//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// This file implements classes for searching and anlyzing source code clones. /// //===----------------------------------------------------------------------===// #include "clang/Analysis/CloneDetection.h" #include "clang/AST/ASTContext.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtVisitor.h" #include "clang/Lex/Lexer.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/MD5.h" #include "llvm/Support/raw_ostream.h" using namespace clang; StmtSequence::StmtSequence(const CompoundStmt *Stmt, ASTContext &Context, unsigned StartIndex, unsigned EndIndex) : S(Stmt), Context(&Context), StartIndex(StartIndex), EndIndex(EndIndex) { assert(Stmt && "Stmt must not be a nullptr"); assert(StartIndex < EndIndex && "Given array should not be empty"); assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt"); } StmtSequence::StmtSequence(const Stmt *Stmt, ASTContext &Context) : S(Stmt), Context(&Context), StartIndex(0), EndIndex(0) {} StmtSequence::StmtSequence() : S(nullptr), Context(nullptr), StartIndex(0), EndIndex(0) {} bool StmtSequence::contains(const StmtSequence &Other) const { // If both sequences reside in different translation units, they can never // contain each other. if (Context != Other.Context) return false; const SourceManager &SM = Context->getSourceManager(); // Otherwise check if the start and end locations of the current sequence // surround the other sequence. bool StartIsInBounds = SM.isBeforeInTranslationUnit(getStartLoc(), Other.getStartLoc()) || getStartLoc() == Other.getStartLoc(); if (!StartIsInBounds) return false; bool EndIsInBounds = SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) || Other.getEndLoc() == getEndLoc(); return EndIsInBounds; } StmtSequence::iterator StmtSequence::begin() const { if (!holdsSequence()) { return &S; } auto CS = cast(S); return CS->body_begin() + StartIndex; } StmtSequence::iterator StmtSequence::end() const { if (!holdsSequence()) { return reinterpret_cast(&S) + 1; } auto CS = cast(S); return CS->body_begin() + EndIndex; } SourceLocation StmtSequence::getStartLoc() const { return front()->getLocStart(); } SourceLocation StmtSequence::getEndLoc() const { return back()->getLocEnd(); } SourceRange StmtSequence::getSourceRange() const { return SourceRange(getStartLoc(), getEndLoc()); } namespace { /// \brief Analyzes the pattern of the referenced variables in a statement. class VariablePattern { /// \brief Describes an occurence of a variable reference in a statement. struct VariableOccurence { /// The index of the associated VarDecl in the Variables vector. size_t KindID; /// The statement in the code where the variable was referenced. const Stmt *Mention; VariableOccurence(size_t KindID, const Stmt *Mention) : KindID(KindID), Mention(Mention) {} }; /// All occurences of referenced variables in the order of appearance. std::vector Occurences; /// List of referenced variables in the order of appearance. /// Every item in this list is unique. std::vector Variables; /// \brief Adds a new variable referenced to this pattern. /// \param VarDecl The declaration of the variable that is referenced. /// \param Mention The SourceRange where this variable is referenced. void addVariableOccurence(const VarDecl *VarDecl, const Stmt *Mention) { // First check if we already reference this variable for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) { if (Variables[KindIndex] == VarDecl) { // If yes, add a new occurence that points to the existing entry in // the Variables vector. Occurences.emplace_back(KindIndex, Mention); return; } } // If this variable wasn't already referenced, add it to the list of // referenced variables and add a occurence that points to this new entry. Occurences.emplace_back(Variables.size(), Mention); Variables.push_back(VarDecl); } /// \brief Adds each referenced variable from the given statement. void addVariables(const Stmt *S) { // Sometimes we get a nullptr (such as from IfStmts which often have nullptr // children). We skip such statements as they don't reference any // variables. if (!S) return; // Check if S is a reference to a variable. If yes, add it to the pattern. if (auto D = dyn_cast(S)) { if (auto VD = dyn_cast(D->getDecl()->getCanonicalDecl())) addVariableOccurence(VD, D); } // Recursively check all children of the given statement. for (const Stmt *Child : S->children()) { addVariables(Child); } } public: /// \brief Creates an VariablePattern object with information about the given /// StmtSequence. VariablePattern(const StmtSequence &Sequence) { for (const Stmt *S : Sequence) addVariables(S); } /// \brief Counts the differences between this pattern and the given one. /// \param Other The given VariablePattern to compare with. /// \param FirstMismatch Output parameter that will be filled with information /// about the first difference between the two patterns. This parameter /// can be a nullptr, in which case it will be ignored. /// \return Returns the number of differences between the pattern this object /// is following and the given VariablePattern. /// /// For example, the following statements all have the same pattern and this /// function would return zero: /// /// if (a < b) return a; return b; /// if (x < y) return x; return y; /// if (u2 < u1) return u2; return u1; /// /// But the following statement has a different pattern (note the changed /// variables in the return statements) and would have two differences when /// compared with one of the statements above. /// /// if (a < b) return b; return a; /// /// This function should only be called if the related statements of the given /// pattern and the statements of this objects are clones of each other. unsigned countPatternDifferences( const VariablePattern &Other, CloneDetector::SuspiciousClonePair *FirstMismatch = nullptr) { unsigned NumberOfDifferences = 0; assert(Other.Occurences.size() == Occurences.size()); for (unsigned i = 0; i < Occurences.size(); ++i) { auto ThisOccurence = Occurences[i]; auto OtherOccurence = Other.Occurences[i]; if (ThisOccurence.KindID == OtherOccurence.KindID) continue; ++NumberOfDifferences; // If FirstMismatch is not a nullptr, we need to store information about // the first difference between the two patterns. if (FirstMismatch == nullptr) continue; // Only proceed if we just found the first difference as we only store // information about the first difference. if (NumberOfDifferences != 1) continue; const VarDecl *FirstSuggestion = nullptr; // If there is a variable available in the list of referenced variables // which wouldn't break the pattern if it is used in place of the // current variable, we provide this variable as the suggested fix. if (OtherOccurence.KindID < Variables.size()) FirstSuggestion = Variables[OtherOccurence.KindID]; // Store information about the first clone. FirstMismatch->FirstCloneInfo = CloneDetector::SuspiciousClonePair::SuspiciousCloneInfo( Variables[ThisOccurence.KindID], ThisOccurence.Mention, FirstSuggestion); // Same as above but with the other clone. We do this for both clones as // we don't know which clone is the one containing the unintended // pattern error. const VarDecl *SecondSuggestion = nullptr; if (ThisOccurence.KindID < Other.Variables.size()) SecondSuggestion = Other.Variables[ThisOccurence.KindID]; // Store information about the second clone. FirstMismatch->SecondCloneInfo = CloneDetector::SuspiciousClonePair::SuspiciousCloneInfo( Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention, SecondSuggestion); // SuspiciousClonePair guarantees that the first clone always has a // suggested variable associated with it. As we know that one of the two // clones in the pair always has suggestion, we swap the two clones // in case the first clone has no suggested variable which means that // the second clone has a suggested variable and should be first. if (!FirstMismatch->FirstCloneInfo.Suggestion) std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo); // This ensures that we always have at least one suggestion in a pair. assert(FirstMismatch->FirstCloneInfo.Suggestion); } return NumberOfDifferences; } }; } /// \brief Prints the macro name that contains the given SourceLocation into /// the given raw_string_ostream. static void printMacroName(llvm::raw_string_ostream &MacroStack, ASTContext &Context, SourceLocation Loc) { MacroStack << Lexer::getImmediateMacroName(Loc, Context.getSourceManager(), Context.getLangOpts()); // Add an empty space at the end as a padding to prevent // that macro names concatenate to the names of other macros. MacroStack << " "; } /// \brief Returns a string that represents all macro expansions that /// expanded into the given SourceLocation. /// /// If 'getMacroStack(A) == getMacroStack(B)' is true, then the SourceLocations /// A and B are expanded from the same macros in the same order. static std::string getMacroStack(SourceLocation Loc, ASTContext &Context) { std::string MacroStack; llvm::raw_string_ostream MacroStackStream(MacroStack); SourceManager &SM = Context.getSourceManager(); // Iterate over all macros that expanded into the given SourceLocation. while (Loc.isMacroID()) { // Add the macro name to the stream. printMacroName(MacroStackStream, Context, Loc); Loc = SM.getImmediateMacroCallerLoc(Loc); } MacroStackStream.flush(); return MacroStack; } namespace { /// \brief Collects the data of a single Stmt. /// /// This class defines what a code clone is: If it collects for two statements /// the same data, then those two statements are considered to be clones of each /// other. /// /// All collected data is forwarded to the given data consumer of the type T. /// The data consumer class needs to provide a member method with the signature: /// update(StringRef Str) template class StmtDataCollector : public ConstStmtVisitor> { ASTContext &Context; /// \brief The data sink to which all data is forwarded. T &DataConsumer; public: /// \brief Collects data of the given Stmt. /// \param S The given statement. /// \param Context The ASTContext of S. /// \param DataConsumer The data sink to which all data is forwarded. StmtDataCollector(const Stmt *S, ASTContext &Context, T &DataConsumer) : Context(Context), DataConsumer(DataConsumer) { this->Visit(S); } // Below are utility methods for appending different data to the vector. void addData(CloneDetector::DataPiece Integer) { DataConsumer.update( StringRef(reinterpret_cast(&Integer), sizeof(Integer))); } void addData(llvm::StringRef Str) { DataConsumer.update(Str); } void addData(const QualType &QT) { addData(QT.getAsString()); } // The functions below collect the class specific data of each Stmt subclass. // Utility macro for defining a visit method for a given class. This method // calls back to the ConstStmtVisitor to visit all parent classes. #define DEF_ADD_DATA(CLASS, CODE) \ void Visit##CLASS(const CLASS *S) { \ CODE; \ ConstStmtVisitor::Visit##CLASS(S); \ } DEF_ADD_DATA(Stmt, { addData(S->getStmtClass()); // This ensures that macro generated code isn't identical to macro-generated // code. addData(getMacroStack(S->getLocStart(), Context)); addData(getMacroStack(S->getLocEnd(), Context)); }) DEF_ADD_DATA(Expr, { addData(S->getType()); }) //--- Builtin functionality ----------------------------------------------// DEF_ADD_DATA(ArrayTypeTraitExpr, { addData(S->getTrait()); }) DEF_ADD_DATA(ExpressionTraitExpr, { addData(S->getTrait()); }) DEF_ADD_DATA(PredefinedExpr, { addData(S->getIdentType()); }) DEF_ADD_DATA(TypeTraitExpr, { addData(S->getTrait()); for (unsigned i = 0; i < S->getNumArgs(); ++i) addData(S->getArg(i)->getType()); }) //--- Calls --------------------------------------------------------------// DEF_ADD_DATA(CallExpr, { // Function pointers don't have a callee and we just skip hashing it. if (const FunctionDecl *D = S->getDirectCallee()) { // If the function is a template specialization, we also need to handle // the template arguments as they are not included in the qualified name. if (auto Args = D->getTemplateSpecializationArgs()) { std::string ArgString; // Print all template arguments into ArgString llvm::raw_string_ostream OS(ArgString); for (unsigned i = 0; i < Args->size(); ++i) { Args->get(i).print(Context.getLangOpts(), OS); // Add a padding character so that 'foo()' != 'foo()'. OS << '\n'; } OS.flush(); addData(ArgString); } addData(D->getQualifiedNameAsString()); } }) //--- Exceptions ---------------------------------------------------------// DEF_ADD_DATA(CXXCatchStmt, { addData(S->getCaughtType()); }) //--- C++ OOP Stmts ------------------------------------------------------// DEF_ADD_DATA(CXXDeleteExpr, { addData(S->isArrayFormAsWritten()); addData(S->isGlobalDelete()); }) //--- Casts --------------------------------------------------------------// DEF_ADD_DATA(ObjCBridgedCastExpr, { addData(S->getBridgeKind()); }) //--- Miscellaneous Exprs ------------------------------------------------// DEF_ADD_DATA(BinaryOperator, { addData(S->getOpcode()); }) DEF_ADD_DATA(UnaryOperator, { addData(S->getOpcode()); }) //--- Control flow -------------------------------------------------------// DEF_ADD_DATA(GotoStmt, { addData(S->getLabel()->getName()); }) DEF_ADD_DATA(IndirectGotoStmt, { if (S->getConstantTarget()) addData(S->getConstantTarget()->getName()); }) DEF_ADD_DATA(LabelStmt, { addData(S->getDecl()->getName()); }) DEF_ADD_DATA(MSDependentExistsStmt, { addData(S->isIfExists()); }) DEF_ADD_DATA(AddrLabelExpr, { addData(S->getLabel()->getName()); }) //--- Objective-C --------------------------------------------------------// DEF_ADD_DATA(ObjCIndirectCopyRestoreExpr, { addData(S->shouldCopy()); }) DEF_ADD_DATA(ObjCPropertyRefExpr, { addData(S->isSuperReceiver()); addData(S->isImplicitProperty()); }) DEF_ADD_DATA(ObjCAtCatchStmt, { addData(S->hasEllipsis()); }) //--- Miscellaneous Stmts ------------------------------------------------// DEF_ADD_DATA(CXXFoldExpr, { addData(S->isRightFold()); addData(S->getOperator()); }) DEF_ADD_DATA(GenericSelectionExpr, { for (unsigned i = 0; i < S->getNumAssocs(); ++i) { addData(S->getAssocType(i)); } }) DEF_ADD_DATA(LambdaExpr, { for (const LambdaCapture &C : S->captures()) { addData(C.isPackExpansion()); addData(C.getCaptureKind()); if (C.capturesVariable()) addData(C.getCapturedVar()->getType()); } addData(S->isGenericLambda()); addData(S->isMutable()); }) DEF_ADD_DATA(DeclStmt, { auto numDecls = std::distance(S->decl_begin(), S->decl_end()); addData(static_cast(numDecls)); for (const Decl *D : S->decls()) { if (const VarDecl *VD = dyn_cast(D)) { addData(VD->getType()); } } }) DEF_ADD_DATA(AsmStmt, { addData(S->isSimple()); addData(S->isVolatile()); addData(S->generateAsmString(Context)); for (unsigned i = 0; i < S->getNumInputs(); ++i) { addData(S->getInputConstraint(i)); } for (unsigned i = 0; i < S->getNumOutputs(); ++i) { addData(S->getOutputConstraint(i)); } for (unsigned i = 0; i < S->getNumClobbers(); ++i) { addData(S->getClobber(i)); } }) DEF_ADD_DATA(AttributedStmt, { for (const Attr *A : S->getAttrs()) { addData(std::string(A->getSpelling())); } }) }; } // end anonymous namespace namespace { /// Generates CloneSignatures for a set of statements and stores the results in /// a CloneDetector object. class CloneSignatureGenerator { CloneDetector &CD; ASTContext &Context; /// \brief Generates CloneSignatures for all statements in the given statement /// tree and stores them in the CloneDetector. /// /// \param S The root of the given statement tree. /// \param ParentMacroStack A string representing the macros that generated /// the parent statement or an empty string if no /// macros generated the parent statement. /// See getMacroStack() for generating such a string. /// \return The CloneSignature of the root statement. CloneDetector::CloneSignature generateSignatures(const Stmt *S, const std::string &ParentMacroStack) { // Create an empty signature that will be filled in this method. CloneDetector::CloneSignature Signature; llvm::MD5 Hash; // Collect all relevant data from S and hash it. StmtDataCollector(S, Context, Hash); // Look up what macros expanded into the current statement. std::string StartMacroStack = getMacroStack(S->getLocStart(), Context); std::string EndMacroStack = getMacroStack(S->getLocEnd(), Context); // First, check if ParentMacroStack is not empty which means we are currently // dealing with a parent statement which was expanded from a macro. // If this parent statement was expanded from the same macros as this // statement, we reduce the initial complexity of this statement to zero. // This causes that a group of statements that were generated by a single // macro expansion will only increase the total complexity by one. // Note: This is not the final complexity of this statement as we still // add the complexity of the child statements to the complexity value. if (!ParentMacroStack.empty() && (StartMacroStack == ParentMacroStack && EndMacroStack == ParentMacroStack)) { Signature.Complexity = 0; } // Storage for the signatures of the direct child statements. This is only // needed if the current statement is a CompoundStmt. std::vector ChildSignatures; const CompoundStmt *CS = dyn_cast(S); // The signature of a statement includes the signatures of its children. // Therefore we create the signatures for every child and add them to the // current signature. for (const Stmt *Child : S->children()) { // Some statements like 'if' can have nullptr children that we will skip. if (!Child) continue; // Recursive call to create the signature of the child statement. This // will also create and store all clone groups in this child statement. // We pass only the StartMacroStack along to keep things simple. auto ChildSignature = generateSignatures(Child, StartMacroStack); // Add the collected data to the signature of the current statement. Signature.Complexity += ChildSignature.Complexity; Hash.update(StringRef(reinterpret_cast(&ChildSignature.Hash), sizeof(ChildSignature.Hash))); // If the current statement is a CompoundStatement, we need to store the // signature for the generation of the sub-sequences. if (CS) ChildSignatures.push_back(ChildSignature); } // If the current statement is a CompoundStmt, we also need to create the // clone groups from the sub-sequences inside the children. if (CS) handleSubSequences(CS, ChildSignatures); // Create the final hash code for the current signature. llvm::MD5::MD5Result HashResult; Hash.final(HashResult); // Copy as much of the generated hash code to the signature's hash code. std::memcpy(&Signature.Hash, &HashResult, std::min(sizeof(Signature.Hash), sizeof(HashResult))); // Save the signature for the current statement in the CloneDetector object. CD.add(StmtSequence(S, Context), Signature); return Signature; } /// \brief Adds all possible sub-sequences in the child array of the given /// CompoundStmt to the CloneDetector. /// \param CS The given CompoundStmt. /// \param ChildSignatures A list of calculated signatures for each child in /// the given CompoundStmt. void handleSubSequences( const CompoundStmt *CS, const std::vector &ChildSignatures) { // FIXME: This function has quadratic runtime right now. Check if skipping // this function for too long CompoundStmts is an option. // The length of the sub-sequence. We don't need to handle sequences with // the length 1 as they are already handled in CollectData(). for (unsigned Length = 2; Length <= CS->size(); ++Length) { // The start index in the body of the CompoundStmt. We increase the // position until the end of the sub-sequence reaches the end of the // CompoundStmt body. for (unsigned Pos = 0; Pos <= CS->size() - Length; ++Pos) { // Create an empty signature and add the signatures of all selected // child statements to it. CloneDetector::CloneSignature SubSignature; llvm::MD5 SubHash; for (unsigned i = Pos; i < Pos + Length; ++i) { SubSignature.Complexity += ChildSignatures[i].Complexity; size_t ChildHash = ChildSignatures[i].Hash; SubHash.update(StringRef(reinterpret_cast(&ChildHash), sizeof(ChildHash))); } // Create the final hash code for the current signature. llvm::MD5::MD5Result HashResult; SubHash.final(HashResult); // Copy as much of the generated hash code to the signature's hash code. std::memcpy(&SubSignature.Hash, &HashResult, std::min(sizeof(SubSignature.Hash), sizeof(HashResult))); // Save the signature together with the information about what children // sequence we selected. CD.add(StmtSequence(CS, Context, Pos, Pos + Length), SubSignature); } } } public: explicit CloneSignatureGenerator(CloneDetector &CD, ASTContext &Context) : CD(CD), Context(Context) {} /// \brief Generates signatures for all statements in the given function body. void consumeCodeBody(const Stmt *S) { generateSignatures(S, ""); } }; } // end anonymous namespace void CloneDetector::analyzeCodeBody(const Decl *D) { assert(D); assert(D->hasBody()); CloneSignatureGenerator Generator(*this, D->getASTContext()); Generator.consumeCodeBody(D->getBody()); } void CloneDetector::add(const StmtSequence &S, const CloneSignature &Signature) { Sequences.push_back(std::make_pair(Signature, S)); } namespace { /// \brief Returns true if and only if \p Stmt contains at least one other /// sequence in the \p Group. bool containsAnyInGroup(StmtSequence &Stmt, CloneDetector::CloneGroup &Group) { for (StmtSequence &GroupStmt : Group.Sequences) { if (Stmt.contains(GroupStmt)) return true; } return false; } /// \brief Returns true if and only if all sequences in \p OtherGroup are /// contained by a sequence in \p Group. bool containsGroup(CloneDetector::CloneGroup &Group, CloneDetector::CloneGroup &OtherGroup) { // We have less sequences in the current group than we have in the other, // so we will never fulfill the requirement for returning true. This is only // possible because we know that a sequence in Group can contain at most // one sequence in OtherGroup. if (Group.Sequences.size() < OtherGroup.Sequences.size()) return false; for (StmtSequence &Stmt : Group.Sequences) { if (!containsAnyInGroup(Stmt, OtherGroup)) return false; } return true; } } // end anonymous namespace namespace { /// \brief Wrapper around FoldingSetNodeID that it can be used as the template /// argument of the StmtDataCollector. class FoldingSetNodeIDWrapper { llvm::FoldingSetNodeID &FS; public: FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {} void update(StringRef Str) { FS.AddString(Str); } }; } // end anonymous namespace /// \brief Writes the relevant data from all statements and child statements /// in the given StmtSequence into the given FoldingSetNodeID. static void CollectStmtSequenceData(const StmtSequence &Sequence, FoldingSetNodeIDWrapper &OutputData) { for (const Stmt *S : Sequence) { StmtDataCollector(S, Sequence.getASTContext(), OutputData); for (const Stmt *Child : S->children()) { if (!Child) continue; CollectStmtSequenceData(StmtSequence(Child, Sequence.getASTContext()), OutputData); } } } /// \brief Returns true if both sequences are clones of each other. static bool areSequencesClones(const StmtSequence &LHS, const StmtSequence &RHS) { // We collect the data from all statements in the sequence as we did before // when generating a hash value for each sequence. But this time we don't // hash the collected data and compare the whole data set instead. This // prevents any false-positives due to hash code collisions. llvm::FoldingSetNodeID DataLHS, DataRHS; FoldingSetNodeIDWrapper LHSWrapper(DataLHS); FoldingSetNodeIDWrapper RHSWrapper(DataRHS); CollectStmtSequenceData(LHS, LHSWrapper); CollectStmtSequenceData(RHS, RHSWrapper); return DataLHS == DataRHS; } /// \brief Finds all actual clone groups in a single group of presumed clones. /// \param Result Output parameter to which all found groups are added. /// \param Group A group of presumed clones. The clones are allowed to have a /// different variable pattern and may not be actual clones of each /// other. /// \param CheckVariablePattern If true, every clone in a group that was added /// to the output follows the same variable pattern as the other /// clones in its group. static void createCloneGroups(std::vector &Result, const CloneDetector::CloneGroup &Group, bool CheckVariablePattern) { // We remove the Sequences one by one, so a list is more appropriate. std::list UnassignedSequences(Group.Sequences.begin(), Group.Sequences.end()); // Search for clones as long as there could be clones in UnassignedSequences. while (UnassignedSequences.size() > 1) { // Pick the first Sequence as a protoype for a new clone group. StmtSequence Prototype = UnassignedSequences.front(); UnassignedSequences.pop_front(); CloneDetector::CloneGroup FilteredGroup(Prototype, Group.Signature); // Analyze the variable pattern of the prototype. Every other StmtSequence // needs to have the same pattern to get into the new clone group. VariablePattern PrototypeFeatures(Prototype); // Search all remaining StmtSequences for an identical variable pattern // and assign them to our new clone group. auto I = UnassignedSequences.begin(), E = UnassignedSequences.end(); while (I != E) { // If the sequence doesn't fit to the prototype, we have encountered // an unintended hash code collision and we skip it. if (!areSequencesClones(Prototype, *I)) { ++I; continue; } // If we weren't asked to check for a matching variable pattern in clone // groups we can add the sequence now to the new clone group. // If we were asked to check for matching variable pattern, we first have // to check that there are no differences between the two patterns and // only proceed if they match. if (!CheckVariablePattern || VariablePattern(*I).countPatternDifferences(PrototypeFeatures) == 0) { FilteredGroup.Sequences.push_back(*I); I = UnassignedSequences.erase(I); continue; } // We didn't found a matching variable pattern, so we continue with the // next sequence. ++I; } // Add a valid clone group to the list of found clone groups. if (!FilteredGroup.isValid()) continue; Result.push_back(FilteredGroup); } } void CloneDetector::findClones(std::vector &Result, unsigned MinGroupComplexity, bool CheckPatterns) { // A shortcut (and necessary for the for-loop later in this function). if (Sequences.empty()) return; // We need to search for groups of StmtSequences with the same hash code to // create our initial clone groups. By sorting all known StmtSequences by // their hash value we make sure that StmtSequences with the same hash code // are grouped together in the Sequences vector. // Note: We stable sort here because the StmtSequences are added in the order // in which they appear in the source file. We want to preserve that order // because we also want to report them in that order in the CloneChecker. std::stable_sort(Sequences.begin(), Sequences.end(), [](std::pair LHS, std::pair RHS) { return LHS.first.Hash < RHS.first.Hash; }); std::vector CloneGroups; // Check for each CloneSignature if its successor has the same hash value. // We don't check the last CloneSignature as it has no successor. // Note: The 'size - 1' in the condition is safe because we check for an empty // Sequences vector at the beginning of this function. for (unsigned i = 0; i < Sequences.size() - 1; ++i) { const auto Current = Sequences[i]; const auto Next = Sequences[i + 1]; if (Current.first.Hash != Next.first.Hash) continue; // It's likely that we just found an sequence of CloneSignatures that // represent a CloneGroup, so we create a new group and start checking and // adding the CloneSignatures in this sequence. CloneGroup Group; Group.Signature = Current.first; for (; i < Sequences.size(); ++i) { const auto &Signature = Sequences[i]; // A different hash value means we have reached the end of the sequence. if (Current.first.Hash != Signature.first.Hash) { // The current Signature could be the start of a new CloneGroup. So we // decrement i so that we visit it again in the outer loop. // Note: i can never be 0 at this point because we are just comparing // the hash of the Current CloneSignature with itself in the 'if' above. assert(i != 0); --i; break; } // Skip CloneSignatures that won't pass the complexity requirement. if (Signature.first.Complexity < MinGroupComplexity) continue; Group.Sequences.push_back(Signature.second); } // There is a chance that we haven't found more than two fitting // CloneSignature because not enough CloneSignatures passed the complexity // requirement. As a CloneGroup with less than two members makes no sense, // we ignore this CloneGroup and won't add it to the result. if (!Group.isValid()) continue; CloneGroups.push_back(Group); } // Add every valid clone group that fulfills the complexity requirement. for (const CloneGroup &Group : CloneGroups) { createCloneGroups(Result, Group, CheckPatterns); } std::vector IndexesToRemove; // Compare every group in the result with the rest. If one groups contains // another group, we only need to return the bigger group. // Note: This doesn't scale well, so if possible avoid calling any heavy // function from this loop to minimize the performance impact. for (unsigned i = 0; i < Result.size(); ++i) { for (unsigned j = 0; j < Result.size(); ++j) { // Don't compare a group with itself. if (i == j) continue; if (containsGroup(Result[j], Result[i])) { IndexesToRemove.push_back(i); break; } } } // Erasing a list of indexes from the vector should be done with decreasing // indexes. As IndexesToRemove is constructed with increasing values, we just // reverse iterate over it to get the desired order. for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) { Result.erase(Result.begin() + *I); } } void CloneDetector::findSuspiciousClones( std::vector &Result, unsigned MinGroupComplexity) { std::vector Clones; // Reuse the normal search for clones but specify that the clone groups don't // need to have a common referenced variable pattern so that we can manually // search for the kind of pattern errors this function is supposed to find. findClones(Clones, MinGroupComplexity, false); for (const CloneGroup &Group : Clones) { for (unsigned i = 0; i < Group.Sequences.size(); ++i) { VariablePattern PatternA(Group.Sequences[i]); for (unsigned j = i + 1; j < Group.Sequences.size(); ++j) { VariablePattern PatternB(Group.Sequences[j]); CloneDetector::SuspiciousClonePair ClonePair; // For now, we only report clones which break the variable pattern just // once because multiple differences in a pattern are an indicator that // those differences are maybe intended (e.g. because it's actually // a different algorithm). // TODO: In very big clones even multiple variables can be unintended, // so replacing this number with a percentage could better handle such // cases. On the other hand it could increase the false-positive rate // for all clones if the percentage is too high. if (PatternA.countPatternDifferences(PatternB, &ClonePair) == 1) { Result.push_back(ClonePair); break; } } } } }