanges - Return the number of source ranges associated with this /// diagnostic. unsigned getNumRanges() const { return DiagObj->NumDiagRanges; } const CharSourceRange &getRange(unsigned Idx) const { assert(Idx < DiagObj->NumDiagRanges && "Invalid diagnostic range index!"); return DiagObj->DiagRanges[Idx]; } unsigned getNumFixItHints() const { return DiagObj->NumFixItHints; } const FixItHint &getFixItHint(unsigned Idx) const { return DiagObj->FixItHints[Idx]; } const FixItHint *getFixItHints() const { return DiagObj->NumFixItHints? &DiagObj->FixItHints[0] : 0; } /// FormatDiagnostic - Format this diagnostic into a string, substituting the /// formal arguments into the %0 slots. The result is appended onto the Str /// array. void FormatDiagnostic(llvm::SmallVectorImpl &OutStr) const; /// FormatDiagnostic - Format the given format-string into the /// output buffer using the arguments stored in this diagnostic. void FormatDiagnostic(const char *DiagStr, const char *DiagEnd, llvm::SmallVectorImpl &OutStr) const; }; /** * \brief Represents a diagnostic in a form that can be retained until its * corresponding source manager is destroyed. */ class StoredDiagnostic { unsigned ID; Diagnostic::Level Level; FullSourceLoc Loc; std::string Message; std::vector Ranges; std::vector FixIts; public: StoredDiagnostic(); StoredDiagnostic(Diagnostic::Level Level, const DiagnosticInfo &Info); StoredDiagnostic(Diagnostic::Level Level, unsigned ID, llvm::StringRef Message); ~StoredDiagnostic(); /// \brief Evaluates true when this object stores a diagnostic. operator bool() const { return Message.size() > 0; } unsigned getID() const { return ID; } Diagnostic::Level getLevel() const { return Level; } const FullSourceLoc &getLocation() const { return Loc; } llvm::StringRef getMessage() const { return Message; } void setLocation(FullSourceLoc Loc) { this->Loc = Loc; } typedef std::vector::const_iterator range_iterator; range_iterator range_begin() const { return Ranges.begin(); } range_iterator range_end() const { return Ranges.end(); } unsigned range_size() const { return Ranges.size(); } typedef std::vector::const_iterator fixit_iterator; fixit_iterator fixit_begin() const { return FixIts.begin(); } fixit_iterator fixit_end() const { return FixIts.end(); } unsigned fixit_size() const { return FixIts.size(); } }; /// DiagnosticClient - This is an abstract interface implemented by clients of /// the front-end, which formats and prints fully processed diagnostics. class DiagnosticClient { protected: unsigned NumWarnings; // Number of warnings reported unsigned NumErrors; // Number of errors reported public: DiagnosticClient() : NumWarnings(0), NumErrors(0) { } unsigned getNumErrors() const { return NumErrors; } unsigned getNumWarnings() const { return NumWarnings; } virtual ~DiagnosticClient(); /// BeginSourceFile - Callback to inform the diagnostic client that processing /// of a source file is beginning. /// /// Note that diagnostics may be emitted outside the processing of a source /// file, for example during the parsing of command line options. However, /// diagnostics with source range information are required to only be emitted /// in between BeginSourceFile() and EndSourceFile(). /// /// \arg LO - The language options for the source file being processed. /// \arg PP - The preprocessor object being used for the source; this optional /// and may not be present, for example when processing AST source files. virtual void BeginSourceFile(const LangOptions &LangOpts, const Preprocessor *PP = 0) {} /// EndSourceFile - Callback to inform the diagnostic client that processing /// of a source file has ended. The diagnostic client should assume that any /// objects made available via \see BeginSourceFile() are inaccessible. virtual void EndSourceFile() {} /// IncludeInDiagnosticCounts - This method (whose default implementation /// returns true) indicates whether the diagnostics handled by this /// DiagnosticClient should be included in the number of diagnostics reported /// by Diagnostic. virtual bool IncludeInDiagnosticCounts() const; /// HandleDiagnostic - Handle this diagnostic, reporting it to the user or /// capturing it to a log as needed. /// /// Default implementation just keeps track of the total number of warnings /// and errors. virtual void HandleDiagnostic(Diagnostic::Level DiagLevel, const DiagnosticInfo &Info); }; } // end namespace clang #endif