//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Objective-C code as LLVM code. // //===----------------------------------------------------------------------===// #include "CGDebugInfo.h" #include "CGObjCRuntime.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/StmtObjC.h" #include "clang/Basic/Diagnostic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Target/TargetData.h" using namespace clang; using namespace CodeGen; /// Emits an instance of NSConstantString representing the object. llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) { llvm::Constant *C = CGM.getObjCRuntime().GenerateConstantString(E->getString()); // FIXME: This bitcast should just be made an invariant on the Runtime. return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); } /// Emit a selector. llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { // Untyped selector. // Note that this implementation allows for non-constant strings to be passed // as arguments to @selector(). Currently, the only thing preventing this // behaviour is the type checking in the front end. return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector()); } llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { // FIXME: This should pass the Decl not the name. return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol()); } /// \brief Adjust the type of the result of an Objective-C message send /// expression when the method has a related result type. static RValue AdjustRelatedResultType(CodeGenFunction &CGF, const Expr *E, const ObjCMethodDecl *Method, RValue Result) { if (!Method) return Result; if (!Method->hasRelatedResultType() || CGF.getContext().hasSameType(E->getType(), Method->getResultType()) || !Result.isScalar()) return Result; // We have applied a related result type. Cast the rvalue appropriately. return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), CGF.ConvertType(E->getType()))); } RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return) { // Only the lookup mechanism and first two arguments of the method // implementation vary between runtimes. We can get the receiver and // arguments in generic code. CGObjCRuntime &Runtime = CGM.getObjCRuntime(); bool isSuperMessage = false; bool isClassMessage = false; ObjCInterfaceDecl *OID = 0; // Find the receiver QualType ReceiverType; llvm::Value *Receiver = 0; switch (E->getReceiverKind()) { case ObjCMessageExpr::Instance: Receiver = EmitScalarExpr(E->getInstanceReceiver()); ReceiverType = E->getInstanceReceiver()->getType(); break; case ObjCMessageExpr::Class: { ReceiverType = E->getClassReceiver(); const ObjCObjectType *ObjTy = ReceiverType->getAs(); assert(ObjTy && "Invalid Objective-C class message send"); OID = ObjTy->getInterface(); assert(OID && "Invalid Objective-C class message send"); Receiver = Runtime.GetClass(Builder, OID); isClassMessage = true; break; } case ObjCMessageExpr::SuperInstance: ReceiverType = E->getSuperType(); Receiver = LoadObjCSelf(); isSuperMessage = true; break; case ObjCMessageExpr::SuperClass: ReceiverType = E->getSuperType(); Receiver = LoadObjCSelf(); isSuperMessage = true; isClassMessage = true; break; } CallArgList Args; EmitCallArgs(Args, E->getMethodDecl(), E->arg_begin(), E->arg_end()); QualType ResultType = E->getMethodDecl() ? E->getMethodDecl()->getResultType() : E->getType(); RValue result; if (isSuperMessage) { // super is only valid in an Objective-C method const ObjCMethodDecl *OMD = cast(CurFuncDecl); bool isCategoryImpl = isa(OMD->getDeclContext()); result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, E->getSelector(), OMD->getClassInterface(), isCategoryImpl, Receiver, isClassMessage, Args, E->getMethodDecl()); } else { result = Runtime.GenerateMessageSend(*this, Return, ResultType, E->getSelector(), Receiver, Args, OID, E->getMethodDecl()); } return AdjustRelatedResultType(*this, E, E->getMethodDecl(), result); } /// StartObjCMethod - Begin emission of an ObjCMethod. This generates /// the LLVM function and sets the other context used by /// CodeGenFunction. void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD, SourceLocation StartLoc) { FunctionArgList args; // Check if we should generate debug info for this method. if (CGM.getModuleDebugInfo() && !OMD->hasAttr()) DebugInfo = CGM.getModuleDebugInfo(); llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(OMD); CGM.SetInternalFunctionAttributes(OMD, Fn, FI); args.push_back(OMD->getSelfDecl()); args.push_back(OMD->getCmdDecl()); for (ObjCMethodDecl::param_iterator PI = OMD->param_begin(), E = OMD->param_end(); PI != E; ++PI) args.push_back(*PI); CurGD = OMD; StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc); } void CodeGenFunction::GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong) { LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); llvm::Value *GetCopyStructFn = CGM.getObjCRuntime().GetGetStructFunction(); CodeGenTypes &Types = CGM.getTypes(); // objc_copyStruct (ReturnValue, &structIvar, // sizeof (Type of Ivar), isAtomic, false); CallArgList Args; RValue RV = RValue::get(Builder.CreateBitCast(ReturnValue, VoidPtrTy)); Args.add(RV, getContext().VoidPtrTy); RV = RValue::get(Builder.CreateBitCast(LV.getAddress(), VoidPtrTy)); Args.add(RV, getContext().VoidPtrTy); // sizeof (Type of Ivar) CharUnits Size = getContext().getTypeSizeInChars(Ivar->getType()); llvm::Value *SizeVal = llvm::ConstantInt::get(Types.ConvertType(getContext().LongTy), Size.getQuantity()); Args.add(RValue::get(SizeVal), getContext().LongTy); llvm::Value *isAtomic = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), IsAtomic ? 1 : 0); Args.add(RValue::get(isAtomic), getContext().BoolTy); llvm::Value *hasStrong = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), IsStrong ? 1 : 0); Args.add(RValue::get(hasStrong), getContext().BoolTy); EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args, FunctionType::ExtInfo()), GetCopyStructFn, ReturnValueSlot(), Args); } /// Generate an Objective-C method. An Objective-C method is a C function with /// its pointer, name, and types registered in the class struture. void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); EmitStmt(OMD->getBody()); FinishFunction(OMD->getBodyRBrace()); } // FIXME: I wasn't sure about the synthesis approach. If we end up generating an // AST for the whole body we can just fall back to having a GenerateFunction // which takes the body Stmt. /// GenerateObjCGetter - Generate an Objective-C property getter /// function. The given Decl must be an ObjCImplementationDecl. @synthesize /// is illegal within a category. void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID) { ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl(); const ObjCPropertyDecl *PD = PID->getPropertyDecl(); bool IsAtomic = !(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic); ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); assert(OMD && "Invalid call to generate getter (empty method)"); StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); // Determine if we should use an objc_getProperty call for // this. Non-atomic properties are directly evaluated. // atomic 'copy' and 'retain' properties are also directly // evaluated in gc-only mode. if (CGM.getLangOptions().getGCMode() != LangOptions::GCOnly && IsAtomic && (PD->getSetterKind() == ObjCPropertyDecl::Copy || PD->getSetterKind() == ObjCPropertyDecl::Retain)) { llvm::Value *GetPropertyFn = CGM.getObjCRuntime().GetPropertyGetFunction(); if (!GetPropertyFn) { CGM.ErrorUnsupported(PID, "Obj-C getter requiring atomic copy"); FinishFunction(); return; } // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). // FIXME: Can't this be simpler? This might even be worse than the // corresponding gcc code. CodeGenTypes &Types = CGM.getTypes(); ValueDecl *Cmd = OMD->getCmdDecl(); llvm::Value *CmdVal = Builder.CreateLoad(LocalDeclMap[Cmd], "cmd"); QualType IdTy = getContext().getObjCIdType(); llvm::Value *SelfAsId = Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); llvm::Value *Offset = EmitIvarOffset(IMP->getClassInterface(), Ivar); llvm::Value *True = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1); CallArgList Args; Args.add(RValue::get(SelfAsId), IdTy); Args.add(RValue::get(CmdVal), Cmd->getType()); Args.add(RValue::get(Offset), getContext().getPointerDiffType()); Args.add(RValue::get(True), getContext().BoolTy); // FIXME: We shouldn't need to get the function info here, the // runtime already should have computed it to build the function. RValue RV = EmitCall(Types.getFunctionInfo(PD->getType(), Args, FunctionType::ExtInfo()), GetPropertyFn, ReturnValueSlot(), Args); // We need to fix the type here. Ivars with copy & retain are // always objects so we don't need to worry about complex or // aggregates. RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(), Types.ConvertType(PD->getType()))); EmitReturnOfRValue(RV, PD->getType()); } else { const llvm::Triple &Triple = getContext().Target.getTriple(); QualType IVART = Ivar->getType(); if (IsAtomic && IVART->isScalarType() && (Triple.getArch() == llvm::Triple::arm || Triple.getArch() == llvm::Triple::thumb) && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, true, false); } else if (IsAtomic && (IVART->isScalarType() && !IVART->isRealFloatingType()) && Triple.getArch() == llvm::Triple::x86 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, true, false); } else if (IsAtomic && (IVART->isScalarType() && !IVART->isRealFloatingType()) && Triple.getArch() == llvm::Triple::x86_64 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(8)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, true, false); } else if (IVART->isAnyComplexType()) { LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); ComplexPairTy Pair = LoadComplexFromAddr(LV.getAddress(), LV.isVolatileQualified()); StoreComplexToAddr(Pair, ReturnValue, LV.isVolatileQualified()); } else if (hasAggregateLLVMType(IVART)) { bool IsStrong = false; if ((IsStrong = IvarTypeWithAggrGCObjects(IVART)) && CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, IsAtomic, IsStrong); } else { const CXXRecordDecl *classDecl = IVART->getAsCXXRecordDecl(); if (PID->getGetterCXXConstructor() && classDecl && !classDecl->hasTrivialDefaultConstructor()) { ReturnStmt *Stmt = new (getContext()) ReturnStmt(SourceLocation(), PID->getGetterCXXConstructor(), 0); EmitReturnStmt(*Stmt); } else if (IsAtomic && !IVART->isAnyComplexType() && Triple.getArch() == llvm::Triple::x86 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, true, false); } else if (IsAtomic && !IVART->isAnyComplexType() && Triple.getArch() == llvm::Triple::x86_64 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(8)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, true, false); } else { LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); EmitAggregateCopy(ReturnValue, LV.getAddress(), IVART); } } } else { LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); if (PD->getType()->isReferenceType()) { RValue RV = RValue::get(LV.getAddress()); EmitReturnOfRValue(RV, PD->getType()); } else { CodeGenTypes &Types = CGM.getTypes(); RValue RV = EmitLoadOfLValue(LV, IVART); RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(), Types.ConvertType(PD->getType()))); EmitReturnOfRValue(RV, PD->getType()); } } } FinishFunction(); } void CodeGenFunction::GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD, ObjCIvarDecl *Ivar) { // objc_copyStruct (&structIvar, &Arg, // sizeof (struct something), true, false); llvm::Value *GetCopyStructFn = CGM.getObjCRuntime().GetSetStructFunction(); CodeGenTypes &Types = CGM.getTypes(); CallArgList Args; LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); RValue RV = RValue::get(Builder.CreateBitCast(LV.getAddress(), Types.ConvertType(getContext().VoidPtrTy))); Args.add(RV, getContext().VoidPtrTy); llvm::Value *Arg = LocalDeclMap[*OMD->param_begin()]; llvm::Value *ArgAsPtrTy = Builder.CreateBitCast(Arg, Types.ConvertType(getContext().VoidPtrTy)); RV = RValue::get(ArgAsPtrTy); Args.add(RV, getContext().VoidPtrTy); // sizeof (Type of Ivar) CharUnits Size = getContext().getTypeSizeInChars(Ivar->getType()); llvm::Value *SizeVal = llvm::ConstantInt::get(Types.ConvertType(getContext().LongTy), Size.getQuantity()); Args.add(RValue::get(SizeVal), getContext().LongTy); llvm::Value *True = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1); Args.add(RValue::get(True), getContext().BoolTy); llvm::Value *False = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 0); Args.add(RValue::get(False), getContext().BoolTy); EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args, FunctionType::ExtInfo()), GetCopyStructFn, ReturnValueSlot(), Args); } static bool IvarAssignHasTrvialAssignment(const ObjCPropertyImplDecl *PID, QualType IvarT) { bool HasTrvialAssignment = true; if (PID->getSetterCXXAssignment()) { const CXXRecordDecl *classDecl = IvarT->getAsCXXRecordDecl(); HasTrvialAssignment = (!classDecl || classDecl->hasTrivialCopyAssignment()); } return HasTrvialAssignment; } /// GenerateObjCSetter - Generate an Objective-C property setter /// function. The given Decl must be an ObjCImplementationDecl. @synthesize /// is illegal within a category. void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID) { ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl(); const ObjCPropertyDecl *PD = PID->getPropertyDecl(); ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); assert(OMD && "Invalid call to generate setter (empty method)"); StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); const llvm::Triple &Triple = getContext().Target.getTriple(); QualType IVART = Ivar->getType(); bool IsCopy = PD->getSetterKind() == ObjCPropertyDecl::Copy; bool IsAtomic = !(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic); // Determine if we should use an objc_setProperty call for // this. Properties with 'copy' semantics always use it, as do // non-atomic properties with 'release' semantics as long as we are // not in gc-only mode. if (IsCopy || (CGM.getLangOptions().getGCMode() != LangOptions::GCOnly && PD->getSetterKind() == ObjCPropertyDecl::Retain)) { llvm::Value *SetPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); if (!SetPropertyFn) { CGM.ErrorUnsupported(PID, "Obj-C getter requiring atomic copy"); FinishFunction(); return; } // Emit objc_setProperty((id) self, _cmd, offset, arg, // , ). // FIXME: Can't this be simpler? This might even be worse than the // corresponding gcc code. CodeGenTypes &Types = CGM.getTypes(); ValueDecl *Cmd = OMD->getCmdDecl(); llvm::Value *CmdVal = Builder.CreateLoad(LocalDeclMap[Cmd], "cmd"); QualType IdTy = getContext().getObjCIdType(); llvm::Value *SelfAsId = Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); llvm::Value *Offset = EmitIvarOffset(IMP->getClassInterface(), Ivar); llvm::Value *Arg = LocalDeclMap[*OMD->param_begin()]; llvm::Value *ArgAsId = Builder.CreateBitCast(Builder.CreateLoad(Arg, "arg"), Types.ConvertType(IdTy)); llvm::Value *True = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1); llvm::Value *False = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 0); CallArgList Args; Args.add(RValue::get(SelfAsId), IdTy); Args.add(RValue::get(CmdVal), Cmd->getType()); Args.add(RValue::get(Offset), getContext().getPointerDiffType()); Args.add(RValue::get(ArgAsId), IdTy); Args.add(RValue::get(IsAtomic ? True : False), getContext().BoolTy); Args.add(RValue::get(IsCopy ? True : False), getContext().BoolTy); // FIXME: We shouldn't need to get the function info here, the runtime // already should have computed it to build the function. EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args, FunctionType::ExtInfo()), SetPropertyFn, ReturnValueSlot(), Args); } else if (IsAtomic && hasAggregateLLVMType(IVART) && !IVART->isAnyComplexType() && IvarAssignHasTrvialAssignment(PID, IVART) && ((Triple.getArch() == llvm::Triple::x86 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4))) || (Triple.getArch() == llvm::Triple::x86_64 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(8)))) && CGM.getObjCRuntime().GetSetStructFunction()) { // objc_copyStruct (&structIvar, &Arg, // sizeof (struct something), true, false); GenerateObjCAtomicSetterBody(OMD, Ivar); } else if (PID->getSetterCXXAssignment()) { EmitIgnoredExpr(PID->getSetterCXXAssignment()); } else { if (IsAtomic && IVART->isScalarType() && (Triple.getArch() == llvm::Triple::arm || Triple.getArch() == llvm::Triple::thumb) && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCAtomicSetterBody(OMD, Ivar); } else if (IsAtomic && (IVART->isScalarType() && !IVART->isRealFloatingType()) && Triple.getArch() == llvm::Triple::x86 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCAtomicSetterBody(OMD, Ivar); } else if (IsAtomic && (IVART->isScalarType() && !IVART->isRealFloatingType()) && Triple.getArch() == llvm::Triple::x86_64 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(8)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCAtomicSetterBody(OMD, Ivar); } else { // FIXME: Find a clean way to avoid AST node creation. SourceLocation Loc = PID->getLocStart(); ValueDecl *Self = OMD->getSelfDecl(); ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl(); DeclRefExpr Base(Self, Self->getType(), VK_RValue, Loc); ParmVarDecl *ArgDecl = *OMD->param_begin(); QualType T = ArgDecl->getType(); if (T->isReferenceType()) T = cast(T)->getPointeeType(); DeclRefExpr Arg(ArgDecl, T, VK_LValue, Loc); ObjCIvarRefExpr IvarRef(Ivar, Ivar->getType(), Loc, &Base, true, true); // The property type can differ from the ivar type in some situations with // Objective-C pointer types, we can always bit cast the RHS in these cases. if (getContext().getCanonicalType(Ivar->getType()) != getContext().getCanonicalType(ArgDecl->getType())) { ImplicitCastExpr ArgCasted(ImplicitCastExpr::OnStack, Ivar->getType(), CK_BitCast, &Arg, VK_RValue); BinaryOperator Assign(&IvarRef, &ArgCasted, BO_Assign, Ivar->getType(), VK_RValue, OK_Ordinary, Loc); EmitStmt(&Assign); } else { BinaryOperator Assign(&IvarRef, &Arg, BO_Assign, Ivar->getType(), VK_RValue, OK_Ordinary, Loc); EmitStmt(&Assign); } } } FinishFunction(); } // FIXME: these are stolen from CGClass.cpp, which is lame. namespace { struct CallArrayIvarDtor : EHScopeStack::Cleanup { const ObjCIvarDecl *ivar; llvm::Value *self; CallArrayIvarDtor(const ObjCIvarDecl *ivar, llvm::Value *self) : ivar(ivar), self(self) {} void Emit(CodeGenFunction &CGF, bool IsForEH) { LValue lvalue = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), self, ivar, 0); QualType type = ivar->getType(); const ConstantArrayType *arrayType = CGF.getContext().getAsConstantArrayType(type); QualType baseType = CGF.getContext().getBaseElementType(arrayType); const CXXRecordDecl *classDecl = baseType->getAsCXXRecordDecl(); llvm::Value *base = CGF.Builder.CreateBitCast(lvalue.getAddress(), CGF.ConvertType(baseType)->getPointerTo()); CGF.EmitCXXAggrDestructorCall(classDecl->getDestructor(), arrayType, base); } }; struct CallIvarDtor : EHScopeStack::Cleanup { const ObjCIvarDecl *ivar; llvm::Value *self; CallIvarDtor(const ObjCIvarDecl *ivar, llvm::Value *self) : ivar(ivar), self(self) {} void Emit(CodeGenFunction &CGF, bool IsForEH) { LValue lvalue = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), self, ivar, 0); QualType type = ivar->getType(); const CXXRecordDecl *classDecl = type->getAsCXXRecordDecl(); CGF.EmitCXXDestructorCall(classDecl->getDestructor(), Dtor_Complete, /*ForVirtualBase=*/false, lvalue.getAddress()); } }; } static void emitCXXDestructMethod(CodeGenFunction &CGF, ObjCImplementationDecl *impl) { CodeGenFunction::RunCleanupsScope scope(CGF); llvm::Value *self = CGF.LoadObjCSelf(); ObjCInterfaceDecl *iface = const_cast(impl->getClassInterface()); for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); ivar; ivar = ivar->getNextIvar()) { QualType type = ivar->getType(); // Drill down to the base element type. QualType baseType = type; const ConstantArrayType *arrayType = CGF.getContext().getAsConstantArrayType(baseType); if (arrayType) baseType = CGF.getContext().getBaseElementType(arrayType); // Check whether the ivar is a destructible type. QualType::DestructionKind destructKind = baseType.isDestructedType(); assert(destructKind == type.isDestructedType()); switch (destructKind) { case QualType::DK_none: continue; case QualType::DK_cxx_destructor: if (arrayType) CGF.EHStack.pushCleanup(NormalAndEHCleanup, ivar, self); else CGF.EHStack.pushCleanup(NormalAndEHCleanup, ivar, self); break; } } assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); } void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, ObjCMethodDecl *MD, bool ctor) { MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); // Emit .cxx_construct. if (ctor) { llvm::SmallVector IvarInitializers; for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(), E = IMP->init_end(); B != E; ++B) { CXXCtorInitializer *IvarInit = (*B); FieldDecl *Field = IvarInit->getAnyMember(); ObjCIvarDecl *Ivar = cast(Field); LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); EmitAggExpr(IvarInit->getInit(), AggValueSlot::forLValue(LV, true)); } // constructor returns 'self'. CodeGenTypes &Types = CGM.getTypes(); QualType IdTy(CGM.getContext().getObjCIdType()); llvm::Value *SelfAsId = Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); // Emit .cxx_destruct. } else { emitCXXDestructMethod(*this, IMP); } FinishFunction(); } bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); it++; it++; const ABIArgInfo &AI = it->info; // FIXME. Is this sufficient check? return (AI.getKind() == ABIArgInfo::Indirect); } bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) return false; if (const RecordType *FDTTy = Ty.getTypePtr()->getAs()) return FDTTy->getDecl()->hasObjectMember(); return false; } llvm::Value *CodeGenFunction::LoadObjCSelf() { const ObjCMethodDecl *OMD = cast(CurFuncDecl); return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self"); } QualType CodeGenFunction::TypeOfSelfObject() { const ObjCMethodDecl *OMD = cast(CurFuncDecl); ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); const ObjCObjectPointerType *PTy = cast( getContext().getCanonicalType(selfDecl->getType())); return PTy->getPointeeType(); } LValue CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) { // This is a special l-value that just issues sends when we load or // store through it. // For certain base kinds, we need to emit the base immediately. llvm::Value *Base; if (E->isSuperReceiver()) Base = LoadObjCSelf(); else if (E->isClassReceiver()) Base = CGM.getObjCRuntime().GetClass(Builder, E->getClassReceiver()); else Base = EmitScalarExpr(E->getBase()); return LValue::MakePropertyRef(E, Base); } static RValue GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, Selector S, llvm::Value *Receiver, const CallArgList &CallArgs) { const ObjCMethodDecl *OMD = cast(CGF.CurFuncDecl); bool isClassMessage = OMD->isClassMethod(); bool isCategoryImpl = isa(OMD->getDeclContext()); return CGF.CGM.getObjCRuntime() .GenerateMessageSendSuper(CGF, Return, ResultType, S, OMD->getClassInterface(), isCategoryImpl, Receiver, isClassMessage, CallArgs); } RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV, ReturnValueSlot Return) { const ObjCPropertyRefExpr *E = LV.getPropertyRefExpr(); QualType ResultType = E->getGetterResultType(); Selector S; const ObjCMethodDecl *method; if (E->isExplicitProperty()) { const ObjCPropertyDecl *Property = E->getExplicitProperty(); S = Property->getGetterName(); method = Property->getGetterMethodDecl(); } else { method = E->getImplicitPropertyGetter(); S = method->getSelector(); } llvm::Value *Receiver = LV.getPropertyRefBaseAddr(); // Accesses to 'super' follow a different code path. if (E->isSuperReceiver()) return AdjustRelatedResultType(*this, E, method, GenerateMessageSendSuper(*this, Return, ResultType, S, Receiver, CallArgList())); const ObjCInterfaceDecl *ReceiverClass = (E->isClassReceiver() ? E->getClassReceiver() : 0); return AdjustRelatedResultType(*this, E, method, CGM.getObjCRuntime(). GenerateMessageSend(*this, Return, ResultType, S, Receiver, CallArgList(), ReceiverClass)); } void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst) { const ObjCPropertyRefExpr *E = Dst.getPropertyRefExpr(); Selector S = E->getSetterSelector(); QualType ArgType = E->getSetterArgType(); // FIXME. Other than scalars, AST is not adequate for setter and // getter type mismatches which require conversion. if (Src.isScalar()) { llvm::Value *SrcVal = Src.getScalarVal(); QualType DstType = getContext().getCanonicalType(ArgType); const llvm::Type *DstTy = ConvertType(DstType); if (SrcVal->getType() != DstTy) Src = RValue::get(EmitScalarConversion(SrcVal, E->getType(), DstType)); } CallArgList Args; Args.add(Src, ArgType); llvm::Value *Receiver = Dst.getPropertyRefBaseAddr(); QualType ResultType = getContext().VoidTy; if (E->isSuperReceiver()) { GenerateMessageSendSuper(*this, ReturnValueSlot(), ResultType, S, Receiver, Args); return; } const ObjCInterfaceDecl *ReceiverClass = (E->isClassReceiver() ? E->getClassReceiver() : 0); CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), ResultType, S, Receiver, Args, ReceiverClass); } void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ llvm::Constant *EnumerationMutationFn = CGM.getObjCRuntime().EnumerationMutationFunction(); if (!EnumerationMutationFn) { CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); return; } // The local variable comes into scope immediately. AutoVarEmission variable = AutoVarEmission::invalid(); if (const DeclStmt *SD = dyn_cast(S.getElement())) variable = EmitAutoVarAlloca(*cast(SD->getSingleDecl())); CGDebugInfo *DI = getDebugInfo(); if (DI) { DI->setLocation(S.getSourceRange().getBegin()); DI->EmitRegionStart(Builder); } JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); // Fast enumeration state. QualType StateTy = getContext().getObjCFastEnumerationStateType(); llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); EmitNullInitialization(StatePtr, StateTy); // Number of elements in the items array. static const unsigned NumItems = 16; // Fetch the countByEnumeratingWithState:objects:count: selector. IdentifierInfo *II[] = { &CGM.getContext().Idents.get("countByEnumeratingWithState"), &CGM.getContext().Idents.get("objects"), &CGM.getContext().Idents.get("count") }; Selector FastEnumSel = CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); QualType ItemsTy = getContext().getConstantArrayType(getContext().getObjCIdType(), llvm::APInt(32, NumItems), ArrayType::Normal, 0); llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); // Emit the collection pointer. llvm::Value *Collection = EmitScalarExpr(S.getCollection()); // Send it our message: CallArgList Args; // The first argument is a temporary of the enumeration-state type. Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); // The second argument is a temporary array with space for NumItems // pointers. We'll actually be loading elements from the array // pointer written into the control state; this buffer is so that // collections that *aren't* backed by arrays can still queue up // batches of elements. Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); // The third argument is the capacity of that temporary array. const llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); Args.add(RValue::get(Count), getContext().UnsignedLongTy); // Start the enumeration. RValue CountRV = CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), getContext().UnsignedLongTy, FastEnumSel, Collection, Args); // The initial number of objects that were returned in the buffer. llvm::Value *initialBufferLimit = CountRV.getScalarVal(); llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); // If the limit pointer was zero to begin with, the collection is // empty; skip all this. Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, LoopInitBB); // Otherwise, initialize the loop. EmitBlock(LoopInitBB); // Save the initial mutations value. This is the value at an // address that was written into the state object by // countByEnumeratingWithState:objects:count:. llvm::Value *StateMutationsPtrPtr = Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); llvm::Value *initialMutations = Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); // Start looping. This is the point we return to whenever we have a // fresh, non-empty batch of objects. llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); EmitBlock(LoopBodyBB); // The current index into the buffer. llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); index->addIncoming(zero, LoopInitBB); // The current buffer size. llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); count->addIncoming(initialBufferLimit, LoopInitBB); // Check whether the mutations value has changed from where it was // at start. StateMutationsPtr should actually be invariant between // refreshes. StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); llvm::Value *currentMutations = Builder.CreateLoad(StateMutationsPtr, "statemutations"); llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), WasNotMutatedBB, WasMutatedBB); // If so, call the enumeration-mutation function. EmitBlock(WasMutatedBB); llvm::Value *V = Builder.CreateBitCast(Collection, ConvertType(getContext().getObjCIdType()), "tmp"); CallArgList Args2; Args2.add(RValue::get(V), getContext().getObjCIdType()); // FIXME: We shouldn't need to get the function info here, the runtime already // should have computed it to build the function. EmitCall(CGM.getTypes().getFunctionInfo(getContext().VoidTy, Args2, FunctionType::ExtInfo()), EnumerationMutationFn, ReturnValueSlot(), Args2); // Otherwise, or if the mutation function returns, just continue. EmitBlock(WasNotMutatedBB); // Initialize the element variable. RunCleanupsScope elementVariableScope(*this); bool elementIsVariable; LValue elementLValue; QualType elementType; if (const DeclStmt *SD = dyn_cast(S.getElement())) { // Initialize the variable, in case it's a __block variable or something. EmitAutoVarInit(variable); const VarDecl* D = cast(SD->getSingleDecl()); DeclRefExpr tempDRE(const_cast(D), D->getType(), VK_LValue, SourceLocation()); elementLValue = EmitLValue(&tempDRE); elementType = D->getType(); elementIsVariable = true; } else { elementLValue = LValue(); // suppress warning elementType = cast(S.getElement())->getType(); elementIsVariable = false; } const llvm::Type *convertedElementType = ConvertType(elementType); // Fetch the buffer out of the enumeration state. // TODO: this pointer should actually be invariant between // refreshes, which would help us do certain loop optimizations. llvm::Value *StateItemsPtr = Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); llvm::Value *EnumStateItems = Builder.CreateLoad(StateItemsPtr, "stateitems"); // Fetch the value at the current index from the buffer. llvm::Value *CurrentItemPtr = Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); // Cast that value to the right type. CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, "currentitem"); // Make sure we have an l-value. Yes, this gets evaluated every // time through the loop. if (!elementIsVariable) elementLValue = EmitLValue(cast(S.getElement())); EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, elementType); // If we do have an element variable, this assignment is the end of // its initialization. if (elementIsVariable) EmitAutoVarCleanups(variable); // Perform the loop body, setting up break and continue labels. BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); { RunCleanupsScope Scope(*this); EmitStmt(S.getBody()); } BreakContinueStack.pop_back(); // Destroy the element variable now. elementVariableScope.ForceCleanup(); // Check whether there are more elements. EmitBlock(AfterBody.getBlock()); llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); // First we check in the local buffer. llvm::Value *indexPlusOne = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); // If we haven't overrun the buffer yet, we can continue. Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB); index->addIncoming(indexPlusOne, AfterBody.getBlock()); count->addIncoming(count, AfterBody.getBlock()); // Otherwise, we have to fetch more elements. EmitBlock(FetchMoreBB); CountRV = CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), getContext().UnsignedLongTy, FastEnumSel, Collection, Args); // If we got a zero count, we're done. llvm::Value *refetchCount = CountRV.getScalarVal(); // (note that the message send might split FetchMoreBB) index->addIncoming(zero, Builder.GetInsertBlock()); count->addIncoming(refetchCount, Builder.GetInsertBlock()); Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), EmptyBB, LoopBodyBB); // No more elements. EmitBlock(EmptyBB); if (!elementIsVariable) { // If the element was not a declaration, set it to be null. llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); elementLValue = EmitLValue(cast(S.getElement())); EmitStoreThroughLValue(RValue::get(null), elementLValue, elementType); } if (DI) { DI->setLocation(S.getSourceRange().getEnd()); DI->EmitRegionEnd(Builder); } EmitBlock(LoopEnd.getBlock()); } void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { CGM.getObjCRuntime().EmitTryStmt(*this, S); } void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { CGM.getObjCRuntime().EmitThrowStmt(*this, S); } void CodeGenFunction::EmitObjCAtSynchronizedStmt( const ObjCAtSynchronizedStmt &S) { CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); } CGObjCRuntime::~CGObjCRuntime() {}