//===--- ASTWriter.h - AST File Writer --------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ASTWriter class, which writes an AST file // containing a serialized representation of a translation unit. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_FRONTEND_AST_WRITER_H #define LLVM_CLANG_FRONTEND_AST_WRITER_H #include "clang/AST/ASTMutationListener.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/TemplateBase.h" #include "clang/Sema/SemaConsumer.h" #include "clang/Serialization/ASTBitCodes.h" #include "clang/Serialization/ASTDeserializationListener.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Bitcode/BitstreamWriter.h" #include #include #include namespace llvm { class APFloat; class APInt; class BitstreamWriter; } namespace clang { class ASTContext; class NestedNameSpecifier; class CXXBaseSpecifier; class CXXCtorInitializer; class FileEntry; class FPOptions; class HeaderSearch; class HeaderSearchOptions; class IdentifierResolver; class MacroDefinition; class MacroDirective; class MacroInfo; class OpaqueValueExpr; class OpenCLOptions; class ASTReader; class Module; class PreprocessedEntity; class PreprocessingRecord; class Preprocessor; class Sema; class SourceManager; class SwitchCase; class TargetInfo; class Token; class VersionTuple; class ASTUnresolvedSet; namespace SrcMgr { class SLocEntry; } /// \brief Writes an AST file containing the contents of a translation unit. /// /// The ASTWriter class produces a bitstream containing the serialized /// representation of a given abstract syntax tree and its supporting /// data structures. This bitstream can be de-serialized via an /// instance of the ASTReader class. class ASTWriter : public ASTDeserializationListener, public ASTMutationListener { public: typedef SmallVector RecordData; typedef SmallVectorImpl RecordDataImpl; friend class ASTDeclWriter; friend class ASTStmtWriter; private: /// \brief Map that provides the ID numbers of each type within the /// output stream, plus those deserialized from a chained PCH. /// /// The ID numbers of types are consecutive (in order of discovery) /// and start at 1. 0 is reserved for NULL. When types are actually /// stored in the stream, the ID number is shifted by 2 bits to /// allow for the const/volatile qualifiers. /// /// Keys in the map never have const/volatile qualifiers. typedef llvm::DenseMap TypeIdxMap; /// \brief The bitstream writer used to emit this precompiled header. llvm::BitstreamWriter &Stream; /// \brief The ASTContext we're writing. ASTContext *Context; /// \brief The preprocessor we're writing. Preprocessor *PP; /// \brief The reader of existing AST files, if we're chaining. ASTReader *Chain; /// \brief The module we're currently writing, if any. Module *WritingModule; /// \brief Indicates when the AST writing is actively performing /// serialization, rather than just queueing updates. bool WritingAST; /// \brief Indicates that we are done serializing the collection of decls /// and types to emit. bool DoneWritingDeclsAndTypes; /// \brief Indicates that the AST contained compiler errors. bool ASTHasCompilerErrors; /// \brief Mapping from input file entries to the index into the /// offset table where information about that input file is stored. llvm::DenseMap InputFileIDs; /// \brief Stores a declaration or a type to be written to the AST file. class DeclOrType { public: DeclOrType(Decl *D) : Stored(D), IsType(false) { } DeclOrType(QualType T) : Stored(T.getAsOpaquePtr()), IsType(true) { } bool isType() const { return IsType; } bool isDecl() const { return !IsType; } QualType getType() const { assert(isType() && "Not a type!"); return QualType::getFromOpaquePtr(Stored); } Decl *getDecl() const { assert(isDecl() && "Not a decl!"); return static_cast(Stored); } private: void *Stored; bool IsType; }; /// \brief The declarations and types to emit. std::queue DeclTypesToEmit; /// \brief The first ID number we can use for our own declarations. serialization::DeclID FirstDeclID; /// \brief The decl ID that will be assigned to the next new decl. serialization::DeclID NextDeclID; /// \brief Map that provides the ID numbers of each declaration within /// the output stream, as well as those deserialized from a chained PCH. /// /// The ID numbers of declarations are consecutive (in order of /// discovery) and start at 2. 1 is reserved for the translation /// unit, while 0 is reserved for NULL. llvm::DenseMap DeclIDs; /// \brief Offset of each declaration in the bitstream, indexed by /// the declaration's ID. std::vector DeclOffsets; /// \brief Sorted (by file offset) vector of pairs of file offset/DeclID. typedef SmallVector, 64> LocDeclIDsTy; struct DeclIDInFileInfo { LocDeclIDsTy DeclIDs; /// \brief Set when the DeclIDs vectors from all files are joined, this /// indicates the index that this particular vector has in the global one. unsigned FirstDeclIndex; }; typedef llvm::DenseMap FileDeclIDsTy; /// \brief Map from file SLocEntries to info about the file-level declarations /// that it contains. FileDeclIDsTy FileDeclIDs; void associateDeclWithFile(const Decl *D, serialization::DeclID); /// \brief The first ID number we can use for our own types. serialization::TypeID FirstTypeID; /// \brief The type ID that will be assigned to the next new type. serialization::TypeID NextTypeID; /// \brief Map that provides the ID numbers of each type within the /// output stream, plus those deserialized from a chained PCH. /// /// The ID numbers of types are consecutive (in order of discovery) /// and start at 1. 0 is reserved for NULL. When types are actually /// stored in the stream, the ID number is shifted by 2 bits to /// allow for the const/volatile qualifiers. /// /// Keys in the map never have const/volatile qualifiers. TypeIdxMap TypeIdxs; /// \brief Offset of each type in the bitstream, indexed by /// the type's ID. std::vector TypeOffsets; /// \brief The first ID number we can use for our own identifiers. serialization::IdentID FirstIdentID; /// \brief The identifier ID that will be assigned to the next new identifier. serialization::IdentID NextIdentID; /// \brief Map that provides the ID numbers of each identifier in /// the output stream. /// /// The ID numbers for identifiers are consecutive (in order of /// discovery), starting at 1. An ID of zero refers to a NULL /// IdentifierInfo. llvm::DenseMap IdentifierIDs; /// \brief The first ID number we can use for our own macros. serialization::MacroID FirstMacroID; /// \brief The identifier ID that will be assigned to the next new identifier. serialization::MacroID NextMacroID; /// \brief Map that provides the ID numbers of each macro. llvm::DenseMap MacroIDs; struct MacroInfoToEmitData { const IdentifierInfo *Name; MacroInfo *MI; serialization::MacroID ID; }; /// \brief The macro infos to emit. std::vector MacroInfosToEmit; llvm::DenseMap IdentMacroDirectivesOffsetMap; /// @name FlushStmt Caches /// @{ /// \brief Set of parent Stmts for the currently serializing sub stmt. llvm::DenseSet ParentStmts; /// \brief Offsets of sub stmts already serialized. The offset points /// just after the stmt record. llvm::DenseMap SubStmtEntries; /// @} /// \brief Offsets of each of the identifier IDs into the identifier /// table. std::vector IdentifierOffsets; /// \brief The first ID number we can use for our own submodules. serialization::SubmoduleID FirstSubmoduleID; /// \brief The submodule ID that will be assigned to the next new submodule. serialization::SubmoduleID NextSubmoduleID; /// \brief The first ID number we can use for our own selectors. serialization::SelectorID FirstSelectorID; /// \brief The selector ID that will be assigned to the next new selector. serialization::SelectorID NextSelectorID; /// \brief Map that provides the ID numbers of each Selector. llvm::DenseMap SelectorIDs; /// \brief Offset of each selector within the method pool/selector /// table, indexed by the Selector ID (-1). std::vector SelectorOffsets; /// \brief Mapping from macro definitions (as they occur in the preprocessing /// record) to the macro IDs. llvm::DenseMap MacroDefinitions; typedef SmallVector UpdateRecord; typedef llvm::DenseMap DeclUpdateMap; /// \brief Mapping from declarations that came from a chained PCH to the /// record containing modifications to them. DeclUpdateMap DeclUpdates; typedef llvm::DenseMap FirstLatestDeclMap; /// \brief Map of first declarations from a chained PCH that point to the /// most recent declarations in another PCH. FirstLatestDeclMap FirstLatestDecls; /// \brief Declarations encountered that might be external /// definitions. /// /// We keep track of external definitions (as well as tentative /// definitions) as we are emitting declarations to the AST /// file. The AST file contains a separate record for these external /// definitions, which are provided to the AST consumer by the AST /// reader. This is behavior is required to properly cope with, /// e.g., tentative variable definitions that occur within /// headers. The declarations themselves are stored as declaration /// IDs, since they will be written out to an EXTERNAL_DEFINITIONS /// record. SmallVector ExternalDefinitions; /// \brief DeclContexts that have received extensions since their serialized /// form. /// /// For namespaces, when we're chaining and encountering a namespace, we check /// if its primary namespace comes from the chain. If it does, we add the /// primary to this set, so that we can write out lexical content updates for /// it. llvm::SmallPtrSet UpdatedDeclContexts; /// \brief Keeps track of visible decls that were added in DeclContexts /// coming from another AST file. SmallVector UpdatingVisibleDecls; typedef llvm::SmallPtrSet DeclsToRewriteTy; /// \brief Decls that will be replaced in the current dependent AST file. DeclsToRewriteTy DeclsToRewrite; /// \brief The set of Objective-C class that have categories we /// should serialize. llvm::SetVector ObjCClassesWithCategories; struct ReplacedDeclInfo { serialization::DeclID ID; uint64_t Offset; unsigned Loc; ReplacedDeclInfo() : ID(0), Offset(0), Loc(0) {} ReplacedDeclInfo(serialization::DeclID ID, uint64_t Offset, SourceLocation Loc) : ID(ID), Offset(Offset), Loc(Loc.getRawEncoding()) {} }; /// \brief Decls that have been replaced in the current dependent AST file. /// /// When a decl changes fundamentally after being deserialized (this shouldn't /// happen, but the ObjC AST nodes are designed this way), it will be /// serialized again. In this case, it is registered here, so that the reader /// knows to read the updated version. SmallVector ReplacedDecls; /// \brief The set of declarations that may have redeclaration chains that /// need to be serialized. llvm::SetVector, llvm::SmallPtrSet > Redeclarations; /// \brief Statements that we've encountered while serializing a /// declaration or type. SmallVector StmtsToEmit; /// \brief Statements collection to use for ASTWriter::AddStmt(). /// It will point to StmtsToEmit unless it is overriden. SmallVector *CollectedStmts; /// \brief Mapping from SwitchCase statements to IDs. llvm::DenseMap SwitchCaseIDs; /// \brief The number of statements written to the AST file. unsigned NumStatements; /// \brief The number of macros written to the AST file. unsigned NumMacros; /// \brief The number of lexical declcontexts written to the AST /// file. unsigned NumLexicalDeclContexts; /// \brief The number of visible declcontexts written to the AST /// file. unsigned NumVisibleDeclContexts; /// \brief The offset of each CXXBaseSpecifier set within the AST. SmallVector CXXBaseSpecifiersOffsets; /// \brief The first ID number we can use for our own base specifiers. serialization::CXXBaseSpecifiersID FirstCXXBaseSpecifiersID; /// \brief The base specifiers ID that will be assigned to the next new /// set of C++ base specifiers. serialization::CXXBaseSpecifiersID NextCXXBaseSpecifiersID; /// \brief A set of C++ base specifiers that is queued to be written into the /// AST file. struct QueuedCXXBaseSpecifiers { QueuedCXXBaseSpecifiers() : ID(), Bases(), BasesEnd() { } QueuedCXXBaseSpecifiers(serialization::CXXBaseSpecifiersID ID, CXXBaseSpecifier const *Bases, CXXBaseSpecifier const *BasesEnd) : ID(ID), Bases(Bases), BasesEnd(BasesEnd) { } serialization::CXXBaseSpecifiersID ID; CXXBaseSpecifier const * Bases; CXXBaseSpecifier const * BasesEnd; }; /// \brief Queue of C++ base specifiers to be written to the AST file, /// in the order they should be written. SmallVector CXXBaseSpecifiersToWrite; /// \brief A mapping from each known submodule to its ID number, which will /// be a positive integer. llvm::DenseMap SubmoduleIDs; /// \brief Retrieve or create a submodule ID for this module. unsigned getSubmoduleID(Module *Mod); /// \brief Write the given subexpression to the bitstream. void WriteSubStmt(Stmt *S, llvm::DenseMap &SubStmtEntries, llvm::DenseSet &ParentStmts); void WriteBlockInfoBlock(); void WriteControlBlock(Preprocessor &PP, ASTContext &Context, StringRef isysroot, const std::string &OutputFile); void WriteInputFiles(SourceManager &SourceMgr, HeaderSearchOptions &HSOpts, StringRef isysroot); void WriteSourceManagerBlock(SourceManager &SourceMgr, const Preprocessor &PP, StringRef isysroot); void WritePreprocessor(const Preprocessor &PP, bool IsModule); void WriteHeaderSearch(const HeaderSearch &HS, StringRef isysroot); void WritePreprocessorDetail(PreprocessingRecord &PPRec); void WriteSubmodules(Module *WritingModule); void WritePragmaDiagnosticMappings(const DiagnosticsEngine &Diag, bool isModule); void WriteCXXBaseSpecifiersOffsets(); void WriteType(QualType T); uint64_t WriteDeclContextLexicalBlock(ASTContext &Context, DeclContext *DC); uint64_t WriteDeclContextVisibleBlock(ASTContext &Context, DeclContext *DC); void WriteTypeDeclOffsets(); void WriteFileDeclIDsMap(); void WriteComments(); void WriteSelectors(Sema &SemaRef); void WriteReferencedSelectorsPool(Sema &SemaRef); void WriteIdentifierTable(Preprocessor &PP, IdentifierResolver &IdResolver, bool IsModule); void WriteAttributes(ArrayRef Attrs, RecordDataImpl &Record); void ResolveDeclUpdatesBlocks(); void WriteDeclUpdatesBlocks(); void WriteDeclReplacementsBlock(); void WriteDeclContextVisibleUpdate(const DeclContext *DC); void WriteFPPragmaOptions(const FPOptions &Opts); void WriteOpenCLExtensions(Sema &SemaRef); void WriteObjCCategories(); void WriteRedeclarations(); void WriteMergedDecls(); unsigned DeclParmVarAbbrev; unsigned DeclContextLexicalAbbrev; unsigned DeclContextVisibleLookupAbbrev; unsigned UpdateVisibleAbbrev; unsigned DeclRefExprAbbrev; unsigned CharacterLiteralAbbrev; unsigned DeclRecordAbbrev; unsigned IntegerLiteralAbbrev; unsigned DeclTypedefAbbrev; unsigned DeclVarAbbrev; unsigned DeclFieldAbbrev; unsigned DeclEnumAbbrev; unsigned DeclObjCIvarAbbrev; void WriteDeclsBlockAbbrevs(); void WriteDecl(ASTContext &Context, Decl *D); void WriteASTCore(Sema &SemaRef, StringRef isysroot, const std::string &OutputFile, Module *WritingModule); public: /// \brief Create a new precompiled header writer that outputs to /// the given bitstream. ASTWriter(llvm::BitstreamWriter &Stream); ~ASTWriter(); /// \brief Write a precompiled header for the given semantic analysis. /// /// \param SemaRef a reference to the semantic analysis object that processed /// the AST to be written into the precompiled header. /// /// \param WritingModule The module that we are writing. If null, we are /// writing a precompiled header. /// /// \param isysroot if non-empty, write a relocatable file whose headers /// are relative to the given system root. void WriteAST(Sema &SemaRef, const std::string &OutputFile, Module *WritingModule, StringRef isysroot, bool hasErrors = false); /// \brief Emit a token. void AddToken(const Token &Tok, RecordDataImpl &Record); /// \brief Emit a source location. void AddSourceLocation(SourceLocation Loc, RecordDataImpl &Record); /// \brief Emit a source range. void AddSourceRange(SourceRange Range, RecordDataImpl &Record); /// \brief Emit an integral value. void AddAPInt(const llvm::APInt &Value, RecordDataImpl &Record); /// \brief Emit a signed integral value. void AddAPSInt(const llvm::APSInt &Value, RecordDataImpl &Record); /// \brief Emit a floating-point value. void AddAPFloat(const llvm::APFloat &Value, RecordDataImpl &Record); /// \brief Emit a reference to an identifier. void AddIdentifierRef(const IdentifierInfo *II, RecordDataImpl &Record); /// \brief Emit a Selector (which is a smart pointer reference). void AddSelectorRef(Selector, RecordDataImpl &Record); /// \brief Emit a CXXTemporary. void AddCXXTemporary(const CXXTemporary *Temp, RecordDataImpl &Record); /// \brief Emit a set of C++ base specifiers to the record. void AddCXXBaseSpecifiersRef(CXXBaseSpecifier const *Bases, CXXBaseSpecifier const *BasesEnd, RecordDataImpl &Record); /// \brief Get the unique number used to refer to the given selector. serialization::SelectorID getSelectorRef(Selector Sel); /// \brief Get the unique number used to refer to the given identifier. serialization::IdentID getIdentifierRef(const IdentifierInfo *II); /// \brief Get the unique number used to refer to the given macro. serialization::MacroID getMacroRef(MacroInfo *MI, const IdentifierInfo *Name); /// \brief Determine the ID of an already-emitted macro. serialization::MacroID getMacroID(MacroInfo *MI); uint64_t getMacroDirectivesOffset(const IdentifierInfo *Name); /// \brief Emit a reference to a type. void AddTypeRef(QualType T, RecordDataImpl &Record); /// \brief Force a type to be emitted and get its ID. serialization::TypeID GetOrCreateTypeID(QualType T); /// \brief Determine the type ID of an already-emitted type. serialization::TypeID getTypeID(QualType T) const; /// \brief Force a type to be emitted and get its index. serialization::TypeIdx GetOrCreateTypeIdx( QualType T); /// \brief Determine the type index of an already-emitted type. serialization::TypeIdx getTypeIdx(QualType T) const; /// \brief Emits a reference to a declarator info. void AddTypeSourceInfo(TypeSourceInfo *TInfo, RecordDataImpl &Record); /// \brief Emits a type with source-location information. void AddTypeLoc(TypeLoc TL, RecordDataImpl &Record); /// \brief Emits a template argument location info. void AddTemplateArgumentLocInfo(TemplateArgument::ArgKind Kind, const TemplateArgumentLocInfo &Arg, RecordDataImpl &Record); /// \brief Emits a template argument location. void AddTemplateArgumentLoc(const TemplateArgumentLoc &Arg, RecordDataImpl &Record); /// \brief Emit a reference to a declaration. void AddDeclRef(const Decl *D, RecordDataImpl &Record); /// \brief Force a declaration to be emitted and get its ID. serialization::DeclID GetDeclRef(const Decl *D); /// \brief Determine the declaration ID of an already-emitted /// declaration. serialization::DeclID getDeclID(const Decl *D); /// \brief Emit a declaration name. void AddDeclarationName(DeclarationName Name, RecordDataImpl &Record); void AddDeclarationNameLoc(const DeclarationNameLoc &DNLoc, DeclarationName Name, RecordDataImpl &Record); void AddDeclarationNameInfo(const DeclarationNameInfo &NameInfo, RecordDataImpl &Record); void AddQualifierInfo(const QualifierInfo &Info, RecordDataImpl &Record); /// \brief Emit a nested name specifier. void AddNestedNameSpecifier(NestedNameSpecifier *NNS, RecordDataImpl &Record); /// \brief Emit a nested name specifier with source-location information. void AddNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, RecordDataImpl &Record); /// \brief Emit a template name. void AddTemplateName(TemplateName Name, RecordDataImpl &Record); /// \brief Emit a template argument. void AddTemplateArgument(const TemplateArgument &Arg, RecordDataImpl &Record); /// \brief Emit a template parameter list. void AddTemplateParameterList(const TemplateParameterList *TemplateParams, RecordDataImpl &Record); /// \brief Emit a template argument list. void AddTemplateArgumentList(const TemplateArgumentList *TemplateArgs, RecordDataImpl &Record); /// \brief Emit a UnresolvedSet structure. void AddUnresolvedSet(const ASTUnresolvedSet &Set, RecordDataImpl &Record); /// \brief Emit a C++ base specifier. void AddCXXBaseSpecifier(const CXXBaseSpecifier &Base, RecordDataImpl &Record); /// \brief Emit a CXXCtorInitializer array. void AddCXXCtorInitializers( const CXXCtorInitializer * const *CtorInitializers, unsigned NumCtorInitializers, RecordDataImpl &Record); void AddCXXDefinitionData(const CXXRecordDecl *D, RecordDataImpl &Record); /// \brief Add a string to the given record. void AddString(StringRef Str, RecordDataImpl &Record); /// \brief Add a version tuple to the given record void AddVersionTuple(const VersionTuple &Version, RecordDataImpl &Record); /// \brief Mark a declaration context as needing an update. void AddUpdatedDeclContext(const DeclContext *DC) { UpdatedDeclContexts.insert(DC); } void RewriteDecl(const Decl *D) { DeclsToRewrite.insert(D); } bool isRewritten(const Decl *D) const { return DeclsToRewrite.count(D); } /// \brief Infer the submodule ID that contains an entity at the given /// source location. serialization::SubmoduleID inferSubmoduleIDFromLocation(SourceLocation Loc); /// \brief Retrieve a submodule ID for this module. /// Returns 0 If no ID has been associated with the module. unsigned getExistingSubmoduleID(Module *Mod) const; /// \brief Note that the identifier II occurs at the given offset /// within the identifier table. void SetIdentifierOffset(const IdentifierInfo *II, uint32_t Offset); /// \brief Note that the selector Sel occurs at the given offset /// within the method pool/selector table. void SetSelectorOffset(Selector Sel, uint32_t Offset); /// \brief Add the given statement or expression to the queue of /// statements to emit. /// /// This routine should be used when emitting types and declarations /// that have expressions as part of their formulation. Once the /// type or declaration has been written, call FlushStmts() to write /// the corresponding statements just after the type or /// declaration. void AddStmt(Stmt *S) { CollectedStmts->push_back(S); } /// \brief Flush all of the statements and expressions that have /// been added to the queue via AddStmt(). void FlushStmts(); /// \brief Flush all of the C++ base specifier sets that have been added /// via \c AddCXXBaseSpecifiersRef(). void FlushCXXBaseSpecifiers(); /// \brief Record an ID for the given switch-case statement. unsigned RecordSwitchCaseID(SwitchCase *S); /// \brief Retrieve the ID for the given switch-case statement. unsigned getSwitchCaseID(SwitchCase *S); void ClearSwitchCaseIDs(); unsigned getDeclParmVarAbbrev() const { return DeclParmVarAbbrev; } unsigned getDeclRefExprAbbrev() const { return DeclRefExprAbbrev; } unsigned getCharacterLiteralAbbrev() const { return CharacterLiteralAbbrev; } unsigned getDeclRecordAbbrev() const { return DeclRecordAbbrev; } unsigned getIntegerLiteralAbbrev() const { return IntegerLiteralAbbrev; } unsigned getDeclTypedefAbbrev() const { return DeclTypedefAbbrev; } unsigned getDeclVarAbbrev() const { return DeclVarAbbrev; } unsigned getDeclFieldAbbrev() const { return DeclFieldAbbrev; } unsigned getDeclEnumAbbrev() const { return DeclEnumAbbrev; } unsigned getDeclObjCIvarAbbrev() const { return DeclObjCIvarAbbrev; } bool hasChain() const { return Chain; } // ASTDeserializationListener implementation void ReaderInitialized(ASTReader *Reader); void IdentifierRead(serialization::IdentID ID, IdentifierInfo *II); void MacroRead(serialization::MacroID ID, MacroInfo *MI); void TypeRead(serialization::TypeIdx Idx, QualType T); void SelectorRead(serialization::SelectorID ID, Selector Sel); void MacroDefinitionRead(serialization::PreprocessedEntityID ID, MacroDefinition *MD); void ModuleRead(serialization::SubmoduleID ID, Module *Mod); // ASTMutationListener implementation. virtual void CompletedTagDefinition(const TagDecl *D); virtual void AddedVisibleDecl(const DeclContext *DC, const Decl *D); virtual void AddedCXXImplicitMember(const CXXRecordDecl *RD, const Decl *D); virtual void AddedCXXTemplateSpecialization(const ClassTemplateDecl *TD, const ClassTemplateSpecializationDecl *D); virtual void AddedCXXTemplateSpecialization(const FunctionTemplateDecl *TD, const FunctionDecl *D); virtual void CompletedImplicitDefinition(const FunctionDecl *D); virtual void StaticDataMemberInstantiated(const VarDecl *D); virtual void AddedObjCCategoryToInterface(const ObjCCategoryDecl *CatD, const ObjCInterfaceDecl *IFD); virtual void AddedObjCPropertyInClassExtension(const ObjCPropertyDecl *Prop, const ObjCPropertyDecl *OrigProp, const ObjCCategoryDecl *ClassExt); }; /// \brief AST and semantic-analysis consumer that generates a /// precompiled header from the parsed source code. class PCHGenerator : public SemaConsumer { const Preprocessor &PP; std::string OutputFile; clang::Module *Module; std::string isysroot; raw_ostream *Out; Sema *SemaPtr; SmallVector Buffer; llvm::BitstreamWriter Stream; ASTWriter Writer; protected: ASTWriter &getWriter() { return Writer; } const ASTWriter &getWriter() const { return Writer; } public: PCHGenerator(const Preprocessor &PP, StringRef OutputFile, clang::Module *Module, StringRef isysroot, raw_ostream *Out); ~PCHGenerator(); virtual void InitializeSema(Sema &S) { SemaPtr = &S; } virtual void HandleTranslationUnit(ASTContext &Ctx); virtual ASTMutationListener *GetASTMutationListener(); virtual ASTDeserializationListener *GetASTDeserializationListener(); }; } // end namespace clang #endif