//===- FixedPoint.cpp - Fixed point constant handling -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Defines the implementation for the fixed point number interface. // //===----------------------------------------------------------------------===// #include "clang/Basic/FixedPoint.h" namespace clang { APFixedPoint APFixedPoint::convert(const FixedPointSemantics &DstSema, bool *Overflow) const { llvm::APSInt NewVal = Val; unsigned DstWidth = DstSema.getWidth(); unsigned DstScale = DstSema.getScale(); bool Upscaling = DstScale > getScale(); if (Overflow) *Overflow = false; if (Upscaling) { NewVal = NewVal.extend(NewVal.getBitWidth() + DstScale - getScale()); NewVal <<= (DstScale - getScale()); } else { NewVal >>= (getScale() - DstScale); } auto Mask = llvm::APInt::getBitsSetFrom( NewVal.getBitWidth(), std::min(DstScale + DstSema.getIntegralBits(), NewVal.getBitWidth())); llvm::APInt Masked(NewVal & Mask); // Change in the bits above the sign if (!(Masked == Mask || Masked == 0)) { // Found overflow in the bits above the sign if (DstSema.isSaturated()) NewVal = NewVal.isNegative() ? Mask : ~Mask; else if (Overflow) *Overflow = true; } // If the dst semantics are unsigned, but our value is signed and negative, we // clamp to zero. if (!DstSema.isSigned() && NewVal.isSigned() && NewVal.isNegative()) { // Found negative overflow for unsigned result if (DstSema.isSaturated()) NewVal = 0; else if (Overflow) *Overflow = true; } NewVal = NewVal.extOrTrunc(DstWidth); NewVal.setIsSigned(DstSema.isSigned()); return APFixedPoint(NewVal, DstSema); } int APFixedPoint::compare(const APFixedPoint &Other) const { llvm::APSInt ThisVal = getValue(); llvm::APSInt OtherVal = Other.getValue(); bool ThisSigned = Val.isSigned(); bool OtherSigned = OtherVal.isSigned(); unsigned OtherScale = Other.getScale(); unsigned OtherWidth = OtherVal.getBitWidth(); unsigned CommonWidth = std::max(Val.getBitWidth(), OtherWidth); // Prevent overflow in the event the widths are the same but the scales differ CommonWidth += getScale() >= OtherScale ? getScale() - OtherScale : OtherScale - getScale(); ThisVal = ThisVal.extOrTrunc(CommonWidth); OtherVal = OtherVal.extOrTrunc(CommonWidth); unsigned CommonScale = std::max(getScale(), OtherScale); ThisVal = ThisVal.shl(CommonScale - getScale()); OtherVal = OtherVal.shl(CommonScale - OtherScale); if (ThisSigned && OtherSigned) { if (ThisVal.sgt(OtherVal)) return 1; else if (ThisVal.slt(OtherVal)) return -1; } else if (!ThisSigned && !OtherSigned) { if (ThisVal.ugt(OtherVal)) return 1; else if (ThisVal.ult(OtherVal)) return -1; } else if (ThisSigned && !OtherSigned) { if (ThisVal.isSignBitSet()) return -1; else if (ThisVal.ugt(OtherVal)) return 1; else if (ThisVal.ult(OtherVal)) return -1; } else { // !ThisSigned && OtherSigned if (OtherVal.isSignBitSet()) return 1; else if (ThisVal.ugt(OtherVal)) return 1; else if (ThisVal.ult(OtherVal)) return -1; } return 0; } APFixedPoint APFixedPoint::getMax(const FixedPointSemantics &Sema) { bool IsUnsigned = !Sema.isSigned(); auto Val = llvm::APSInt::getMaxValue(Sema.getWidth(), IsUnsigned); if (IsUnsigned && Sema.hasUnsignedPadding()) Val = Val.lshr(1); return APFixedPoint(Val, Sema); } APFixedPoint APFixedPoint::getMin(const FixedPointSemantics &Sema) { auto Val = llvm::APSInt::getMinValue(Sema.getWidth(), !Sema.isSigned()); return APFixedPoint(Val, Sema); } FixedPointSemantics FixedPointSemantics::getCommonSemantics( const FixedPointSemantics &Other) const { unsigned CommonScale = std::max(getScale(), Other.getScale()); unsigned CommonWidth = std::max(getIntegralBits(), Other.getIntegralBits()) + CommonScale; bool ResultIsSigned = isSigned() || Other.isSigned(); bool ResultIsSaturated = isSaturated() || Other.isSaturated(); bool ResultHasUnsignedPadding = false; if (!ResultIsSigned) { // Both are unsigned. ResultHasUnsignedPadding = hasUnsignedPadding() && Other.hasUnsignedPadding() && !ResultIsSaturated; } // If the result is signed, add an extra bit for the sign. Otherwise, if it is // unsigned and has unsigned padding, we only need to add the extra padding // bit back if we are not saturating. if (ResultIsSigned || ResultHasUnsignedPadding) CommonWidth++; return FixedPointSemantics(CommonWidth, CommonScale, ResultIsSigned, ResultIsSaturated, ResultHasUnsignedPadding); } APFixedPoint APFixedPoint::add(const APFixedPoint &Other, bool *Overflow) const { auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics()); APFixedPoint ConvertedThis = convert(CommonFXSema); APFixedPoint ConvertedOther = Other.convert(CommonFXSema); llvm::APSInt ThisVal = ConvertedThis.getValue(); llvm::APSInt OtherVal = ConvertedOther.getValue(); bool Overflowed = false; llvm::APSInt Result; if (CommonFXSema.isSaturated()) { Result = CommonFXSema.isSigned() ? ThisVal.sadd_sat(OtherVal) : ThisVal.uadd_sat(OtherVal); } else { Result = ThisVal.isSigned() ? ThisVal.sadd_ov(OtherVal, Overflowed) : ThisVal.uadd_ov(OtherVal, Overflowed); } if (Overflow) *Overflow = Overflowed; return APFixedPoint(Result, CommonFXSema); } void APFixedPoint::toString(llvm::SmallVectorImpl &Str) const { llvm::APSInt Val = getValue(); unsigned Scale = getScale(); if (Val.isSigned() && Val.isNegative() && Val != -Val) { Val = -Val; Str.push_back('-'); } llvm::APSInt IntPart = Val >> Scale; // Add 4 digits to hold the value after multiplying 10 (the radix) unsigned Width = Val.getBitWidth() + 4; llvm::APInt FractPart = Val.zextOrTrunc(Scale).zext(Width); llvm::APInt FractPartMask = llvm::APInt::getAllOnesValue(Scale).zext(Width); llvm::APInt RadixInt = llvm::APInt(Width, 10); IntPart.toString(Str, /*Radix=*/10); Str.push_back('.'); do { (FractPart * RadixInt) .lshr(Scale) .toString(Str, /*Radix=*/10, Val.isSigned()); FractPart = (FractPart * RadixInt) & FractPartMask; } while (FractPart != 0); } APFixedPoint APFixedPoint::negate(bool *Overflow) const { if (!isSaturated()) { if (Overflow) *Overflow = (!isSigned() && Val != 0) || (isSigned() && Val.isMinSignedValue()); return APFixedPoint(-Val, Sema); } // We never overflow for saturation if (Overflow) *Overflow = false; if (isSigned()) return Val.isMinSignedValue() ? getMax(Sema) : APFixedPoint(-Val, Sema); else return APFixedPoint(Sema); } llvm::APSInt APFixedPoint::convertToInt(unsigned DstWidth, bool DstSign, bool *Overflow) const { llvm::APSInt Result = getIntPart(); unsigned SrcWidth = getWidth(); llvm::APSInt DstMin = llvm::APSInt::getMinValue(DstWidth, !DstSign); llvm::APSInt DstMax = llvm::APSInt::getMaxValue(DstWidth, !DstSign); if (SrcWidth < DstWidth) { Result = Result.extend(DstWidth); } else if (SrcWidth > DstWidth) { DstMin = DstMin.extend(SrcWidth); DstMax = DstMax.extend(SrcWidth); } if (Overflow) { if (Result.isSigned() && !DstSign) { *Overflow = Result.isNegative() || Result.ugt(DstMax); } else if (Result.isUnsigned() && DstSign) { *Overflow = Result.ugt(DstMax); } else { *Overflow = Result < DstMin || Result > DstMax; } } Result.setIsSigned(DstSign); return Result.extOrTrunc(DstWidth); } APFixedPoint APFixedPoint::getFromIntValue(const llvm::APSInt &Value, const FixedPointSemantics &DstFXSema, bool *Overflow) { FixedPointSemantics IntFXSema = FixedPointSemantics::GetIntegerSemantics( Value.getBitWidth(), Value.isSigned()); return APFixedPoint(Value, IntFXSema).convert(DstFXSema, Overflow); } } // namespace clang