//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "clang/AST/RecordLayout.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/Basic/TargetInfo.h" #include "clang/Sema/SemaDiagnostic.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Support/CrashRecoveryContext.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" using namespace clang; namespace { /// BaseSubobjectInfo - Represents a single base subobject in a complete class. /// For a class hierarchy like /// /// class A { }; /// class B : A { }; /// class C : A, B { }; /// /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo /// instances, one for B and two for A. /// /// If a base is virtual, it will only have one BaseSubobjectInfo allocated. struct BaseSubobjectInfo { /// Class - The class for this base info. const CXXRecordDecl *Class; /// IsVirtual - Whether the BaseInfo represents a virtual base or not. bool IsVirtual; /// Bases - Information about the base subobjects. SmallVector Bases; /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base /// of this base info (if one exists). BaseSubobjectInfo *PrimaryVirtualBaseInfo; // FIXME: Document. const BaseSubobjectInfo *Derived; }; /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different /// offsets while laying out a C++ class. class EmptySubobjectMap { const ASTContext &Context; uint64_t CharWidth; /// Class - The class whose empty entries we're keeping track of. const CXXRecordDecl *Class; /// EmptyClassOffsets - A map from offsets to empty record decls. typedef SmallVector ClassVectorTy; typedef llvm::DenseMap EmptyClassOffsetsMapTy; EmptyClassOffsetsMapTy EmptyClassOffsets; /// MaxEmptyClassOffset - The highest offset known to contain an empty /// base subobject. CharUnits MaxEmptyClassOffset; /// ComputeEmptySubobjectSizes - Compute the size of the largest base or /// member subobject that is empty. void ComputeEmptySubobjectSizes(); void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset); void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, CharUnits Offset, bool PlacingEmptyBase); void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset); void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset); /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty /// subobjects beyond the given offset. bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const { return Offset <= MaxEmptyClassOffset; } CharUnits getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const { uint64_t FieldOffset = Layout.getFieldOffset(FieldNo); assert(FieldOffset % CharWidth == 0 && "Field offset not at char boundary!"); return Context.toCharUnitsFromBits(FieldOffset); } protected: bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset) const; bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, CharUnits Offset); bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset) const; bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, CharUnits Offset) const; public: /// This holds the size of the largest empty subobject (either a base /// or a member). Will be zero if the record being built doesn't contain /// any empty classes. CharUnits SizeOfLargestEmptySubobject; EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class) : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) { ComputeEmptySubobjectSizes(); } /// CanPlaceBaseAtOffset - Return whether the given base class can be placed /// at the given offset. /// Returns false if placing the record will result in two components /// (direct or indirect) of the same type having the same offset. bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, CharUnits Offset); /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given /// offset. bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset); }; void EmptySubobjectMap::ComputeEmptySubobjectSizes() { // Check the bases. for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(), E = Class->bases_end(); I != E; ++I) { const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); CharUnits EmptySize; const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); if (BaseDecl->isEmpty()) { // If the class decl is empty, get its size. EmptySize = Layout.getSize(); } else { // Otherwise, we get the largest empty subobject for the decl. EmptySize = Layout.getSizeOfLargestEmptySubobject(); } if (EmptySize > SizeOfLargestEmptySubobject) SizeOfLargestEmptySubobject = EmptySize; } // Check the fields. for (CXXRecordDecl::field_iterator I = Class->field_begin(), E = Class->field_end(); I != E; ++I) { const RecordType *RT = Context.getBaseElementType(I->getType())->getAs(); // We only care about record types. if (!RT) continue; CharUnits EmptySize; const CXXRecordDecl *MemberDecl = cast(RT->getDecl()); const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl); if (MemberDecl->isEmpty()) { // If the class decl is empty, get its size. EmptySize = Layout.getSize(); } else { // Otherwise, we get the largest empty subobject for the decl. EmptySize = Layout.getSizeOfLargestEmptySubobject(); } if (EmptySize > SizeOfLargestEmptySubobject) SizeOfLargestEmptySubobject = EmptySize; } } bool EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset) const { // We only need to check empty bases. if (!RD->isEmpty()) return true; EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset); if (I == EmptyClassOffsets.end()) return true; const ClassVectorTy& Classes = I->second; if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end()) return true; // There is already an empty class of the same type at this offset. return false; } void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset) { // We only care about empty bases. if (!RD->isEmpty()) return; // If we have empty structures inside an union, we can assign both // the same offset. Just avoid pushing them twice in the list. ClassVectorTy& Classes = EmptyClassOffsets[Offset]; if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end()) return; Classes.push_back(RD); // Update the empty class offset. if (Offset > MaxEmptyClassOffset) MaxEmptyClassOffset = Offset; } bool EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, CharUnits Offset) { // We don't have to keep looking past the maximum offset that's known to // contain an empty class. if (!AnyEmptySubobjectsBeyondOffset(Offset)) return true; if (!CanPlaceSubobjectAtOffset(Info->Class, Offset)) return false; // Traverse all non-virtual bases. const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) { BaseSubobjectInfo* Base = Info->Bases[I]; if (Base->IsVirtual) continue; CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset)) return false; } if (Info->PrimaryVirtualBaseInfo) { BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; if (Info == PrimaryVirtualBaseInfo->Derived) { if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset)) return false; } } // Traverse all member variables. unsigned FieldNo = 0; for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { if (I->isBitField()) continue; CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) return false; } return true; } void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, CharUnits Offset, bool PlacingEmptyBase) { if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { // We know that the only empty subobjects that can conflict with empty // subobject of non-empty bases, are empty bases that can be placed at // offset zero. Because of this, we only need to keep track of empty base // subobjects with offsets less than the size of the largest empty // subobject for our class. return; } AddSubobjectAtOffset(Info->Class, Offset); // Traverse all non-virtual bases. const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) { BaseSubobjectInfo* Base = Info->Bases[I]; if (Base->IsVirtual) continue; CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase); } if (Info->PrimaryVirtualBaseInfo) { BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; if (Info == PrimaryVirtualBaseInfo->Derived) UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset, PlacingEmptyBase); } // Traverse all member variables. unsigned FieldNo = 0; for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { if (I->isBitField()) continue; CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); UpdateEmptyFieldSubobjects(*I, FieldOffset); } } bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, CharUnits Offset) { // If we know this class doesn't have any empty subobjects we don't need to // bother checking. if (SizeOfLargestEmptySubobject.isZero()) return true; if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) return false; // We are able to place the base at this offset. Make sure to update the // empty base subobject map. UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty()); return true; } bool EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset) const { // We don't have to keep looking past the maximum offset that's known to // contain an empty class. if (!AnyEmptySubobjectsBeyondOffset(Offset)) return true; if (!CanPlaceSubobjectAtOffset(RD, Offset)) return false; const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); // Traverse all non-virtual bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { if (I->isVirtual()) continue; const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset)) return false; } if (RD == Class) { // This is the most derived class, traverse virtual bases as well. for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) { const CXXRecordDecl *VBaseDecl = cast(I->getType()->getAs()->getDecl()); CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset)) return false; } } // Traverse all member variables. unsigned FieldNo = 0; for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++FieldNo) { if (I->isBitField()) continue; CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) return false; } return true; } bool EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, CharUnits Offset) const { // We don't have to keep looking past the maximum offset that's known to // contain an empty class. if (!AnyEmptySubobjectsBeyondOffset(Offset)) return true; QualType T = FD->getType(); if (const RecordType *RT = T->getAs()) { const CXXRecordDecl *RD = cast(RT->getDecl()); return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset); } // If we have an array type we need to look at every element. if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { QualType ElemTy = Context.getBaseElementType(AT); const RecordType *RT = ElemTy->getAs(); if (!RT) return true; const CXXRecordDecl *RD = cast(RT->getDecl()); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); uint64_t NumElements = Context.getConstantArrayElementCount(AT); CharUnits ElementOffset = Offset; for (uint64_t I = 0; I != NumElements; ++I) { // We don't have to keep looking past the maximum offset that's known to // contain an empty class. if (!AnyEmptySubobjectsBeyondOffset(ElementOffset)) return true; if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset)) return false; ElementOffset += Layout.getSize(); } } return true; } bool EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset) { if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) return false; // We are able to place the member variable at this offset. // Make sure to update the empty base subobject map. UpdateEmptyFieldSubobjects(FD, Offset); return true; } void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset) { // We know that the only empty subobjects that can conflict with empty // field subobjects are subobjects of empty bases that can be placed at offset // zero. Because of this, we only need to keep track of empty field // subobjects with offsets less than the size of the largest empty // subobject for our class. if (Offset >= SizeOfLargestEmptySubobject) return; AddSubobjectAtOffset(RD, Offset); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); // Traverse all non-virtual bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { if (I->isVirtual()) continue; const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset); } if (RD == Class) { // This is the most derived class, traverse virtual bases as well. for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) { const CXXRecordDecl *VBaseDecl = cast(I->getType()->getAs()->getDecl()); CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset); } } // Traverse all member variables. unsigned FieldNo = 0; for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++FieldNo) { if (I->isBitField()) continue; CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); UpdateEmptyFieldSubobjects(*I, FieldOffset); } } void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset) { QualType T = FD->getType(); if (const RecordType *RT = T->getAs()) { const CXXRecordDecl *RD = cast(RT->getDecl()); UpdateEmptyFieldSubobjects(RD, RD, Offset); return; } // If we have an array type we need to update every element. if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { QualType ElemTy = Context.getBaseElementType(AT); const RecordType *RT = ElemTy->getAs(); if (!RT) return; const CXXRecordDecl *RD = cast(RT->getDecl()); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); uint64_t NumElements = Context.getConstantArrayElementCount(AT); CharUnits ElementOffset = Offset; for (uint64_t I = 0; I != NumElements; ++I) { // We know that the only empty subobjects that can conflict with empty // field subobjects are subobjects of empty bases that can be placed at // offset zero. Because of this, we only need to keep track of empty field // subobjects with offsets less than the size of the largest empty // subobject for our class. if (ElementOffset >= SizeOfLargestEmptySubobject) return; UpdateEmptyFieldSubobjects(RD, RD, ElementOffset); ElementOffset += Layout.getSize(); } } } typedef llvm::SmallPtrSet ClassSetTy; class RecordLayoutBuilder { protected: // FIXME: Remove this and make the appropriate fields public. friend class clang::ASTContext; const ASTContext &Context; EmptySubobjectMap *EmptySubobjects; /// Size - The current size of the record layout. uint64_t Size; /// Alignment - The current alignment of the record layout. CharUnits Alignment; /// \brief The alignment if attribute packed is not used. CharUnits UnpackedAlignment; SmallVector FieldOffsets; /// \brief Whether the external AST source has provided a layout for this /// record. unsigned ExternalLayout : 1; /// \brief Whether we need to infer alignment, even when we have an /// externally-provided layout. unsigned InferAlignment : 1; /// Packed - Whether the record is packed or not. unsigned Packed : 1; unsigned IsUnion : 1; unsigned IsMac68kAlign : 1; unsigned IsMsStruct : 1; /// UnfilledBitsInLastByte - If the last field laid out was a bitfield, /// this contains the number of bits in the last byte that can be used for /// an adjacent bitfield if necessary. unsigned char UnfilledBitsInLastByte; /// MaxFieldAlignment - The maximum allowed field alignment. This is set by /// #pragma pack. CharUnits MaxFieldAlignment; /// DataSize - The data size of the record being laid out. uint64_t DataSize; CharUnits NonVirtualSize; CharUnits NonVirtualAlignment; FieldDecl *ZeroLengthBitfield; /// PrimaryBase - the primary base class (if one exists) of the class /// we're laying out. const CXXRecordDecl *PrimaryBase; /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying /// out is virtual. bool PrimaryBaseIsVirtual; /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl /// pointer, as opposed to inheriting one from a primary base class. bool HasOwnVFPtr; /// VBPtrOffset - Virtual base table offset. Only for MS layout. CharUnits VBPtrOffset; typedef llvm::DenseMap BaseOffsetsMapTy; /// Bases - base classes and their offsets in the record. BaseOffsetsMapTy Bases; // VBases - virtual base classes and their offsets in the record. ASTRecordLayout::VBaseOffsetsMapTy VBases; /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are /// primary base classes for some other direct or indirect base class. CXXIndirectPrimaryBaseSet IndirectPrimaryBases; /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in /// inheritance graph order. Used for determining the primary base class. const CXXRecordDecl *FirstNearlyEmptyVBase; /// VisitedVirtualBases - A set of all the visited virtual bases, used to /// avoid visiting virtual bases more than once. llvm::SmallPtrSet VisitedVirtualBases; /// \brief Externally-provided size. uint64_t ExternalSize; /// \brief Externally-provided alignment. uint64_t ExternalAlign; /// \brief Externally-provided field offsets. llvm::DenseMap ExternalFieldOffsets; /// \brief Externally-provided direct, non-virtual base offsets. llvm::DenseMap ExternalBaseOffsets; /// \brief Externally-provided virtual base offsets. llvm::DenseMap ExternalVirtualBaseOffsets; RecordLayoutBuilder(const ASTContext &Context, EmptySubobjectMap *EmptySubobjects) : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()), ExternalLayout(false), InferAlignment(false), Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false), UnfilledBitsInLastByte(0), MaxFieldAlignment(CharUnits::Zero()), DataSize(0), NonVirtualSize(CharUnits::Zero()), NonVirtualAlignment(CharUnits::One()), ZeroLengthBitfield(0), PrimaryBase(0), PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), VBPtrOffset(CharUnits::fromQuantity(-1)), FirstNearlyEmptyVBase(0) { } /// Reset this RecordLayoutBuilder to a fresh state, using the given /// alignment as the initial alignment. This is used for the /// correct layout of vb-table pointers in MSVC. void resetWithTargetAlignment(CharUnits TargetAlignment) { const ASTContext &Context = this->Context; EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects; this->~RecordLayoutBuilder(); new (this) RecordLayoutBuilder(Context, EmptySubobjects); Alignment = UnpackedAlignment = TargetAlignment; } void Layout(const RecordDecl *D); void Layout(const CXXRecordDecl *D); void Layout(const ObjCInterfaceDecl *D); void LayoutFields(const RecordDecl *D); void LayoutField(const FieldDecl *D); void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize, bool FieldPacked, const FieldDecl *D); void LayoutBitField(const FieldDecl *D); TargetCXXABI getCXXABI() const { return Context.getTargetInfo().getCXXABI(); } bool isMicrosoftCXXABI() const { return getCXXABI().isMicrosoft(); } void MSLayoutVirtualBases(const CXXRecordDecl *RD); /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. llvm::SpecificBumpPtrAllocator BaseSubobjectInfoAllocator; typedef llvm::DenseMap BaseSubobjectInfoMapTy; /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases /// of the class we're laying out to their base subobject info. BaseSubobjectInfoMapTy VirtualBaseInfo; /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the /// class we're laying out to their base subobject info. BaseSubobjectInfoMapTy NonVirtualBaseInfo; /// ComputeBaseSubobjectInfo - Compute the base subobject information for the /// bases of the given class. void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); /// ComputeBaseSubobjectInfo - Compute the base subobject information for a /// single class and all of its base classes. BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived); /// DeterminePrimaryBase - Determine the primary base of the given class. void DeterminePrimaryBase(const CXXRecordDecl *RD); void SelectPrimaryVBase(const CXXRecordDecl *RD); void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign); /// LayoutNonVirtualBases - Determines the primary base class (if any) and /// lays it out. Will then proceed to lay out all non-virtual base clasess. void LayoutNonVirtualBases(const CXXRecordDecl *RD); /// LayoutNonVirtualBase - Lays out a single non-virtual base. void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, CharUnits Offset); bool needsVFTable(const CXXRecordDecl *RD) const; bool hasNewVirtualFunction(const CXXRecordDecl *RD, bool IgnoreDestructor = false) const; bool isPossiblePrimaryBase(const CXXRecordDecl *Base) const; void computeVtordisps(const CXXRecordDecl *RD, ClassSetTy &VtordispVBases); /// LayoutVirtualBases - Lays out all the virtual bases. void LayoutVirtualBases(const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass); /// LayoutVirtualBase - Lays out a single virtual base. void LayoutVirtualBase(const BaseSubobjectInfo *Base, bool IsVtordispNeed = false); /// LayoutBase - Will lay out a base and return the offset where it was /// placed, in chars. CharUnits LayoutBase(const BaseSubobjectInfo *Base); /// InitializeLayout - Initialize record layout for the given record decl. void InitializeLayout(const Decl *D); /// FinishLayout - Finalize record layout. Adjust record size based on the /// alignment. void FinishLayout(const NamedDecl *D); void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment); void UpdateAlignment(CharUnits NewAlignment) { UpdateAlignment(NewAlignment, NewAlignment); } /// \brief Retrieve the externally-supplied field offset for the given /// field. /// /// \param Field The field whose offset is being queried. /// \param ComputedOffset The offset that we've computed for this field. uint64_t updateExternalFieldOffset(const FieldDecl *Field, uint64_t ComputedOffset); void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, unsigned UnpackedAlign, bool isPacked, const FieldDecl *D); DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); CharUnits getSize() const { assert(Size % Context.getCharWidth() == 0); return Context.toCharUnitsFromBits(Size); } uint64_t getSizeInBits() const { return Size; } void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); } void setSize(uint64_t NewSize) { Size = NewSize; } CharUnits getAligment() const { return Alignment; } CharUnits getDataSize() const { assert(DataSize % Context.getCharWidth() == 0); return Context.toCharUnitsFromBits(DataSize); } uint64_t getDataSizeInBits() const { return DataSize; } void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); } void setDataSize(uint64_t NewSize) { DataSize = NewSize; } RecordLayoutBuilder(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION; void operator=(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION; }; } // end anonymous namespace void RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { assert(!I->getType()->isDependentType() && "Cannot layout class with dependent bases."); const CXXRecordDecl *Base = cast(I->getType()->getAs()->getDecl()); // Check if this is a nearly empty virtual base. if (I->isVirtual() && Context.isNearlyEmpty(Base)) { // If it's not an indirect primary base, then we've found our primary // base. if (!IndirectPrimaryBases.count(Base)) { PrimaryBase = Base; PrimaryBaseIsVirtual = true; return; } // Is this the first nearly empty virtual base? if (!FirstNearlyEmptyVBase) FirstNearlyEmptyVBase = Base; } SelectPrimaryVBase(Base); if (PrimaryBase) return; } } /// DeterminePrimaryBase - Determine the primary base of the given class. void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { // If the class isn't dynamic, it won't have a primary base. if (!RD->isDynamicClass()) return; // Compute all the primary virtual bases for all of our direct and // indirect bases, and record all their primary virtual base classes. RD->getIndirectPrimaryBases(IndirectPrimaryBases); // If the record has a dynamic base class, attempt to choose a primary base // class. It is the first (in direct base class order) non-virtual dynamic // base class, if one exists. for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { // Ignore virtual bases. if (i->isVirtual()) continue; const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); if (isPossiblePrimaryBase(Base)) { // We found it. PrimaryBase = Base; PrimaryBaseIsVirtual = false; return; } } // The Microsoft ABI doesn't have primary virtual bases. if (isMicrosoftCXXABI()) { assert(!PrimaryBase && "Should not get here with a primary base!"); return; } // Under the Itanium ABI, if there is no non-virtual primary base class, // try to compute the primary virtual base. The primary virtual base is // the first nearly empty virtual base that is not an indirect primary // virtual base class, if one exists. if (RD->getNumVBases() != 0) { SelectPrimaryVBase(RD); if (PrimaryBase) return; } // Otherwise, it is the first indirect primary base class, if one exists. if (FirstNearlyEmptyVBase) { PrimaryBase = FirstNearlyEmptyVBase; PrimaryBaseIsVirtual = true; return; } assert(!PrimaryBase && "Should not get here with a primary base!"); } BaseSubobjectInfo * RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { BaseSubobjectInfo *Info; if (IsVirtual) { // Check if we already have info about this virtual base. BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; if (InfoSlot) { assert(InfoSlot->Class == RD && "Wrong class for virtual base info!"); return InfoSlot; } // We don't, create it. InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; Info = InfoSlot; } else { Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; } Info->Class = RD; Info->IsVirtual = IsVirtual; Info->Derived = 0; Info->PrimaryVirtualBaseInfo = 0; const CXXRecordDecl *PrimaryVirtualBase = 0; BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0; // Check if this base has a primary virtual base. if (RD->getNumVBases()) { const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); if (Layout.isPrimaryBaseVirtual()) { // This base does have a primary virtual base. PrimaryVirtualBase = Layout.getPrimaryBase(); assert(PrimaryVirtualBase && "Didn't have a primary virtual base!"); // Now check if we have base subobject info about this primary base. PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); if (PrimaryVirtualBaseInfo) { if (PrimaryVirtualBaseInfo->Derived) { // We did have info about this primary base, and it turns out that it // has already been claimed as a primary virtual base for another // base. PrimaryVirtualBase = 0; } else { // We can claim this base as our primary base. Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; PrimaryVirtualBaseInfo->Derived = Info; } } } } // Now go through all direct bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { bool IsVirtual = I->isVirtual(); const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info)); } if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { // Traversing the bases must have created the base info for our primary // virtual base. PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); assert(PrimaryVirtualBaseInfo && "Did not create a primary virtual base!"); // Claim the primary virtual base as our primary virtual base. Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; PrimaryVirtualBaseInfo->Derived = Info; } return Info; } void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) { for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { bool IsVirtual = I->isVirtual(); const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); // Compute the base subobject info for this base. BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0); if (IsVirtual) { // ComputeBaseInfo has already added this base for us. assert(VirtualBaseInfo.count(BaseDecl) && "Did not add virtual base!"); } else { // Add the base info to the map of non-virtual bases. assert(!NonVirtualBaseInfo.count(BaseDecl) && "Non-virtual base already exists!"); NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info)); } } } void RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) { CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign; // The maximum field alignment overrides base align. if (!MaxFieldAlignment.isZero()) { BaseAlign = std::min(BaseAlign, MaxFieldAlignment); UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); } // Round up the current record size to pointer alignment. setSize(getSize().RoundUpToAlignment(BaseAlign)); setDataSize(getSize()); // Update the alignment. UpdateAlignment(BaseAlign, UnpackedBaseAlign); } void RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) { // Then, determine the primary base class. DeterminePrimaryBase(RD); // Compute base subobject info. ComputeBaseSubobjectInfo(RD); // If we have a primary base class, lay it out. if (PrimaryBase) { if (PrimaryBaseIsVirtual) { // If the primary virtual base was a primary virtual base of some other // base class we'll have to steal it. BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase); PrimaryBaseInfo->Derived = 0; // We have a virtual primary base, insert it as an indirect primary base. IndirectPrimaryBases.insert(PrimaryBase); assert(!VisitedVirtualBases.count(PrimaryBase) && "vbase already visited!"); VisitedVirtualBases.insert(PrimaryBase); LayoutVirtualBase(PrimaryBaseInfo); } else { BaseSubobjectInfo *PrimaryBaseInfo = NonVirtualBaseInfo.lookup(PrimaryBase); assert(PrimaryBaseInfo && "Did not find base info for non-virtual primary base!"); LayoutNonVirtualBase(PrimaryBaseInfo); } // If this class needs a vtable/vf-table and didn't get one from a // primary base, add it in now. } else if (needsVFTable(RD)) { assert(DataSize == 0 && "Vtable pointer must be at offset zero!"); CharUnits PtrWidth = Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); CharUnits PtrAlign = Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0)); EnsureVTablePointerAlignment(PtrAlign); HasOwnVFPtr = true; setSize(getSize() + PtrWidth); setDataSize(getSize()); } bool HasDirectVirtualBases = false; bool HasNonVirtualBaseWithVBTable = false; // Now lay out the non-virtual bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { // Ignore virtual bases, but remember that we saw one. if (I->isVirtual()) { HasDirectVirtualBases = true; continue; } const CXXRecordDecl *BaseDecl = cast(I->getType()->castAs()->getDecl()); // Remember if this base has virtual bases itself. if (BaseDecl->getNumVBases()) HasNonVirtualBaseWithVBTable = true; // Skip the primary base, because we've already laid it out. The // !PrimaryBaseIsVirtual check is required because we might have a // non-virtual base of the same type as a primary virtual base. if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) continue; // Lay out the base. BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl); assert(BaseInfo && "Did not find base info for non-virtual base!"); LayoutNonVirtualBase(BaseInfo); } // In the MS ABI, add the vb-table pointer if we need one, which is // whenever we have a virtual base and we can't re-use a vb-table // pointer from a non-virtual base. if (isMicrosoftCXXABI() && HasDirectVirtualBases && !HasNonVirtualBaseWithVBTable) { CharUnits PtrWidth = Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); CharUnits PtrAlign = Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0)); // MSVC potentially over-aligns the vb-table pointer by giving it // the max alignment of all the non-virtual objects in the class. // This is completely unnecessary, but we're not here to pass // judgment. // // Note that we've only laid out the non-virtual bases, so on the // first pass Alignment won't be set correctly here, but if the // vb-table doesn't end up aligned correctly we'll come through // and redo the layout from scratch with the right alignment. // // TODO: Instead of doing this, just lay out the fields as if the // vb-table were at offset zero, then retroactively bump the field // offsets up. PtrAlign = std::max(PtrAlign, Alignment); EnsureVTablePointerAlignment(PtrAlign); VBPtrOffset = getSize(); setSize(getSize() + PtrWidth); setDataSize(getSize()); } } void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) { // Layout the base. CharUnits Offset = LayoutBase(Base); // Add its base class offset. assert(!Bases.count(Base->Class) && "base offset already exists!"); Bases.insert(std::make_pair(Base->Class, Offset)); AddPrimaryVirtualBaseOffsets(Base, Offset); } void RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, CharUnits Offset) { // This base isn't interesting, it has no virtual bases. if (!Info->Class->getNumVBases()) return; // First, check if we have a virtual primary base to add offsets for. if (Info->PrimaryVirtualBaseInfo) { assert(Info->PrimaryVirtualBaseInfo->IsVirtual && "Primary virtual base is not virtual!"); if (Info->PrimaryVirtualBaseInfo->Derived == Info) { // Add the offset. assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && "primary vbase offset already exists!"); VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class, ASTRecordLayout::VBaseInfo(Offset, false))); // Traverse the primary virtual base. AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset); } } // Now go through all direct non-virtual bases. const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) { const BaseSubobjectInfo *Base = Info->Bases[I]; if (Base->IsVirtual) continue; CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); AddPrimaryVirtualBaseOffsets(Base, BaseOffset); } } /// needsVFTable - Return true if this class needs a vtable or vf-table /// when laid out as a base class. These are treated the same because /// they're both always laid out at offset zero. /// /// This function assumes that the class has no primary base. bool RecordLayoutBuilder::needsVFTable(const CXXRecordDecl *RD) const { assert(!PrimaryBase); // In the Itanium ABI, every dynamic class needs a vtable: even if // this class has no virtual functions as a base class (i.e. it's // non-polymorphic or only has virtual functions from virtual // bases),x it still needs a vtable to locate its virtual bases. if (!isMicrosoftCXXABI()) return RD->isDynamicClass(); // In the MS ABI, we need a vfptr if the class has virtual functions // other than those declared by its virtual bases. The AST doesn't // tell us that directly, and checking manually for virtual // functions that aren't overrides is expensive, but there are // some important shortcuts: // - Non-polymorphic classes have no virtual functions at all. if (!RD->isPolymorphic()) return false; // - Polymorphic classes with no virtual bases must either declare // virtual functions directly or inherit them, but in the latter // case we would have a primary base. if (RD->getNumVBases() == 0) return true; return hasNewVirtualFunction(RD); } /// Does the given class inherit non-virtually from any of the classes /// in the given set? static bool hasNonVirtualBaseInSet(const CXXRecordDecl *RD, const ClassSetTy &set) { for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { // Ignore virtual links. if (I->isVirtual()) continue; // Check whether the set contains the base. const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl(); if (set.count(base)) return true; // Otherwise, recurse and propagate. if (hasNonVirtualBaseInSet(base, set)) return true; } return false; } /// Does the given method (B::foo()) already override a method (A::foo()) /// such that A requires a vtordisp in B? If so, we don't need to add a /// new vtordisp for B in a yet-more-derived class C providing C::foo(). static bool overridesMethodRequiringVtorDisp(const ASTContext &Context, const CXXMethodDecl *M) { CXXMethodDecl::method_iterator I = M->begin_overridden_methods(), E = M->end_overridden_methods(); if (I == E) return false; const ASTRecordLayout::VBaseOffsetsMapTy &offsets = Context.getASTRecordLayout(M->getParent()).getVBaseOffsetsMap(); do { const CXXMethodDecl *overridden = *I; // If the overridden method's class isn't recognized as a virtual // base in the derived class, ignore it. ASTRecordLayout::VBaseOffsetsMapTy::const_iterator it = offsets.find(overridden->getParent()); if (it == offsets.end()) continue; // Otherwise, check if the overridden method's class needs a vtordisp. if (it->second.hasVtorDisp()) return true; } while (++I != E); return false; } /// In the Microsoft ABI, decide which of the virtual bases require a /// vtordisp field. void RecordLayoutBuilder::computeVtordisps(const CXXRecordDecl *RD, ClassSetTy &vtordispVBases) { // Bail out if we have no virtual bases. assert(RD->getNumVBases()); // Build up the set of virtual bases that we haven't decided yet. ClassSetTy undecidedVBases; for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) { const CXXRecordDecl *vbase = I->getType()->getAsCXXRecordDecl(); undecidedVBases.insert(vbase); } assert(!undecidedVBases.empty()); // A virtual base requires a vtordisp field in a derived class if it // requires a vtordisp field in a base class. Walk all the direct // bases and collect this information. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl(); const ASTRecordLayout &baseLayout = Context.getASTRecordLayout(base); // Iterate over the set of virtual bases provided by this class. for (ASTRecordLayout::VBaseOffsetsMapTy::const_iterator VI = baseLayout.getVBaseOffsetsMap().begin(), VE = baseLayout.getVBaseOffsetsMap().end(); VI != VE; ++VI) { // If it doesn't need a vtordisp in this base, ignore it. if (!VI->second.hasVtorDisp()) continue; // If we've already seen it and decided it needs a vtordisp, ignore it. if (!undecidedVBases.erase(VI->first)) continue; // Add it. vtordispVBases.insert(VI->first); // Quit as soon as we've decided everything. if (undecidedVBases.empty()) return; } } // Okay, we have virtual bases that we haven't yet decided about. A // virtual base requires a vtordisp if any the non-destructor // virtual methods declared in this class directly override a method // provided by that virtual base. (If so, we need to emit a thunk // for that method, to be used in the construction vftable, which // applies an additional 'vtordisp' this-adjustment.) // Collect the set of bases directly overridden by any method in this class. // It's possible that some of these classes won't be virtual bases, or won't be // provided by virtual bases, or won't be virtual bases in the overridden // instance but are virtual bases elsewhere. Only the last matters for what // we're doing, and we can ignore those: if we don't directly override // a method provided by a virtual copy of a base class, but we do directly // override a method provided by a non-virtual copy of that base class, // then we must indirectly override the method provided by the virtual base, // and so we should already have collected it in the loop above. ClassSetTy overriddenBases; for (CXXRecordDecl::method_iterator M = RD->method_begin(), E = RD->method_end(); M != E; ++M) { // Ignore non-virtual methods and destructors. if (isa(*M) || !M->isVirtual()) continue; for (CXXMethodDecl::method_iterator I = M->begin_overridden_methods(), E = M->end_overridden_methods(); I != E; ++I) { const CXXMethodDecl *overriddenMethod = (*I); // Ignore methods that override methods from vbases that require // require vtordisps. if (overridesMethodRequiringVtorDisp(Context, overriddenMethod)) continue; // As an optimization, check immediately whether we're overriding // something from the undecided set. const CXXRecordDecl *overriddenBase = overriddenMethod->getParent(); if (undecidedVBases.erase(overriddenBase)) { vtordispVBases.insert(overriddenBase); if (undecidedVBases.empty()) return; // We can't 'continue;' here because one of our undecided // vbases might non-virtually inherit from this base. // Consider: // struct A { virtual void foo(); }; // struct B : A {}; // struct C : virtual A, virtual B { virtual void foo(); }; // We need a vtordisp for B here. } // Otherwise, just collect it. overriddenBases.insert(overriddenBase); } } // Walk the undecided v-bases and check whether they (non-virtually) // provide any of the overridden bases. We don't need to consider // virtual links because the vtordisp inheres to the layout // subobject containing the base. for (ClassSetTy::const_iterator I = undecidedVBases.begin(), E = undecidedVBases.end(); I != E; ++I) { if (hasNonVirtualBaseInSet(*I, overriddenBases)) vtordispVBases.insert(*I); } } /// hasNewVirtualFunction - Does the given polymorphic class declare a /// virtual function that does not override a method from any of its /// base classes? bool RecordLayoutBuilder::hasNewVirtualFunction(const CXXRecordDecl *RD, bool IgnoreDestructor) const { if (!RD->getNumBases()) return true; for (CXXRecordDecl::method_iterator method = RD->method_begin(); method != RD->method_end(); ++method) { if (method->isVirtual() && !method->size_overridden_methods() && !(IgnoreDestructor && method->getKind() == Decl::CXXDestructor)) { return true; } } return false; } /// isPossiblePrimaryBase - Is the given base class an acceptable /// primary base class? bool RecordLayoutBuilder::isPossiblePrimaryBase(const CXXRecordDecl *base) const { // In the Itanium ABI, a class can be a primary base class if it has // a vtable for any reason. if (!isMicrosoftCXXABI()) return base->isDynamicClass(); // In the MS ABI, a class can only be a primary base class if it // provides a vf-table at a static offset. That means it has to be // non-virtual base. The existence of a separate vb-table means // that it's possible to get virtual functions only from a virtual // base, which we have to guard against. // First off, it has to have virtual functions. if (!base->isPolymorphic()) return false; // If it has no virtual bases, then the vfptr must be at a static offset. if (!base->getNumVBases()) return true; // Otherwise, the necessary information is cached in the layout. const ASTRecordLayout &layout = Context.getASTRecordLayout(base); // If the base has its own vfptr, it can be a primary base. if (layout.hasOwnVFPtr()) return true; // If the base has a primary base class, then it can be a primary base. if (layout.getPrimaryBase()) return true; // Otherwise it can't. return false; } void RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { const CXXRecordDecl *PrimaryBase; bool PrimaryBaseIsVirtual; if (MostDerivedClass == RD) { PrimaryBase = this->PrimaryBase; PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; } else { const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); PrimaryBase = Layout.getPrimaryBase(); PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); } for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { assert(!I->getType()->isDependentType() && "Cannot layout class with dependent bases."); const CXXRecordDecl *BaseDecl = cast(I->getType()->castAs()->getDecl()); if (I->isVirtual()) { if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl); // Only lay out the virtual base if it's not an indirect primary base. if (!IndirectPrimaryBase) { // Only visit virtual bases once. if (!VisitedVirtualBases.insert(BaseDecl)) continue; const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl); assert(BaseInfo && "Did not find virtual base info!"); LayoutVirtualBase(BaseInfo); } } } if (!BaseDecl->getNumVBases()) { // This base isn't interesting since it doesn't have any virtual bases. continue; } LayoutVirtualBases(BaseDecl, MostDerivedClass); } } void RecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD) { if (!RD->getNumVBases()) return; ClassSetTy VtordispVBases; computeVtordisps(RD, VtordispVBases); // This is substantially simplified because there are no virtual // primary bases. for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) { const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl(); const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl); assert(BaseInfo && "Did not find virtual base info!"); // If this base requires a vtordisp, add enough space for an int field. // This is apparently always 32-bits, even on x64. bool vtordispNeeded = false; if (VtordispVBases.count(BaseDecl)) { CharUnits IntSize = CharUnits::fromQuantity(Context.getTargetInfo().getIntWidth() / 8); setSize(getSize() + IntSize); setDataSize(getSize()); vtordispNeeded = true; } LayoutVirtualBase(BaseInfo, vtordispNeeded); } } void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base, bool IsVtordispNeed) { assert(!Base->Derived && "Trying to lay out a primary virtual base!"); // Layout the base. CharUnits Offset = LayoutBase(Base); // Add its base class offset. assert(!VBases.count(Base->Class) && "vbase offset already exists!"); VBases.insert(std::make_pair(Base->Class, ASTRecordLayout::VBaseInfo(Offset, IsVtordispNeed))); if (!isMicrosoftCXXABI()) AddPrimaryVirtualBaseOffsets(Base, Offset); } CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class); CharUnits Offset; // Query the external layout to see if it provides an offset. bool HasExternalLayout = false; if (ExternalLayout) { llvm::DenseMap::iterator Known; if (Base->IsVirtual) { Known = ExternalVirtualBaseOffsets.find(Base->Class); if (Known != ExternalVirtualBaseOffsets.end()) { Offset = Known->second; HasExternalLayout = true; } } else { Known = ExternalBaseOffsets.find(Base->Class); if (Known != ExternalBaseOffsets.end()) { Offset = Known->second; HasExternalLayout = true; } } } // If we have an empty base class, try to place it at offset 0. if (Base->Class->isEmpty() && (!HasExternalLayout || Offset == CharUnits::Zero()) && EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) { setSize(std::max(getSize(), Layout.getSize())); return CharUnits::Zero(); } CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlign(); CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign; // The maximum field alignment overrides base align. if (!MaxFieldAlignment.isZero()) { BaseAlign = std::min(BaseAlign, MaxFieldAlignment); UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); } if (!HasExternalLayout) { // Round up the current record size to the base's alignment boundary. Offset = getDataSize().RoundUpToAlignment(BaseAlign); // Try to place the base. while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset)) Offset += BaseAlign; } else { bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset); (void)Allowed; assert(Allowed && "Base subobject externally placed at overlapping offset"); if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){ // The externally-supplied base offset is before the base offset we // computed. Assume that the structure is packed. Alignment = CharUnits::One(); InferAlignment = false; } } if (!Base->Class->isEmpty()) { // Update the data size. setDataSize(Offset + Layout.getNonVirtualSize()); setSize(std::max(getSize(), getDataSize())); } else setSize(std::max(getSize(), Offset + Layout.getSize())); // Remember max struct/class alignment. UpdateAlignment(BaseAlign, UnpackedBaseAlign); return Offset; } void RecordLayoutBuilder::InitializeLayout(const Decl *D) { if (const RecordDecl *RD = dyn_cast(D)) { IsUnion = RD->isUnion(); IsMsStruct = RD->isMsStruct(Context); } Packed = D->hasAttr(); // Honor the default struct packing maximum alignment flag. if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) { MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); } // mac68k alignment supersedes maximum field alignment and attribute aligned, // and forces all structures to have 2-byte alignment. The IBM docs on it // allude to additional (more complicated) semantics, especially with regard // to bit-fields, but gcc appears not to follow that. if (D->hasAttr()) { IsMac68kAlign = true; MaxFieldAlignment = CharUnits::fromQuantity(2); Alignment = CharUnits::fromQuantity(2); } else { if (const MaxFieldAlignmentAttr *MFAA = D->getAttr()) MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment()); if (unsigned MaxAlign = D->getMaxAlignment()) UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign)); } // If there is an external AST source, ask it for the various offsets. if (const RecordDecl *RD = dyn_cast(D)) if (ExternalASTSource *External = Context.getExternalSource()) { ExternalLayout = External->layoutRecordType(RD, ExternalSize, ExternalAlign, ExternalFieldOffsets, ExternalBaseOffsets, ExternalVirtualBaseOffsets); // Update based on external alignment. if (ExternalLayout) { if (ExternalAlign > 0) { Alignment = Context.toCharUnitsFromBits(ExternalAlign); } else { // The external source didn't have alignment information; infer it. InferAlignment = true; } } } } void RecordLayoutBuilder::Layout(const RecordDecl *D) { InitializeLayout(D); LayoutFields(D); // Finally, round the size of the total struct up to the alignment of the // struct itself. FinishLayout(D); } void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { InitializeLayout(RD); // Lay out the vtable and the non-virtual bases. LayoutNonVirtualBases(RD); LayoutFields(RD); NonVirtualSize = Context.toCharUnitsFromBits( llvm::RoundUpToAlignment(getSizeInBits(), Context.getTargetInfo().getCharAlign())); NonVirtualAlignment = Alignment; if (isMicrosoftCXXABI()) { if (NonVirtualSize != NonVirtualSize.RoundUpToAlignment(Alignment)) { CharUnits AlignMember = NonVirtualSize.RoundUpToAlignment(Alignment) - NonVirtualSize; setSize(getSize() + AlignMember); setDataSize(getSize()); NonVirtualSize = Context.toCharUnitsFromBits( llvm::RoundUpToAlignment(getSizeInBits(), Context.getTargetInfo().getCharAlign())); } MSLayoutVirtualBases(RD); } else { // Lay out the virtual bases and add the primary virtual base offsets. LayoutVirtualBases(RD, RD); } // Finally, round the size of the total struct up to the alignment // of the struct itself. FinishLayout(RD); #ifndef NDEBUG // Check that we have base offsets for all bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { if (I->isVirtual()) continue; const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); assert(Bases.count(BaseDecl) && "Did not find base offset!"); } // And all virtual bases. for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) { const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); assert(VBases.count(BaseDecl) && "Did not find base offset!"); } #endif } void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { if (ObjCInterfaceDecl *SD = D->getSuperClass()) { const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD); UpdateAlignment(SL.getAlignment()); // We start laying out ivars not at the end of the superclass // structure, but at the next byte following the last field. setSize(SL.getDataSize()); setDataSize(getSize()); } InitializeLayout(D); // Layout each ivar sequentially. for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD; IVD = IVD->getNextIvar()) LayoutField(IVD); // Finally, round the size of the total struct up to the alignment of the // struct itself. FinishLayout(D); } void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) { // Layout each field, for now, just sequentially, respecting alignment. In // the future, this will need to be tweakable by targets. const FieldDecl *LastFD = 0; ZeroLengthBitfield = 0; unsigned RemainingInAlignment = 0; for (RecordDecl::field_iterator Field = D->field_begin(), FieldEnd = D->field_end(); Field != FieldEnd; ++Field) { if (IsMsStruct) { FieldDecl *FD = *Field; if (Context.ZeroBitfieldFollowsBitfield(FD, LastFD)) ZeroLengthBitfield = FD; // Zero-length bitfields following non-bitfield members are // ignored: else if (Context.ZeroBitfieldFollowsNonBitfield(FD, LastFD)) continue; // FIXME. streamline these conditions into a simple one. else if (Context.BitfieldFollowsBitfield(FD, LastFD) || Context.BitfieldFollowsNonBitfield(FD, LastFD) || Context.NonBitfieldFollowsBitfield(FD, LastFD)) { // 1) Adjacent bit fields are packed into the same 1-, 2-, or // 4-byte allocation unit if the integral types are the same // size and if the next bit field fits into the current // allocation unit without crossing the boundary imposed by the // common alignment requirements of the bit fields. // 2) Establish a new alignment for a bitfield following // a non-bitfield if size of their types differ. // 3) Establish a new alignment for a non-bitfield following // a bitfield if size of their types differ. std::pair FieldInfo = Context.getTypeInfo(FD->getType()); uint64_t TypeSize = FieldInfo.first; unsigned FieldAlign = FieldInfo.second; // This check is needed for 'long long' in -m32 mode. if (TypeSize > FieldAlign && (Context.hasSameType(FD->getType(), Context.UnsignedLongLongTy) ||Context.hasSameType(FD->getType(), Context.LongLongTy))) FieldAlign = TypeSize; FieldInfo = Context.getTypeInfo(LastFD->getType()); uint64_t TypeSizeLastFD = FieldInfo.first; unsigned FieldAlignLastFD = FieldInfo.second; // This check is needed for 'long long' in -m32 mode. if (TypeSizeLastFD > FieldAlignLastFD && (Context.hasSameType(LastFD->getType(), Context.UnsignedLongLongTy) || Context.hasSameType(LastFD->getType(), Context.LongLongTy))) FieldAlignLastFD = TypeSizeLastFD; if (TypeSizeLastFD != TypeSize) { if (RemainingInAlignment && LastFD && LastFD->isBitField() && LastFD->getBitWidthValue(Context)) { // If previous field was a bitfield with some remaining unfilled // bits, pad the field so current field starts on its type boundary. uint64_t FieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte; uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset; setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, Context.getTargetInfo().getCharAlign())); setSize(std::max(getSizeInBits(), getDataSizeInBits())); RemainingInAlignment = 0; } uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte; FieldAlign = std::max(FieldAlign, FieldAlignLastFD); // The maximum field alignment overrides the aligned attribute. if (!MaxFieldAlignment.isZero()) { unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment); FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); } uint64_t NewSizeInBits = llvm::RoundUpToAlignment(UnpaddedFieldOffset, FieldAlign); setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, Context.getTargetInfo().getCharAlign())); UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits; setSize(std::max(getSizeInBits(), getDataSizeInBits())); } if (FD->isBitField()) { uint64_t FieldSize = FD->getBitWidthValue(Context); assert (FieldSize > 0 && "LayoutFields - ms_struct layout"); if (RemainingInAlignment < FieldSize) RemainingInAlignment = TypeSize - FieldSize; else RemainingInAlignment -= FieldSize; } } else if (FD->isBitField()) { uint64_t FieldSize = FD->getBitWidthValue(Context); std::pair FieldInfo = Context.getTypeInfo(FD->getType()); uint64_t TypeSize = FieldInfo.first; RemainingInAlignment = TypeSize - FieldSize; } LastFD = FD; } else if (!Context.getTargetInfo().useBitFieldTypeAlignment() && Context.getTargetInfo().useZeroLengthBitfieldAlignment()) { if (Field->isBitField() && Field->getBitWidthValue(Context) == 0) ZeroLengthBitfield = *Field; } LayoutField(*Field); } if (IsMsStruct && RemainingInAlignment && LastFD && LastFD->isBitField() && LastFD->getBitWidthValue(Context)) { // If we ended a bitfield before the full length of the type then // pad the struct out to the full length of the last type. uint64_t FieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte; uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset; setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, Context.getTargetInfo().getCharAlign())); setSize(std::max(getSizeInBits(), getDataSizeInBits())); } } void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize, bool FieldPacked, const FieldDecl *D) { assert(Context.getLangOpts().CPlusPlus && "Can only have wide bit-fields in C++!"); // Itanium C++ ABI 2.4: // If sizeof(T)*8 < n, let T' be the largest integral POD type with // sizeof(T')*8 <= n. QualType IntegralPODTypes[] = { Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy }; QualType Type; for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes); I != E; ++I) { uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]); if (Size > FieldSize) break; Type = IntegralPODTypes[I]; } assert(!Type.isNull() && "Did not find a type!"); CharUnits TypeAlign = Context.getTypeAlignInChars(Type); // We're not going to use any of the unfilled bits in the last byte. UnfilledBitsInLastByte = 0; uint64_t FieldOffset; uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte; if (IsUnion) { setDataSize(std::max(getDataSizeInBits(), FieldSize)); FieldOffset = 0; } else { // The bitfield is allocated starting at the next offset aligned // appropriately for T', with length n bits. FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(), Context.toBits(TypeAlign)); uint64_t NewSizeInBits = FieldOffset + FieldSize; setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, Context.getTargetInfo().getCharAlign())); UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits; } // Place this field at the current location. FieldOffsets.push_back(FieldOffset); CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset, Context.toBits(TypeAlign), FieldPacked, D); // Update the size. setSize(std::max(getSizeInBits(), getDataSizeInBits())); // Remember max struct/class alignment. UpdateAlignment(TypeAlign); } void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { bool FieldPacked = Packed || D->hasAttr(); uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte; uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset; uint64_t FieldSize = D->getBitWidthValue(Context); std::pair FieldInfo = Context.getTypeInfo(D->getType()); uint64_t TypeSize = FieldInfo.first; unsigned FieldAlign = FieldInfo.second; // This check is needed for 'long long' in -m32 mode. if (IsMsStruct && (TypeSize > FieldAlign) && (Context.hasSameType(D->getType(), Context.UnsignedLongLongTy) || Context.hasSameType(D->getType(), Context.LongLongTy))) FieldAlign = TypeSize; if (ZeroLengthBitfield) { std::pair FieldInfo; unsigned ZeroLengthBitfieldAlignment; if (IsMsStruct) { // If a zero-length bitfield is inserted after a bitfield, // and the alignment of the zero-length bitfield is // greater than the member that follows it, `bar', `bar' // will be aligned as the type of the zero-length bitfield. if (ZeroLengthBitfield != D) { FieldInfo = Context.getTypeInfo(ZeroLengthBitfield->getType()); ZeroLengthBitfieldAlignment = FieldInfo.second; // Ignore alignment of subsequent zero-length bitfields. if ((ZeroLengthBitfieldAlignment > FieldAlign) || (FieldSize == 0)) FieldAlign = ZeroLengthBitfieldAlignment; if (FieldSize) ZeroLengthBitfield = 0; } } else { // The alignment of a zero-length bitfield affects the alignment // of the next member. The alignment is the max of the zero // length bitfield's alignment and a target specific fixed value. unsigned ZeroLengthBitfieldBoundary = Context.getTargetInfo().getZeroLengthBitfieldBoundary(); if (ZeroLengthBitfieldBoundary > FieldAlign) FieldAlign = ZeroLengthBitfieldBoundary; } } if (FieldSize > TypeSize) { LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D); return; } // The align if the field is not packed. This is to check if the attribute // was unnecessary (-Wpacked). unsigned UnpackedFieldAlign = FieldAlign; uint64_t UnpackedFieldOffset = FieldOffset; if (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield) UnpackedFieldAlign = 1; if (FieldPacked || (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield)) FieldAlign = 1; FieldAlign = std::max(FieldAlign, D->getMaxAlignment()); UnpackedFieldAlign = std::max(UnpackedFieldAlign, D->getMaxAlignment()); // The maximum field alignment overrides the aligned attribute. if (!MaxFieldAlignment.isZero() && FieldSize != 0) { unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment); FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); } // Check if we need to add padding to give the field the correct alignment. if (FieldSize == 0 || (MaxFieldAlignment.isZero() && (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign); if (FieldSize == 0 || (MaxFieldAlignment.isZero() && (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize)) UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset, UnpackedFieldAlign); // Padding members don't affect overall alignment, unless zero length bitfield // alignment is enabled. if (!D->getIdentifier() && !Context.getTargetInfo().useZeroLengthBitfieldAlignment()) FieldAlign = UnpackedFieldAlign = 1; if (!IsMsStruct) ZeroLengthBitfield = 0; if (ExternalLayout) FieldOffset = updateExternalFieldOffset(D, FieldOffset); // Place this field at the current location. FieldOffsets.push_back(FieldOffset); if (!ExternalLayout) CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset, UnpackedFieldAlign, FieldPacked, D); // Update DataSize to include the last byte containing (part of) the bitfield. if (IsUnion) { // FIXME: I think FieldSize should be TypeSize here. setDataSize(std::max(getDataSizeInBits(), FieldSize)); } else { uint64_t NewSizeInBits = FieldOffset + FieldSize; setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, Context.getTargetInfo().getCharAlign())); UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits; } // Update the size. setSize(std::max(getSizeInBits(), getDataSizeInBits())); // Remember max struct/class alignment. UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign), Context.toCharUnitsFromBits(UnpackedFieldAlign)); } void RecordLayoutBuilder::LayoutField(const FieldDecl *D) { if (D->isBitField()) { LayoutBitField(D); return; } uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte; // Reset the unfilled bits. UnfilledBitsInLastByte = 0; bool FieldPacked = Packed || D->hasAttr(); CharUnits FieldOffset = IsUnion ? CharUnits::Zero() : getDataSize(); CharUnits FieldSize; CharUnits FieldAlign; if (D->getType()->isIncompleteArrayType()) { // This is a flexible array member; we can't directly // query getTypeInfo about these, so we figure it out here. // Flexible array members don't have any size, but they // have to be aligned appropriately for their element type. FieldSize = CharUnits::Zero(); const ArrayType* ATy = Context.getAsArrayType(D->getType()); FieldAlign = Context.getTypeAlignInChars(ATy->getElementType()); } else if (const ReferenceType *RT = D->getType()->getAs()) { unsigned AS = RT->getPointeeType().getAddressSpace(); FieldSize = Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS)); FieldAlign = Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS)); } else { std::pair FieldInfo = Context.getTypeInfoInChars(D->getType()); FieldSize = FieldInfo.first; FieldAlign = FieldInfo.second; if (ZeroLengthBitfield) { CharUnits ZeroLengthBitfieldBoundary = Context.toCharUnitsFromBits( Context.getTargetInfo().getZeroLengthBitfieldBoundary()); if (ZeroLengthBitfieldBoundary == CharUnits::Zero()) { // If a zero-length bitfield is inserted after a bitfield, // and the alignment of the zero-length bitfield is // greater than the member that follows it, `bar', `bar' // will be aligned as the type of the zero-length bitfield. std::pair FieldInfo = Context.getTypeInfoInChars(ZeroLengthBitfield->getType()); CharUnits ZeroLengthBitfieldAlignment = FieldInfo.second; if (ZeroLengthBitfieldAlignment > FieldAlign) FieldAlign = ZeroLengthBitfieldAlignment; } else if (ZeroLengthBitfieldBoundary > FieldAlign) { // Align 'bar' based on a fixed alignment specified by the target. assert(Context.getTargetInfo().useZeroLengthBitfieldAlignment() && "ZeroLengthBitfieldBoundary should only be used in conjunction" " with useZeroLengthBitfieldAlignment."); FieldAlign = ZeroLengthBitfieldBoundary; } ZeroLengthBitfield = 0; } if (IsMsStruct) { // If MS bitfield layout is required, figure out what type is being // laid out and align the field to the width of that type. // Resolve all typedefs down to their base type and round up the field // alignment if necessary. QualType T = Context.getBaseElementType(D->getType()); if (const BuiltinType *BTy = T->getAs()) { CharUnits TypeSize = Context.getTypeSizeInChars(BTy); if (TypeSize > FieldAlign) FieldAlign = TypeSize; } } } // The align if the field is not packed. This is to check if the attribute // was unnecessary (-Wpacked). CharUnits UnpackedFieldAlign = FieldAlign; CharUnits UnpackedFieldOffset = FieldOffset; if (FieldPacked) FieldAlign = CharUnits::One(); CharUnits MaxAlignmentInChars = Context.toCharUnitsFromBits(D->getMaxAlignment()); FieldAlign = std::max(FieldAlign, MaxAlignmentInChars); UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars); // The maximum field alignment overrides the aligned attribute. if (!MaxFieldAlignment.isZero()) { FieldAlign = std::min(FieldAlign, MaxFieldAlignment); UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment); } // Round up the current record size to the field's alignment boundary. FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign); UnpackedFieldOffset = UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign); if (ExternalLayout) { FieldOffset = Context.toCharUnitsFromBits( updateExternalFieldOffset(D, Context.toBits(FieldOffset))); if (!IsUnion && EmptySubobjects) { // Record the fact that we're placing a field at this offset. bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset); (void)Allowed; assert(Allowed && "Externally-placed field cannot be placed here"); } } else { if (!IsUnion && EmptySubobjects) { // Check if we can place the field at this offset. while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) { // We couldn't place the field at the offset. Try again at a new offset. FieldOffset += FieldAlign; } } } // Place this field at the current location. FieldOffsets.push_back(Context.toBits(FieldOffset)); if (!ExternalLayout) CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset, Context.toBits(UnpackedFieldOffset), Context.toBits(UnpackedFieldAlign), FieldPacked, D); // Reserve space for this field. uint64_t FieldSizeInBits = Context.toBits(FieldSize); if (IsUnion) setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits)); else setDataSize(FieldOffset + FieldSize); // Update the size. setSize(std::max(getSizeInBits(), getDataSizeInBits())); // Remember max struct/class alignment. UpdateAlignment(FieldAlign, UnpackedFieldAlign); } void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) { // In C++, records cannot be of size 0. if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) { if (const CXXRecordDecl *RD = dyn_cast(D)) { // Compatibility with gcc requires a class (pod or non-pod) // which is not empty but of size 0; such as having fields of // array of zero-length, remains of Size 0 if (RD->isEmpty()) setSize(CharUnits::One()); } else setSize(CharUnits::One()); } // Finally, round the size of the record up to the alignment of the // record itself. uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastByte; uint64_t UnpackedSizeInBits = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(UnpackedAlignment)); CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits); uint64_t RoundedSize = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment)); if (ExternalLayout) { // If we're inferring alignment, and the external size is smaller than // our size after we've rounded up to alignment, conservatively set the // alignment to 1. if (InferAlignment && ExternalSize < RoundedSize) { Alignment = CharUnits::One(); InferAlignment = false; } setSize(ExternalSize); return; } // MSVC doesn't round up to the alignment of the record with virtual bases. if (const CXXRecordDecl *RD = dyn_cast(D)) { if (isMicrosoftCXXABI() && RD->getNumVBases()) return; } // Set the size to the final size. setSize(RoundedSize); unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); if (const RecordDecl *RD = dyn_cast(D)) { // Warn if padding was introduced to the struct/class/union. if (getSizeInBits() > UnpaddedSize) { unsigned PadSize = getSizeInBits() - UnpaddedSize; bool InBits = true; if (PadSize % CharBitNum == 0) { PadSize = PadSize / CharBitNum; InBits = false; } Diag(RD->getLocation(), diag::warn_padded_struct_size) << Context.getTypeDeclType(RD) << PadSize << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not } // Warn if we packed it unnecessarily. If the alignment is 1 byte don't // bother since there won't be alignment issues. if (Packed && UnpackedAlignment > CharUnits::One() && getSize() == UnpackedSize) Diag(D->getLocation(), diag::warn_unnecessary_packed) << Context.getTypeDeclType(RD); } } void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) { // The alignment is not modified when using 'mac68k' alignment or when // we have an externally-supplied layout that also provides overall alignment. if (IsMac68kAlign || (ExternalLayout && !InferAlignment)) return; if (NewAlignment > Alignment) { assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() && "Alignment not a power of 2")); Alignment = NewAlignment; } if (UnpackedNewAlignment > UnpackedAlignment) { assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() && "Alignment not a power of 2")); UnpackedAlignment = UnpackedNewAlignment; } } uint64_t RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, uint64_t ComputedOffset) { assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() && "Field does not have an external offset"); uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field]; if (InferAlignment && ExternalFieldOffset < ComputedOffset) { // The externally-supplied field offset is before the field offset we // computed. Assume that the structure is packed. Alignment = CharUnits::One(); InferAlignment = false; } // Use the externally-supplied field offset. return ExternalFieldOffset; } /// \brief Get diagnostic %select index for tag kind for /// field padding diagnostic message. /// WARNING: Indexes apply to particular diagnostics only! /// /// \returns diagnostic %select index. static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) { switch (Tag) { case TTK_Struct: return 0; case TTK_Interface: return 1; case TTK_Class: return 2; default: llvm_unreachable("Invalid tag kind for field padding diagnostic!"); } } void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) { // We let objc ivars without warning, objc interfaces generally are not used // for padding tricks. if (isa(D)) return; // Don't warn about structs created without a SourceLocation. This can // be done by clients of the AST, such as codegen. if (D->getLocation().isInvalid()) return; unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); // Warn if padding was introduced to the struct/class. if (!IsUnion && Offset > UnpaddedOffset) { unsigned PadSize = Offset - UnpaddedOffset; bool InBits = true; if (PadSize % CharBitNum == 0) { PadSize = PadSize / CharBitNum; InBits = false; } if (D->getIdentifier()) Diag(D->getLocation(), diag::warn_padded_struct_field) << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) << Context.getTypeDeclType(D->getParent()) << PadSize << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not << D->getIdentifier(); else Diag(D->getLocation(), diag::warn_padded_struct_anon_field) << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) << Context.getTypeDeclType(D->getParent()) << PadSize << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not } // Warn if we packed it unnecessarily. If the alignment is 1 byte don't // bother since there won't be alignment issues. if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset) Diag(D->getLocation(), diag::warn_unnecessary_packed) << D->getIdentifier(); } static const CXXMethodDecl *computeKeyFunction(ASTContext &Context, const CXXRecordDecl *RD) { // If a class isn't polymorphic it doesn't have a key function. if (!RD->isPolymorphic()) return 0; // A class that is not externally visible doesn't have a key function. (Or // at least, there's no point to assigning a key function to such a class; // this doesn't affect the ABI.) if (RD->getLinkage() != ExternalLinkage) return 0; // Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6. // Same behavior as GCC. TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); if (TSK == TSK_ImplicitInstantiation || TSK == TSK_ExplicitInstantiationDefinition) return 0; bool allowInlineFunctions = Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline(); for (CXXRecordDecl::method_iterator I = RD->method_begin(), E = RD->method_end(); I != E; ++I) { const CXXMethodDecl *MD = *I; if (!MD->isVirtual()) continue; if (MD->isPure()) continue; // Ignore implicit member functions, they are always marked as inline, but // they don't have a body until they're defined. if (MD->isImplicit()) continue; if (MD->isInlineSpecified()) continue; if (MD->hasInlineBody()) continue; // Ignore inline deleted or defaulted functions. if (!MD->isUserProvided()) continue; // In certain ABIs, ignore functions with out-of-line inline definitions. if (!allowInlineFunctions) { const FunctionDecl *Def; if (MD->hasBody(Def) && Def->isInlineSpecified()) continue; } // We found it. return MD; } return 0; } DiagnosticBuilder RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) { return Context.getDiagnostics().Report(Loc, DiagID); } /// Does the target C++ ABI require us to skip over the tail-padding /// of the given class (considering it as a base class) when allocating /// objects? static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) { switch (ABI.getTailPaddingUseRules()) { case TargetCXXABI::AlwaysUseTailPadding: return false; case TargetCXXABI::UseTailPaddingUnlessPOD03: // FIXME: To the extent that this is meant to cover the Itanium ABI // rules, we should implement the restrictions about over-sized // bitfields: // // http://mentorembedded.github.com/cxx-abi/abi.html#POD : // In general, a type is considered a POD for the purposes of // layout if it is a POD type (in the sense of ISO C++ // [basic.types]). However, a POD-struct or POD-union (in the // sense of ISO C++ [class]) with a bitfield member whose // declared width is wider than the declared type of the // bitfield is not a POD for the purpose of layout. Similarly, // an array type is not a POD for the purpose of layout if the // element type of the array is not a POD for the purpose of // layout. // // Where references to the ISO C++ are made in this paragraph, // the Technical Corrigendum 1 version of the standard is // intended. return RD->isPOD(); case TargetCXXABI::UseTailPaddingUnlessPOD11: // This is equivalent to RD->getTypeForDecl().isCXX11PODType(), // but with a lot of abstraction penalty stripped off. This does // assume that these properties are set correctly even in C++98 // mode; fortunately, that is true because we want to assign // consistently semantics to the type-traits intrinsics (or at // least as many of them as possible). return RD->isTrivial() && RD->isStandardLayout(); } llvm_unreachable("bad tail-padding use kind"); } /// getASTRecordLayout - Get or compute information about the layout of the /// specified record (struct/union/class), which indicates its size and field /// position information. const ASTRecordLayout & ASTContext::getASTRecordLayout(const RecordDecl *D) const { // These asserts test different things. A record has a definition // as soon as we begin to parse the definition. That definition is // not a complete definition (which is what isDefinition() tests) // until we *finish* parsing the definition. if (D->hasExternalLexicalStorage() && !D->getDefinition()) getExternalSource()->CompleteType(const_cast(D)); D = D->getDefinition(); assert(D && "Cannot get layout of forward declarations!"); assert(D->isCompleteDefinition() && "Cannot layout type before complete!"); // Look up this layout, if already laid out, return what we have. // Note that we can't save a reference to the entry because this function // is recursive. const ASTRecordLayout *Entry = ASTRecordLayouts[D]; if (Entry) return *Entry; const ASTRecordLayout *NewEntry; if (const CXXRecordDecl *RD = dyn_cast(D)) { EmptySubobjectMap EmptySubobjects(*this, RD); RecordLayoutBuilder Builder(*this, &EmptySubobjects); Builder.Layout(RD); // MSVC gives the vb-table pointer an alignment equal to that of // the non-virtual part of the structure. That's an inherently // multi-pass operation. If our first pass doesn't give us // adequate alignment, try again with the specified minimum // alignment. This is *much* more maintainable than computing the // alignment in advance in a separately-coded pass; it's also // significantly more efficient in the common case where the // vb-table doesn't need extra padding. if (Builder.VBPtrOffset != CharUnits::fromQuantity(-1) && (Builder.VBPtrOffset % Builder.NonVirtualAlignment) != 0) { Builder.resetWithTargetAlignment(Builder.NonVirtualAlignment); Builder.Layout(RD); } // In certain situations, we are allowed to lay out objects in the // tail-padding of base classes. This is ABI-dependent. // FIXME: this should be stored in the record layout. bool skipTailPadding = mustSkipTailPadding(getTargetInfo().getCXXABI(), cast(D)); // FIXME: This should be done in FinalizeLayout. CharUnits DataSize = skipTailPadding ? Builder.getSize() : Builder.getDataSize(); CharUnits NonVirtualSize = skipTailPadding ? DataSize : Builder.NonVirtualSize; NewEntry = new (*this) ASTRecordLayout(*this, Builder.getSize(), Builder.Alignment, Builder.HasOwnVFPtr, Builder.VBPtrOffset, DataSize, Builder.FieldOffsets.data(), Builder.FieldOffsets.size(), NonVirtualSize, Builder.NonVirtualAlignment, EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, Builder.PrimaryBaseIsVirtual, Builder.Bases, Builder.VBases); } else { RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0); Builder.Layout(D); NewEntry = new (*this) ASTRecordLayout(*this, Builder.getSize(), Builder.Alignment, Builder.getSize(), Builder.FieldOffsets.data(), Builder.FieldOffsets.size()); } ASTRecordLayouts[D] = NewEntry; if (getLangOpts().DumpRecordLayouts) { llvm::errs() << "\n*** Dumping AST Record Layout\n"; DumpRecordLayout(D, llvm::errs(), getLangOpts().DumpRecordLayoutsSimple); } return *NewEntry; } const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) { assert(RD->getDefinition() && "Cannot get key function for forward decl!"); RD = cast(RD->getDefinition()); const CXXMethodDecl *&entry = KeyFunctions[RD]; if (!entry) { entry = computeKeyFunction(*this, RD); } return entry; } void ASTContext::setNonKeyFunction(const CXXMethodDecl *method) { assert(method == method->getFirstDeclaration() && "not working with method declaration from class definition"); // Look up the cache entry. Since we're working with the first // declaration, its parent must be the class definition, which is // the correct key for the KeyFunctions hash. llvm::DenseMap::iterator i = KeyFunctions.find(method->getParent()); // If it's not cached, there's nothing to do. if (i == KeyFunctions.end()) return; // If it is cached, check whether it's the target method, and if so, // remove it from the cache. if (i->second == method) { // FIXME: remember that we did this for module / chained PCH state? KeyFunctions.erase(i); } } static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) { const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent()); return Layout.getFieldOffset(FD->getFieldIndex()); } uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const { uint64_t OffsetInBits; if (const FieldDecl *FD = dyn_cast(VD)) { OffsetInBits = ::getFieldOffset(*this, FD); } else { const IndirectFieldDecl *IFD = cast(VD); OffsetInBits = 0; for (IndirectFieldDecl::chain_iterator CI = IFD->chain_begin(), CE = IFD->chain_end(); CI != CE; ++CI) OffsetInBits += ::getFieldOffset(*this, cast(*CI)); } return OffsetInBits; } /// getObjCLayout - Get or compute information about the layout of the /// given interface. /// /// \param Impl - If given, also include the layout of the interface's /// implementation. This may differ by including synthesized ivars. const ASTRecordLayout & ASTContext::getObjCLayout(const ObjCInterfaceDecl *D, const ObjCImplementationDecl *Impl) const { // Retrieve the definition if (D->hasExternalLexicalStorage() && !D->getDefinition()) getExternalSource()->CompleteType(const_cast(D)); D = D->getDefinition(); assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!"); // Look up this layout, if already laid out, return what we have. const ObjCContainerDecl *Key = Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D; if (const ASTRecordLayout *Entry = ObjCLayouts[Key]) return *Entry; // Add in synthesized ivar count if laying out an implementation. if (Impl) { unsigned SynthCount = CountNonClassIvars(D); // If there aren't any sythesized ivars then reuse the interface // entry. Note we can't cache this because we simply free all // entries later; however we shouldn't look up implementations // frequently. if (SynthCount == 0) return getObjCLayout(D, 0); } RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0); Builder.Layout(D); const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(*this, Builder.getSize(), Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets.data(), Builder.FieldOffsets.size()); ObjCLayouts[Key] = NewEntry; return *NewEntry; } static void PrintOffset(raw_ostream &OS, CharUnits Offset, unsigned IndentLevel) { OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity()); OS.indent(IndentLevel * 2); } static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) { OS << " | "; OS.indent(IndentLevel * 2); } static void DumpCXXRecordLayout(raw_ostream &OS, const CXXRecordDecl *RD, const ASTContext &C, CharUnits Offset, unsigned IndentLevel, const char* Description, bool IncludeVirtualBases) { const ASTRecordLayout &Layout = C.getASTRecordLayout(RD); PrintOffset(OS, Offset, IndentLevel); OS << C.getTypeDeclType(const_cast(RD)).getAsString(); if (Description) OS << ' ' << Description; if (RD->isEmpty()) OS << " (empty)"; OS << '\n'; IndentLevel++; const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); bool HasVfptr = Layout.hasOwnVFPtr(); bool HasVbptr = Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1); // Vtable pointer. if (RD->isDynamicClass() && !PrimaryBase && !C.getTargetInfo().getCXXABI().isMicrosoft()) { PrintOffset(OS, Offset, IndentLevel); OS << '(' << *RD << " vtable pointer)\n"; } // Dump (non-virtual) bases for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { assert(!I->getType()->isDependentType() && "Cannot layout class with dependent bases."); if (I->isVirtual()) continue; const CXXRecordDecl *Base = cast(I->getType()->getAs()->getDecl()); CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base); DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel, Base == PrimaryBase ? "(primary base)" : "(base)", /*IncludeVirtualBases=*/false); } // vfptr and vbptr (for Microsoft C++ ABI) if (HasVfptr) { PrintOffset(OS, Offset, IndentLevel); OS << '(' << *RD << " vftable pointer)\n"; } if (HasVbptr) { PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel); OS << '(' << *RD << " vbtable pointer)\n"; } // Dump fields. uint64_t FieldNo = 0; for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++FieldNo) { const FieldDecl &Field = **I; CharUnits FieldOffset = Offset + C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo)); if (const RecordType *RT = Field.getType()->getAs()) { if (const CXXRecordDecl *D = dyn_cast(RT->getDecl())) { DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel, Field.getName().data(), /*IncludeVirtualBases=*/true); continue; } } PrintOffset(OS, FieldOffset, IndentLevel); OS << Field.getType().getAsString() << ' ' << Field << '\n'; } if (!IncludeVirtualBases) return; // Dump virtual bases. const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps = Layout.getVBaseOffsetsMap(); for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) { assert(I->isVirtual() && "Found non-virtual class!"); const CXXRecordDecl *VBase = cast(I->getType()->getAs()->getDecl()); CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase); if (vtordisps.find(VBase)->second.hasVtorDisp()) { PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel); OS << "(vtordisp for vbase " << *VBase << ")\n"; } DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel, VBase == PrimaryBase ? "(primary virtual base)" : "(virtual base)", /*IncludeVirtualBases=*/false); } PrintIndentNoOffset(OS, IndentLevel - 1); OS << "[sizeof=" << Layout.getSize().getQuantity(); OS << ", dsize=" << Layout.getDataSize().getQuantity(); OS << ", align=" << Layout.getAlignment().getQuantity() << '\n'; PrintIndentNoOffset(OS, IndentLevel - 1); OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity(); OS << ", nvalign=" << Layout.getNonVirtualAlign().getQuantity() << "]\n"; OS << '\n'; } void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS, bool Simple) const { const ASTRecordLayout &Info = getASTRecordLayout(RD); if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) if (!Simple) return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, 0, /*IncludeVirtualBases=*/true); OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n"; if (!Simple) { OS << "Record: "; RD->dump(); } OS << "\nLayout: "; OS << "\n"; }