//===--- ScopeInfo.h - Information about a semantic context -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines FunctionScopeInfo and its subclasses, which contain // information about a single function, block, lambda, or method body. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_SEMA_SCOPE_INFO_H #define LLVM_CLANG_SEMA_SCOPE_INFO_H #include "clang/AST/Type.h" #include "clang/Basic/CapturedStmt.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Sema/Ownership.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include namespace clang { class Decl; class BlockDecl; class CapturedDecl; class CXXMethodDecl; class FieldDecl; class ObjCPropertyDecl; class IdentifierInfo; class ImplicitParamDecl; class LabelDecl; class ReturnStmt; class Scope; class SwitchStmt; class TemplateTypeParmDecl; class TemplateParameterList; class VarDecl; class DeclRefExpr; class MemberExpr; class ObjCIvarRefExpr; class ObjCPropertyRefExpr; class ObjCMessageExpr; namespace sema { /// \brief Contains information about the compound statement currently being /// parsed. class CompoundScopeInfo { public: CompoundScopeInfo() : HasEmptyLoopBodies(false) { } /// \brief Whether this compound stamement contains `for' or `while' loops /// with empty bodies. bool HasEmptyLoopBodies; void setHasEmptyLoopBodies() { HasEmptyLoopBodies = true; } }; class PossiblyUnreachableDiag { public: PartialDiagnostic PD; SourceLocation Loc; const Stmt *stmt; PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc, const Stmt *stmt) : PD(PD), Loc(Loc), stmt(stmt) {} }; /// \brief Retains information about a function, method, or block that is /// currently being parsed. class FunctionScopeInfo { protected: enum ScopeKind { SK_Function, SK_Block, SK_Lambda, SK_CapturedRegion }; public: /// \brief What kind of scope we are describing. /// ScopeKind Kind; /// \brief Whether this function contains a VLA, \@try, try, C++ /// initializer, or anything else that can't be jumped past. bool HasBranchProtectedScope; /// \brief Whether this function contains any switches or direct gotos. bool HasBranchIntoScope; /// \brief Whether this function contains any indirect gotos. bool HasIndirectGoto; /// \brief Whether a statement was dropped because it was invalid. bool HasDroppedStmt; /// A flag that is set when parsing a method that must call super's /// implementation, such as \c -dealloc, \c -finalize, or any method marked /// with \c __attribute__((objc_requires_super)). bool ObjCShouldCallSuper; /// \brief Used to determine if errors occurred in this function or block. DiagnosticErrorTrap ErrorTrap; /// SwitchStack - This is the current set of active switch statements in the /// block. SmallVector SwitchStack; /// \brief The list of return statements that occur within the function or /// block, if there is any chance of applying the named return value /// optimization, or if we need to infer a return type. SmallVector Returns; /// \brief The stack of currently active compound stamement scopes in the /// function. SmallVector CompoundScopes; /// \brief A list of PartialDiagnostics created but delayed within the /// current function scope. These diagnostics are vetted for reachability /// prior to being emitted. SmallVector PossiblyUnreachableDiags; public: /// Represents a simple identification of a weak object. /// /// Part of the implementation of -Wrepeated-use-of-weak. /// /// This is used to determine if two weak accesses refer to the same object. /// Here are some examples of how various accesses are "profiled": /// /// Access Expression | "Base" Decl | "Property" Decl /// :---------------: | :-----------------: | :------------------------------: /// self.property | self (VarDecl) | property (ObjCPropertyDecl) /// self.implicitProp | self (VarDecl) | -implicitProp (ObjCMethodDecl) /// self->ivar.prop | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl) /// cxxObj.obj.prop | obj (FieldDecl) | prop (ObjCPropertyDecl) /// [self foo].prop | 0 (unknown) | prop (ObjCPropertyDecl) /// self.prop1.prop2 | prop1 (ObjCPropertyDecl) | prop2 (ObjCPropertyDecl) /// MyClass.prop | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl) /// weakVar | 0 (known) | weakVar (VarDecl) /// self->weakIvar | self (VarDecl) | weakIvar (ObjCIvarDecl) /// /// Objects are identified with only two Decls to make it reasonably fast to /// compare them. class WeakObjectProfileTy { /// The base object decl, as described in the class documentation. /// /// The extra flag is "true" if the Base and Property are enough to uniquely /// identify the object in memory. /// /// \sa isExactProfile() typedef llvm::PointerIntPair BaseInfoTy; BaseInfoTy Base; /// The "property" decl, as described in the class documentation. /// /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the /// case of "implicit" properties (regular methods accessed via dot syntax). const NamedDecl *Property; /// Used to find the proper base profile for a given base expression. static BaseInfoTy getBaseInfo(const Expr *BaseE); // For use in DenseMap. friend class DenseMapInfo; inline WeakObjectProfileTy(); static inline WeakObjectProfileTy getSentinel(); public: WeakObjectProfileTy(const ObjCPropertyRefExpr *RE); WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property); WeakObjectProfileTy(const DeclRefExpr *RE); WeakObjectProfileTy(const ObjCIvarRefExpr *RE); const NamedDecl *getBase() const { return Base.getPointer(); } const NamedDecl *getProperty() const { return Property; } /// Returns true if the object base specifies a known object in memory, /// rather than, say, an instance variable or property of another object. /// /// Note that this ignores the effects of aliasing; that is, \c foo.bar is /// considered an exact profile if \c foo is a local variable, even if /// another variable \c foo2 refers to the same object as \c foo. /// /// For increased precision, accesses with base variables that are /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to /// be exact, though this is not true for arbitrary variables /// (foo.prop1.prop2). bool isExactProfile() const { return Base.getInt(); } bool operator==(const WeakObjectProfileTy &Other) const { return Base == Other.Base && Property == Other.Property; } // For use in DenseMap. // We can't specialize the usual llvm::DenseMapInfo at the end of the file // because by that point the DenseMap in FunctionScopeInfo has already been // instantiated. class DenseMapInfo { public: static inline WeakObjectProfileTy getEmptyKey() { return WeakObjectProfileTy(); } static inline WeakObjectProfileTy getTombstoneKey() { return WeakObjectProfileTy::getSentinel(); } static unsigned getHashValue(const WeakObjectProfileTy &Val) { typedef std::pair Pair; return llvm::DenseMapInfo::getHashValue(Pair(Val.Base, Val.Property)); } static bool isEqual(const WeakObjectProfileTy &LHS, const WeakObjectProfileTy &RHS) { return LHS == RHS; } }; }; /// Represents a single use of a weak object. /// /// Stores both the expression and whether the access is potentially unsafe /// (i.e. it could potentially be warned about). /// /// Part of the implementation of -Wrepeated-use-of-weak. class WeakUseTy { llvm::PointerIntPair Rep; public: WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {} const Expr *getUseExpr() const { return Rep.getPointer(); } bool isUnsafe() const { return Rep.getInt(); } void markSafe() { Rep.setInt(false); } bool operator==(const WeakUseTy &Other) const { return Rep == Other.Rep; } }; /// Used to collect uses of a particular weak object in a function body. /// /// Part of the implementation of -Wrepeated-use-of-weak. typedef SmallVector WeakUseVector; /// Used to collect all uses of weak objects in a function body. /// /// Part of the implementation of -Wrepeated-use-of-weak. typedef llvm::SmallDenseMap WeakObjectUseMap; private: /// Used to collect all uses of weak objects in this function body. /// /// Part of the implementation of -Wrepeated-use-of-weak. WeakObjectUseMap WeakObjectUses; public: /// Record that a weak object was accessed. /// /// Part of the implementation of -Wrepeated-use-of-weak. template inline void recordUseOfWeak(const ExprT *E, bool IsRead = true); void recordUseOfWeak(const ObjCMessageExpr *Msg, const ObjCPropertyDecl *Prop); /// Record that a given expression is a "safe" access of a weak object (e.g. /// assigning it to a strong variable.) /// /// Part of the implementation of -Wrepeated-use-of-weak. void markSafeWeakUse(const Expr *E); const WeakObjectUseMap &getWeakObjectUses() const { return WeakObjectUses; } void setHasBranchIntoScope() { HasBranchIntoScope = true; } void setHasBranchProtectedScope() { HasBranchProtectedScope = true; } void setHasIndirectGoto() { HasIndirectGoto = true; } void setHasDroppedStmt() { HasDroppedStmt = true; } bool NeedsScopeChecking() const { return !HasDroppedStmt && (HasIndirectGoto || (HasBranchProtectedScope && HasBranchIntoScope)); } FunctionScopeInfo(DiagnosticsEngine &Diag) : Kind(SK_Function), HasBranchProtectedScope(false), HasBranchIntoScope(false), HasIndirectGoto(false), HasDroppedStmt(false), ObjCShouldCallSuper(false), ErrorTrap(Diag) { } virtual ~FunctionScopeInfo(); /// \brief Clear out the information in this function scope, making it /// suitable for reuse. void Clear(); }; class CapturingScopeInfo : public FunctionScopeInfo { public: enum ImplicitCaptureStyle { ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block, ImpCap_CapturedRegion }; ImplicitCaptureStyle ImpCaptureStyle; class Capture { // There are three categories of capture: capturing 'this', capturing // local variables, and C++1y initialized captures (which can have an // arbitrary initializer, and don't really capture in the traditional // sense at all). // // There are three ways to capture a local variable: // - capture by copy in the C++11 sense, // - capture by reference in the C++11 sense, and // - __block capture. // Lambdas explicitly specify capture by copy or capture by reference. // For blocks, __block capture applies to variables with that annotation, // variables of reference type are captured by reference, and other // variables are captured by copy. enum CaptureKind { Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_This }; /// The variable being captured (if we are not capturing 'this') and whether /// this is a nested capture. llvm::PointerIntPair VarAndNested; /// Expression to initialize a field of the given type, and the kind of /// capture (if this is a capture and not an init-capture). The expression /// is only required if we are capturing ByVal and the variable's type has /// a non-trivial copy constructor. llvm::PointerIntPair InitExprAndCaptureKind; /// \brief The source location at which the first capture occurred. SourceLocation Loc; /// \brief The location of the ellipsis that expands a parameter pack. SourceLocation EllipsisLoc; /// \brief The type as it was captured, which is in effect the type of the /// non-static data member that would hold the capture. QualType CaptureType; public: Capture(VarDecl *Var, bool Block, bool ByRef, bool IsNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, Expr *Cpy) : VarAndNested(Var, IsNested), InitExprAndCaptureKind(Cpy, Block ? Cap_Block : ByRef ? Cap_ByRef : Cap_ByCopy), Loc(Loc), EllipsisLoc(EllipsisLoc), CaptureType(CaptureType) {} enum IsThisCapture { ThisCapture }; Capture(IsThisCapture, bool IsNested, SourceLocation Loc, QualType CaptureType, Expr *Cpy) : VarAndNested(0, IsNested), InitExprAndCaptureKind(Cpy, Cap_This), Loc(Loc), EllipsisLoc(), CaptureType(CaptureType) {} bool isThisCapture() const { return InitExprAndCaptureKind.getInt() == Cap_This; } bool isVariableCapture() const { return InitExprAndCaptureKind.getInt() != Cap_This; } bool isCopyCapture() const { return InitExprAndCaptureKind.getInt() == Cap_ByCopy; } bool isReferenceCapture() const { return InitExprAndCaptureKind.getInt() == Cap_ByRef; } bool isBlockCapture() const { return InitExprAndCaptureKind.getInt() == Cap_Block; } bool isNested() { return VarAndNested.getInt(); } VarDecl *getVariable() const { return VarAndNested.getPointer(); } /// \brief Retrieve the location at which this variable was captured. SourceLocation getLocation() const { return Loc; } /// \brief Retrieve the source location of the ellipsis, whose presence /// indicates that the capture is a pack expansion. SourceLocation getEllipsisLoc() const { return EllipsisLoc; } /// \brief Retrieve the capture type for this capture, which is effectively /// the type of the non-static data member in the lambda/block structure /// that would store this capture. QualType getCaptureType() const { return CaptureType; } Expr *getInitExpr() const { return InitExprAndCaptureKind.getPointer(); } }; CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style) : FunctionScopeInfo(Diag), ImpCaptureStyle(Style), CXXThisCaptureIndex(0), HasImplicitReturnType(false) {} /// CaptureMap - A map of captured variables to (index+1) into Captures. llvm::DenseMap CaptureMap; /// CXXThisCaptureIndex - The (index+1) of the capture of 'this'; /// zero if 'this' is not captured. unsigned CXXThisCaptureIndex; /// Captures - The captures. SmallVector Captures; /// \brief - Whether the target type of return statements in this context /// is deduced (e.g. a lambda or block with omitted return type). bool HasImplicitReturnType; /// ReturnType - The target type of return statements in this context, /// or null if unknown. QualType ReturnType; void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested, SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType, Expr *Cpy) { Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc, EllipsisLoc, CaptureType, Cpy)); CaptureMap[Var] = Captures.size(); } void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType, Expr *Cpy); /// \brief Determine whether the C++ 'this' is captured. bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; } /// \brief Retrieve the capture of C++ 'this', if it has been captured. Capture &getCXXThisCapture() { assert(isCXXThisCaptured() && "this has not been captured"); return Captures[CXXThisCaptureIndex - 1]; } /// \brief Determine whether the given variable has been captured. bool isCaptured(VarDecl *Var) const { return CaptureMap.count(Var); } /// \brief Retrieve the capture of the given variable, if it has been /// captured already. Capture &getCapture(VarDecl *Var) { assert(isCaptured(Var) && "Variable has not been captured"); return Captures[CaptureMap[Var] - 1]; } const Capture &getCapture(VarDecl *Var) const { llvm::DenseMap::const_iterator Known = CaptureMap.find(Var); assert(Known != CaptureMap.end() && "Variable has not been captured"); return Captures[Known->second - 1]; } static bool classof(const FunctionScopeInfo *FSI) { return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda || FSI->Kind == SK_CapturedRegion; } }; /// \brief Retains information about a block that is currently being parsed. class BlockScopeInfo : public CapturingScopeInfo { public: BlockDecl *TheDecl; /// TheScope - This is the scope for the block itself, which contains /// arguments etc. Scope *TheScope; /// BlockType - The function type of the block, if one was given. /// Its return type may be BuiltinType::Dependent. QualType FunctionType; BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block) : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block), TheScope(BlockScope) { Kind = SK_Block; } virtual ~BlockScopeInfo(); static bool classof(const FunctionScopeInfo *FSI) { return FSI->Kind == SK_Block; } }; /// \brief Retains information about a captured region. class CapturedRegionScopeInfo: public CapturingScopeInfo { public: /// \brief The CapturedDecl for this statement. CapturedDecl *TheCapturedDecl; /// \brief The captured record type. RecordDecl *TheRecordDecl; /// \brief This is the enclosing scope of the captured region. Scope *TheScope; /// \brief The implicit parameter for the captured variables. ImplicitParamDecl *ContextParam; /// \brief The kind of captured region. CapturedRegionKind CapRegionKind; CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD, RecordDecl *RD, ImplicitParamDecl *Context, CapturedRegionKind K) : CapturingScopeInfo(Diag, ImpCap_CapturedRegion), TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S), ContextParam(Context), CapRegionKind(K) { Kind = SK_CapturedRegion; } virtual ~CapturedRegionScopeInfo(); /// \brief A descriptive name for the kind of captured region this is. StringRef getRegionName() const { switch (CapRegionKind) { case CR_Default: return "default captured statement"; case CR_OpenMP: return "OpenMP region"; } llvm_unreachable("Invalid captured region kind!"); } static bool classof(const FunctionScopeInfo *FSI) { return FSI->Kind == SK_CapturedRegion; } }; class LambdaScopeInfo : public CapturingScopeInfo { public: /// \brief The class that describes the lambda. CXXRecordDecl *Lambda; /// \brief The lambda's compiler-generated \c operator(). CXXMethodDecl *CallOperator; /// \brief Source range covering the lambda introducer [...]. SourceRange IntroducerRange; /// \brief Source location of the '&' or '=' specifying the default capture /// type, if any. SourceLocation CaptureDefaultLoc; /// \brief The number of captures in the \c Captures list that are /// explicit captures. unsigned NumExplicitCaptures; /// \brief Whether this is a mutable lambda. bool Mutable; /// \brief Whether the (empty) parameter list is explicit. bool ExplicitParams; /// \brief Whether any of the capture expressions requires cleanups. bool ExprNeedsCleanups; /// \brief Whether the lambda contains an unexpanded parameter pack. bool ContainsUnexpandedParameterPack; /// \brief Variables used to index into by-copy array captures. SmallVector ArrayIndexVars; /// \brief Offsets into the ArrayIndexVars array at which each capture starts /// its list of array index variables. SmallVector ArrayIndexStarts; /// \brief If this is a generic lambda, use this as the depth of /// each 'auto' parameter, during initial AST construction. unsigned AutoTemplateParameterDepth; /// \brief Store the list of the auto parameters for a generic lambda. /// If this is a generic lambda, store the list of the auto /// parameters converted into TemplateTypeParmDecls into a vector /// that can be used to construct the generic lambda's template /// parameter list, during initial AST construction. SmallVector AutoTemplateParams; /// If this is a generic lambda, and the template parameter /// list has been created (from the AutoTemplateParams) then /// store a reference to it (cache it to avoid reconstructing it). TemplateParameterList *GLTemplateParameterList; /// \brief Contains all variable-referring-expressions (i.e. DeclRefExprs /// or MemberExprs) that refer to local variables in a generic lambda /// or a lambda in a potentially-evaluated-if-used context. /// /// Potentially capturable variables of a nested lambda that might need /// to be captured by the lambda are housed here. /// This is specifically useful for generic lambdas or /// lambdas within a a potentially evaluated-if-used context. /// If an enclosing variable is named in an expression of a lambda nested /// within a generic lambda, we don't always know know whether the variable /// will truly be odr-used (i.e. need to be captured) by that nested lambda, /// until its instantiation. But we still need to capture it in the /// enclosing lambda if all intervening lambdas can capture the variable. llvm::SmallVector PotentiallyCapturingExprs; /// \brief Contains all variable-referring-expressions that refer /// to local variables that are usable as constant expressions and /// do not involve an odr-use (they may still need to be captured /// if the enclosing full-expression is instantiation dependent). llvm::SmallSet NonODRUsedCapturingExprs; SourceLocation PotentialThisCaptureLocation; LambdaScopeInfo(DiagnosticsEngine &Diag) : CapturingScopeInfo(Diag, ImpCap_None), Lambda(0), CallOperator(0), NumExplicitCaptures(0), Mutable(false), ExprNeedsCleanups(false), ContainsUnexpandedParameterPack(false), AutoTemplateParameterDepth(0), GLTemplateParameterList(0) { Kind = SK_Lambda; } virtual ~LambdaScopeInfo(); /// \brief Note when all explicit captures have been added. void finishedExplicitCaptures() { NumExplicitCaptures = Captures.size(); } static bool classof(const FunctionScopeInfo *FSI) { return FSI->Kind == SK_Lambda; } /// /// \brief Add a variable that might potentially be captured by the /// lambda and therefore the enclosing lambdas. /// /// This is also used by enclosing lambda's to speculatively capture /// variables that nested lambda's - depending on their enclosing /// specialization - might need to capture. /// Consider: /// void f(int, int); <-- don't capture /// void f(const int&, double); <-- capture /// void foo() { /// const int x = 10; /// auto L = [=](auto a) { // capture 'x' /// return [=](auto b) { /// f(x, a); // we may or may not need to capture 'x' /// }; /// }; /// } void addPotentialCapture(Expr *VarExpr) { assert(isa(VarExpr) || isa(VarExpr)); PotentiallyCapturingExprs.push_back(VarExpr); } void addPotentialThisCapture(SourceLocation Loc) { PotentialThisCaptureLocation = Loc; } bool hasPotentialThisCapture() const { return PotentialThisCaptureLocation.isValid(); } /// \brief Mark a variable's reference in a lambda as non-odr using. /// /// For generic lambdas, if a variable is named in a potentially evaluated /// expression, where the enclosing full expression is dependent then we /// must capture the variable (given a default capture). /// This is accomplished by recording all references to variables /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of /// PotentialCaptures. All such variables have to be captured by that lambda, /// except for as described below. /// If that variable is usable as a constant expression and is named in a /// manner that does not involve its odr-use (e.g. undergoes /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the /// act of analyzing the enclosing full expression (ActOnFinishFullExpr) /// if we can determine that the full expression is not instantiation- /// dependent, then we can entirely avoid its capture. /// /// const int n = 0; /// [&] (auto x) { /// (void)+n + x; /// }; /// Interestingly, this strategy would involve a capture of n, even though /// it's obviously not odr-used here, because the full-expression is /// instantiation-dependent. It could be useful to avoid capturing such /// variables, even when they are referred to in an instantiation-dependent /// expression, if we can unambiguously determine that they shall never be /// odr-used. This would involve removal of the variable-referring-expression /// from the array of PotentialCaptures during the lvalue-to-rvalue /// conversions. But per the working draft N3797, (post-chicago 2013) we must /// capture such variables. /// Before anyone is tempted to implement a strategy for not-capturing 'n', /// consider the insightful warning in: /// /cfe-commits/Week-of-Mon-20131104/092596.html /// "The problem is that the set of captures for a lambda is part of the ABI /// (since lambda layout can be made visible through inline functions and the /// like), and there are no guarantees as to which cases we'll manage to build /// an lvalue-to-rvalue conversion in, when parsing a template -- some /// seemingly harmless change elsewhere in Sema could cause us to start or stop /// building such a node. So we need a rule that anyone can implement and get /// exactly the same result". /// void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) { assert(isa(CapturingVarExpr) || isa(CapturingVarExpr)); NonODRUsedCapturingExprs.insert(CapturingVarExpr); } bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) { assert(isa(CapturingVarExpr) || isa(CapturingVarExpr)); return NonODRUsedCapturingExprs.count(CapturingVarExpr); } void removePotentialCapture(Expr *E) { PotentiallyCapturingExprs.erase( std::remove(PotentiallyCapturingExprs.begin(), PotentiallyCapturingExprs.end(), E), PotentiallyCapturingExprs.end()); } void clearPotentialCaptures() { PotentiallyCapturingExprs.clear(); PotentialThisCaptureLocation = SourceLocation(); } unsigned getNumPotentialVariableCaptures() const { return PotentiallyCapturingExprs.size(); } bool hasPotentialCaptures() const { return getNumPotentialVariableCaptures() || PotentialThisCaptureLocation.isValid(); } // When passed the index, returns the VarDecl and Expr associated // with the index. void getPotentialVariableCapture(unsigned Idx, VarDecl *&VD, Expr *&E); }; FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy() : Base(0, false), Property(0) {} FunctionScopeInfo::WeakObjectProfileTy FunctionScopeInfo::WeakObjectProfileTy::getSentinel() { FunctionScopeInfo::WeakObjectProfileTy Result; Result.Base.setInt(true); return Result; } template void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) { assert(E); WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)]; Uses.push_back(WeakUseTy(E, IsRead)); } inline void CapturingScopeInfo::addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType, Expr *Cpy) { Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType, Cpy)); CXXThisCaptureIndex = Captures.size(); if (LambdaScopeInfo *LSI = dyn_cast(this)) LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size()); } } // end namespace sema } // end namespace clang #endif