//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ code generation of virtual tables. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CGCXXABI.h" #include "CodeGenModule.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/RecordLayout.h" #include "clang/Frontend/CodeGenOptions.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SetVector.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Format.h" #include "llvm/Transforms/Utils/Cloning.h" #include #include using namespace clang; using namespace CodeGen; CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) : CGM(CGM), VTContext(CGM.getContext()) { } llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, const ThunkInfo &Thunk) { const CXXMethodDecl *MD = cast(GD.getDecl()); // Compute the mangled name. SmallString<256> Name; llvm::raw_svector_ostream Out(Name); if (const CXXDestructorDecl* DD = dyn_cast(MD)) getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), Thunk.This, Out); else getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); Out.flush(); llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true); } static llvm::Value *PerformTypeAdjustment(CodeGenFunction &CGF, llvm::Value *Ptr, int64_t NonVirtualAdjustment, int64_t VirtualAdjustment, bool IsReturnAdjustment) { if (!NonVirtualAdjustment && !VirtualAdjustment) return Ptr; llvm::Type *Int8PtrTy = CGF.Int8PtrTy; llvm::Value *V = CGF.Builder.CreateBitCast(Ptr, Int8PtrTy); if (NonVirtualAdjustment && !IsReturnAdjustment) { // Perform the non-virtual adjustment for a base-to-derived cast. V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment); } if (VirtualAdjustment) { llvm::Type *PtrDiffTy = CGF.ConvertType(CGF.getContext().getPointerDiffType()); // Perform the virtual adjustment. llvm::Value *VTablePtrPtr = CGF.Builder.CreateBitCast(V, Int8PtrTy->getPointerTo()); llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr); llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment); OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo()); // Load the adjustment offset from the vtable. llvm::Value *Offset = CGF.Builder.CreateLoad(OffsetPtr); // Adjust our pointer. V = CGF.Builder.CreateInBoundsGEP(V, Offset); } if (NonVirtualAdjustment && IsReturnAdjustment) { // Perform the non-virtual adjustment for a derived-to-base cast. V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment); } // Cast back to the original type. return CGF.Builder.CreateBitCast(V, Ptr->getType()); } static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, const ThunkInfo &Thunk, llvm::Function *Fn) { CGM.setGlobalVisibility(Fn, MD); if (!CGM.getCodeGenOpts().HiddenWeakVTables) return; // If the thunk has weak/linkonce linkage, but the function must be // emitted in every translation unit that references it, then we can // emit its thunks with hidden visibility, since its thunks must be // emitted when the function is. // This follows CodeGenModule::setTypeVisibility; see the comments // there for explanation. if ((Fn->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage && Fn->getLinkage() != llvm::GlobalVariable::WeakODRLinkage) || Fn->getVisibility() != llvm::GlobalVariable::DefaultVisibility) return; if (MD->getExplicitVisibility(ValueDecl::VisibilityForValue)) return; switch (MD->getTemplateSpecializationKind()) { case TSK_ExplicitInstantiationDefinition: case TSK_ExplicitInstantiationDeclaration: return; case TSK_Undeclared: break; case TSK_ExplicitSpecialization: case TSK_ImplicitInstantiation: return; break; } // If there's an explicit definition, and that definition is // out-of-line, then we can't assume that all users will have a // definition to emit. const FunctionDecl *Def = 0; if (MD->hasBody(Def) && Def->isOutOfLine()) return; Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); } #ifndef NDEBUG static bool similar(const ABIArgInfo &infoL, CanQualType typeL, const ABIArgInfo &infoR, CanQualType typeR) { return (infoL.getKind() == infoR.getKind() && (typeL == typeR || (isa(typeL) && isa(typeR)) || (isa(typeL) && isa(typeR)))); } #endif static RValue PerformReturnAdjustment(CodeGenFunction &CGF, QualType ResultType, RValue RV, const ThunkInfo &Thunk) { // Emit the return adjustment. bool NullCheckValue = !ResultType->isReferenceType(); llvm::BasicBlock *AdjustNull = 0; llvm::BasicBlock *AdjustNotNull = 0; llvm::BasicBlock *AdjustEnd = 0; llvm::Value *ReturnValue = RV.getScalarVal(); if (NullCheckValue) { AdjustNull = CGF.createBasicBlock("adjust.null"); AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); AdjustEnd = CGF.createBasicBlock("adjust.end"); llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); CGF.EmitBlock(AdjustNotNull); } ReturnValue = PerformTypeAdjustment(CGF, ReturnValue, Thunk.Return.NonVirtual, Thunk.Return.VBaseOffsetOffset, /*IsReturnAdjustment*/true); if (NullCheckValue) { CGF.Builder.CreateBr(AdjustEnd); CGF.EmitBlock(AdjustNull); CGF.Builder.CreateBr(AdjustEnd); CGF.EmitBlock(AdjustEnd); llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); PHI->addIncoming(ReturnValue, AdjustNotNull); PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), AdjustNull); ReturnValue = PHI; } return RValue::get(ReturnValue); } // This function does roughly the same thing as GenerateThunk, but in a // very different way, so that va_start and va_end work correctly. // FIXME: This function assumes "this" is the first non-sret LLVM argument of // a function, and that there is an alloca built in the entry block // for all accesses to "this". // FIXME: This function assumes there is only one "ret" statement per function. // FIXME: Cloning isn't correct in the presence of indirect goto! // FIXME: This implementation of thunks bloats codesize by duplicating the // function definition. There are alternatives: // 1. Add some sort of stub support to LLVM for cases where we can // do a this adjustment, then a sibcall. // 2. We could transform the definition to take a va_list instead of an // actual variable argument list, then have the thunks (including a // no-op thunk for the regular definition) call va_start/va_end. // There's a bit of per-call overhead for this solution, but it's // better for codesize if the definition is long. void CodeGenFunction::GenerateVarArgsThunk( llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk) { const CXXMethodDecl *MD = cast(GD.getDecl()); const FunctionProtoType *FPT = MD->getType()->getAs(); QualType ResultType = FPT->getResultType(); // Get the original function assert(FnInfo.isVariadic()); llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); llvm::Function *BaseFn = cast(Callee); // Clone to thunk. llvm::ValueToValueMapTy VMap; llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap, /*ModuleLevelChanges=*/false); CGM.getModule().getFunctionList().push_back(NewFn); Fn->replaceAllUsesWith(NewFn); NewFn->takeName(Fn); Fn->eraseFromParent(); Fn = NewFn; // "Initialize" CGF (minimally). CurFn = Fn; // Get the "this" value llvm::Function::arg_iterator AI = Fn->arg_begin(); if (CGM.ReturnTypeUsesSRet(FnInfo)) ++AI; // Find the first store of "this", which will be to the alloca associated // with "this". llvm::Value *ThisPtr = &*AI; llvm::BasicBlock *EntryBB = Fn->begin(); llvm::Instruction *ThisStore = 0; for (llvm::BasicBlock::iterator I = EntryBB->begin(), E = EntryBB->end(); I != E; I++) { if (isa(I) && I->getOperand(0) == ThisPtr) { ThisStore = cast(I); break; } } assert(ThisStore && "Store of this should be in entry block?"); // Adjust "this", if necessary. Builder.SetInsertPoint(ThisStore); llvm::Value *AdjustedThisPtr = PerformTypeAdjustment(*this, ThisPtr, Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset, /*IsReturnAdjustment*/false); ThisStore->setOperand(0, AdjustedThisPtr); if (!Thunk.Return.isEmpty()) { // Fix up the returned value, if necessary. for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) { llvm::Instruction *T = I->getTerminator(); if (isa(T)) { RValue RV = RValue::get(T->getOperand(0)); T->eraseFromParent(); Builder.SetInsertPoint(&*I); RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); Builder.CreateRet(RV.getScalarVal()); break; } } } } void CodeGenFunction::GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk) { const CXXMethodDecl *MD = cast(GD.getDecl()); const FunctionProtoType *FPT = MD->getType()->getAs(); QualType ResultType = FPT->getResultType(); QualType ThisType = MD->getThisType(getContext()); FunctionArgList FunctionArgs; // FIXME: It would be nice if more of this code could be shared with // CodeGenFunction::GenerateCode. // Create the implicit 'this' parameter declaration. CurGD = GD; CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResultType, FunctionArgs); // Add the rest of the parameters. for (FunctionDecl::param_const_iterator I = MD->param_begin(), E = MD->param_end(); I != E; ++I) { ParmVarDecl *Param = *I; FunctionArgs.push_back(Param); } // Initialize debug info if needed. maybeInitializeDebugInfo(); StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, SourceLocation()); CGM.getCXXABI().EmitInstanceFunctionProlog(*this); CXXThisValue = CXXABIThisValue; // Adjust the 'this' pointer if necessary. llvm::Value *AdjustedThisPtr = PerformTypeAdjustment(*this, LoadCXXThis(), Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset, /*IsReturnAdjustment*/false); CallArgList CallArgs; // Add our adjusted 'this' pointer. CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); // Add the rest of the parameters. for (FunctionDecl::param_const_iterator I = MD->param_begin(), E = MD->param_end(); I != E; ++I) { ParmVarDecl *param = *I; EmitDelegateCallArg(CallArgs, param); } // Get our callee. llvm::Type *Ty = CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); #ifndef NDEBUG const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1)); assert(CallFnInfo.getRegParm() == FnInfo.getRegParm() && CallFnInfo.isNoReturn() == FnInfo.isNoReturn() && CallFnInfo.getCallingConvention() == FnInfo.getCallingConvention()); assert(isa(MD) || // ignore dtor return types similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), FnInfo.getReturnInfo(), FnInfo.getReturnType())); assert(CallFnInfo.arg_size() == FnInfo.arg_size()); for (unsigned i = 0, e = FnInfo.arg_size(); i != e; ++i) assert(similar(CallFnInfo.arg_begin()[i].info, CallFnInfo.arg_begin()[i].type, FnInfo.arg_begin()[i].info, FnInfo.arg_begin()[i].type)); #endif // Determine whether we have a return value slot to use. ReturnValueSlot Slot; if (!ResultType->isVoidType() && FnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && !hasScalarEvaluationKind(CurFnInfo->getReturnType())) Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); // Now emit our call. RValue RV = EmitCall(FnInfo, Callee, Slot, CallArgs, MD); if (!Thunk.Return.isEmpty()) RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); if (!ResultType->isVoidType() && Slot.isNull()) CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); // Disable the final ARC autorelease. AutoreleaseResult = false; FinishFunction(); // Set the right linkage. CGM.setFunctionLinkage(MD, Fn); // Set the right visibility. setThunkVisibility(CGM, MD, Thunk, Fn); } void CodeGenVTables::EmitThunk(GlobalDecl GD, const ThunkInfo &Thunk, bool UseAvailableExternallyLinkage) { const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); // FIXME: re-use FnInfo in this computation. llvm::Constant *Entry = CGM.GetAddrOfThunk(GD, Thunk); // Strip off a bitcast if we got one back. if (llvm::ConstantExpr *CE = dyn_cast(Entry)) { assert(CE->getOpcode() == llvm::Instruction::BitCast); Entry = CE->getOperand(0); } // There's already a declaration with the same name, check if it has the same // type or if we need to replace it. if (cast(Entry)->getType()->getElementType() != CGM.getTypes().GetFunctionTypeForVTable(GD)) { llvm::GlobalValue *OldThunkFn = cast(Entry); // If the types mismatch then we have to rewrite the definition. assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); // Remove the name from the old thunk function and get a new thunk. OldThunkFn->setName(StringRef()); Entry = CGM.GetAddrOfThunk(GD, Thunk); // If needed, replace the old thunk with a bitcast. if (!OldThunkFn->use_empty()) { llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); } // Remove the old thunk. OldThunkFn->eraseFromParent(); } llvm::Function *ThunkFn = cast(Entry); if (!ThunkFn->isDeclaration()) { if (UseAvailableExternallyLinkage) { // There is already a thunk emitted for this function, do nothing. return; } // If a function has a body, it should have available_externally linkage. assert(ThunkFn->hasAvailableExternallyLinkage() && "Function should have available_externally linkage!"); // Change the linkage. CGM.setFunctionLinkage(cast(GD.getDecl()), ThunkFn); return; } CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); if (ThunkFn->isVarArg()) { // Varargs thunks are special; we can't just generate a call because // we can't copy the varargs. Our implementation is rather // expensive/sucky at the moment, so don't generate the thunk unless // we have to. // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. if (!UseAvailableExternallyLinkage) CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); } else { // Normal thunk body generation. CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk); if (UseAvailableExternallyLinkage) ThunkFn->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); } } void CodeGenVTables::MaybeEmitThunkAvailableExternally(GlobalDecl GD, const ThunkInfo &Thunk) { // We only want to do this when building with optimizations. if (!CGM.getCodeGenOpts().OptimizationLevel) return; // We can't emit thunks for member functions with incomplete types. const CXXMethodDecl *MD = cast(GD.getDecl()); if (!CGM.getTypes().isFuncTypeConvertible( cast(MD->getType().getTypePtr()))) return; EmitThunk(GD, Thunk, /*UseAvailableExternallyLinkage=*/true); } void CodeGenVTables::EmitThunks(GlobalDecl GD) { const CXXMethodDecl *MD = cast(GD.getDecl())->getCanonicalDecl(); // We don't need to generate thunks for the base destructor. if (isa(MD) && GD.getDtorType() == Dtor_Base) return; const VTableContext::ThunkInfoVectorTy *ThunkInfoVector = VTContext.getThunkInfo(MD); if (!ThunkInfoVector) return; for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I) EmitThunk(GD, (*ThunkInfoVector)[I], /*UseAvailableExternallyLinkage=*/false); } llvm::Constant * CodeGenVTables::CreateVTableInitializer(const CXXRecordDecl *RD, const VTableComponent *Components, unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks, unsigned NumVTableThunks) { SmallVector Inits; llvm::Type *Int8PtrTy = CGM.Int8PtrTy; llvm::Type *PtrDiffTy = CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); QualType ClassType = CGM.getContext().getTagDeclType(RD); llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(ClassType); unsigned NextVTableThunkIndex = 0; llvm::Constant *PureVirtualFn = 0, *DeletedVirtualFn = 0; for (unsigned I = 0; I != NumComponents; ++I) { VTableComponent Component = Components[I]; llvm::Constant *Init = 0; switch (Component.getKind()) { case VTableComponent::CK_VCallOffset: Init = llvm::ConstantInt::get(PtrDiffTy, Component.getVCallOffset().getQuantity()); Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); break; case VTableComponent::CK_VBaseOffset: Init = llvm::ConstantInt::get(PtrDiffTy, Component.getVBaseOffset().getQuantity()); Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); break; case VTableComponent::CK_OffsetToTop: Init = llvm::ConstantInt::get(PtrDiffTy, Component.getOffsetToTop().getQuantity()); Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); break; case VTableComponent::CK_RTTI: Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); break; case VTableComponent::CK_FunctionPointer: case VTableComponent::CK_CompleteDtorPointer: case VTableComponent::CK_DeletingDtorPointer: { GlobalDecl GD; // Get the right global decl. switch (Component.getKind()) { default: llvm_unreachable("Unexpected vtable component kind"); case VTableComponent::CK_FunctionPointer: GD = Component.getFunctionDecl(); break; case VTableComponent::CK_CompleteDtorPointer: GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); break; case VTableComponent::CK_DeletingDtorPointer: GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); break; } if (cast(GD.getDecl())->isPure()) { // We have a pure virtual member function. if (!PureVirtualFn) { llvm::FunctionType *Ty = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, CGM.Int8PtrTy); } Init = PureVirtualFn; } else if (cast(GD.getDecl())->isDeleted()) { if (!DeletedVirtualFn) { llvm::FunctionType *Ty = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); StringRef DeletedCallName = CGM.getCXXABI().GetDeletedVirtualCallName(); DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, CGM.Int8PtrTy); } Init = DeletedVirtualFn; } else { // Check if we should use a thunk. if (NextVTableThunkIndex < NumVTableThunks && VTableThunks[NextVTableThunkIndex].first == I) { const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; MaybeEmitThunkAvailableExternally(GD, Thunk); Init = CGM.GetAddrOfThunk(GD, Thunk); NextVTableThunkIndex++; } else { llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); } Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); } break; } case VTableComponent::CK_UnusedFunctionPointer: Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); break; }; Inits.push_back(Init); } llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); return llvm::ConstantArray::get(ArrayType, Inits); } llvm::GlobalVariable *CodeGenVTables::GetAddrOfVTable(const CXXRecordDecl *RD) { llvm::GlobalVariable *&VTable = VTables[RD]; if (VTable) return VTable; // Queue up this v-table for possible deferred emission. CGM.addDeferredVTable(RD); SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); CGM.getCXXABI().getMangleContext().mangleCXXVTable(RD, Out); Out.flush(); StringRef Name = OutName.str(); llvm::ArrayType *ArrayType = llvm::ArrayType::get(CGM.Int8PtrTy, VTContext.getVTableLayout(RD).getNumVTableComponents()); VTable = CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, llvm::GlobalValue::ExternalLinkage); VTable->setUnnamedAddr(true); return VTable; } void CodeGenVTables::EmitVTableDefinition(llvm::GlobalVariable *VTable, llvm::GlobalVariable::LinkageTypes Linkage, const CXXRecordDecl *RD) { const VTableLayout &VTLayout = VTContext.getVTableLayout(RD); // Create and set the initializer. llvm::Constant *Init = CreateVTableInitializer(RD, VTLayout.vtable_component_begin(), VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(), VTLayout.getNumVTableThunks()); VTable->setInitializer(Init); // Set the correct linkage. VTable->setLinkage(Linkage); // Set the right visibility. CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForVTable); } llvm::GlobalVariable * CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, llvm::GlobalVariable::LinkageTypes Linkage, VTableAddressPointsMapTy& AddressPoints) { OwningPtr VTLayout( VTContext.createConstructionVTableLayout(Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); // Add the address points. AddressPoints = VTLayout->getAddressPoints(); // Get the mangled construction vtable name. SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); CGM.getCXXABI().getMangleContext(). mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), Base.getBase(), Out); Out.flush(); StringRef Name = OutName.str(); llvm::ArrayType *ArrayType = llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); // Construction vtable symbols are not part of the Itanium ABI, so we cannot // guarantee that they actually will be available externally. Instead, when // emitting an available_externally VTT, we provide references to an internal // linkage construction vtable. The ABI only requires complete-object vtables // to be the same for all instances of a type, not construction vtables. if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) Linkage = llvm::GlobalVariable::InternalLinkage; // Create the variable that will hold the construction vtable. llvm::GlobalVariable *VTable = CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForConstructionVTable); // V-tables are always unnamed_addr. VTable->setUnnamedAddr(true); // Create and set the initializer. llvm::Constant *Init = CreateVTableInitializer(Base.getBase(), VTLayout->vtable_component_begin(), VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(), VTLayout->getNumVTableThunks()); VTable->setInitializer(Init); return VTable; } /// Compute the required linkage of the v-table for the given class. /// /// Note that we only call this at the end of the translation unit. llvm::GlobalVariable::LinkageTypes CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { if (RD->getLinkage() != ExternalLinkage) return llvm::GlobalVariable::InternalLinkage; // We're at the end of the translation unit, so the current key // function is fully correct. if (const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD)) { // If this class has a key function, use that to determine the // linkage of the vtable. const FunctionDecl *def = 0; if (keyFunction->hasBody(def)) keyFunction = cast(def); switch (keyFunction->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: // When compiling with optimizations turned on, we emit all vtables, // even if the key function is not defined in the current translation // unit. If this is the case, use available_externally linkage. if (!def && CodeGenOpts.OptimizationLevel) return llvm::GlobalVariable::AvailableExternallyLinkage; if (keyFunction->isInlined()) return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::LinkOnceODRLinkage : llvm::Function::InternalLinkage; return llvm::GlobalVariable::ExternalLinkage; case TSK_ImplicitInstantiation: return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::LinkOnceODRLinkage : llvm::Function::InternalLinkage; case TSK_ExplicitInstantiationDefinition: return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::WeakODRLinkage : llvm::Function::InternalLinkage; case TSK_ExplicitInstantiationDeclaration: return !Context.getLangOpts().AppleKext ? llvm::GlobalVariable::AvailableExternallyLinkage : llvm::Function::InternalLinkage; } } // -fapple-kext mode does not support weak linkage, so we must use // internal linkage. if (Context.getLangOpts().AppleKext) return llvm::Function::InternalLinkage; switch (RD->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: case TSK_ImplicitInstantiation: return llvm::GlobalVariable::LinkOnceODRLinkage; case TSK_ExplicitInstantiationDeclaration: return llvm::GlobalVariable::AvailableExternallyLinkage; case TSK_ExplicitInstantiationDefinition: return llvm::GlobalVariable::WeakODRLinkage; } llvm_unreachable("Invalid TemplateSpecializationKind!"); } /// This is a callback from Sema to tell us that it believes that a /// particular v-table is required to be emitted in this translation /// unit. /// /// The reason we don't simply trust this callback is because Sema /// will happily report that something is used even when it's used /// only in code that we don't actually have to emit. /// /// \param isRequired - if true, the v-table is mandatory, e.g. /// because the translation unit defines the key function void CodeGenModule::EmitVTable(CXXRecordDecl *theClass, bool isRequired) { if (!isRequired) return; VTables.GenerateClassData(theClass); } void CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { // First off, check whether we've already emitted the v-table and // associated stuff. llvm::GlobalVariable *VTable = GetAddrOfVTable(RD); if (VTable->hasInitializer()) return; llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); EmitVTableDefinition(VTable, Linkage, RD); if (RD->getNumVBases()) { if (!CGM.getTarget().getCXXABI().isMicrosoft()) { llvm::GlobalVariable *VTT = GetAddrOfVTT(RD); EmitVTTDefinition(VTT, Linkage, RD); } else { // FIXME: Emit vbtables here. } } // If this is the magic class __cxxabiv1::__fundamental_type_info, // we will emit the typeinfo for the fundamental types. This is the // same behaviour as GCC. const DeclContext *DC = RD->getDeclContext(); if (RD->getIdentifier() && RD->getIdentifier()->isStr("__fundamental_type_info") && isa(DC) && cast(DC)->getIdentifier() && cast(DC)->getIdentifier()->isStr("__cxxabiv1") && DC->getParent()->isTranslationUnit()) CGM.EmitFundamentalRTTIDescriptors(); } /// At this point in the translation unit, does it appear that can we /// rely on the vtable being defined elsewhere in the program? /// /// The response is really only definitive when called at the end of /// the translation unit. /// /// The only semantic restriction here is that the object file should /// not contain a v-table definition when that v-table is defined /// strongly elsewhere. Otherwise, we'd just like to avoid emitting /// v-tables when unnecessary. bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { assert(RD->isDynamicClass() && "Non dynamic classes have no VTable."); // If we have an explicit instantiation declaration (and not a // definition), the v-table is defined elsewhere. TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); if (TSK == TSK_ExplicitInstantiationDeclaration) return true; // Otherwise, if the class is an instantiated template, the // v-table must be defined here. if (TSK == TSK_ImplicitInstantiation || TSK == TSK_ExplicitInstantiationDefinition) return false; // Otherwise, if the class doesn't have a key function (possibly // anymore), the v-table must be defined here. const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); if (!keyFunction) return false; // Otherwise, if we don't have a definition of the key function, the // v-table must be defined somewhere else. return !keyFunction->hasBody(); } /// Given that we're currently at the end of the translation unit, and /// we've emitted a reference to the v-table for this class, should /// we define that v-table? static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, const CXXRecordDecl *RD) { // If we're building with optimization, we always emit v-tables // since that allows for virtual function calls to be devirtualized. // If the v-table is defined strongly elsewhere, this definition // will be emitted available_externally. // // However, we don't want to do this in -fapple-kext mode, because // kext mode does not permit devirtualization. if (CGM.getCodeGenOpts().OptimizationLevel && !CGM.getLangOpts().AppleKext) return true; return !CGM.getVTables().isVTableExternal(RD); } /// Given that at some point we emitted a reference to one or more /// v-tables, and that we are now at the end of the translation unit, /// decide whether we should emit them. void CodeGenModule::EmitDeferredVTables() { #ifndef NDEBUG // Remember the size of DeferredVTables, because we're going to assume // that this entire operation doesn't modify it. size_t savedSize = DeferredVTables.size(); #endif typedef std::vector::const_iterator const_iterator; for (const_iterator i = DeferredVTables.begin(), e = DeferredVTables.end(); i != e; ++i) { const CXXRecordDecl *RD = *i; if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) VTables.GenerateClassData(RD); } assert(savedSize == DeferredVTables.size() && "deferred extra v-tables during v-table emission?"); DeferredVTables.clear(); }