//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the internal per-function state used for llvm translation. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H #include "CGBuilder.h" #include "CGDebugInfo.h" #include "CGLoopInfo.h" #include "CGValue.h" #include "CodeGenModule.h" #include "CodeGenPGO.h" #include "EHScopeStack.h" #include "VarBypassDetector.h" #include "clang/AST/CharUnits.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExprOpenMP.h" #include "clang/AST/Type.h" #include "clang/Basic/ABI.h" #include "clang/Basic/CapturedStmt.h" #include "clang/Basic/OpenMPKinds.h" #include "clang/Basic/TargetInfo.h" #include "clang/Frontend/CodeGenOptions.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/SanitizerStats.h" namespace llvm { class BasicBlock; class LLVMContext; class MDNode; class Module; class SwitchInst; class Twine; class Value; class CallSite; } namespace clang { class ASTContext; class BlockDecl; class CXXDestructorDecl; class CXXForRangeStmt; class CXXTryStmt; class Decl; class LabelDecl; class EnumConstantDecl; class FunctionDecl; class FunctionProtoType; class LabelStmt; class ObjCContainerDecl; class ObjCInterfaceDecl; class ObjCIvarDecl; class ObjCMethodDecl; class ObjCImplementationDecl; class ObjCPropertyImplDecl; class TargetInfo; class VarDecl; class ObjCForCollectionStmt; class ObjCAtTryStmt; class ObjCAtThrowStmt; class ObjCAtSynchronizedStmt; class ObjCAutoreleasePoolStmt; namespace analyze_os_log { class OSLogBufferLayout; } namespace CodeGen { class CodeGenTypes; class CGCallee; class CGFunctionInfo; class CGRecordLayout; class CGBlockInfo; class CGCXXABI; class BlockByrefHelpers; class BlockByrefInfo; class BlockFlags; class BlockFieldFlags; class RegionCodeGenTy; class TargetCodeGenInfo; struct OMPTaskDataTy; struct CGCoroData; /// The kind of evaluation to perform on values of a particular /// type. Basically, is the code in CGExprScalar, CGExprComplex, or /// CGExprAgg? /// /// TODO: should vectors maybe be split out into their own thing? enum TypeEvaluationKind { TEK_Scalar, TEK_Complex, TEK_Aggregate }; #define LIST_SANITIZER_CHECKS \ SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ SANITIZER_CHECK(MissingReturn, missing_return, 0) \ SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) enum SanitizerHandler { #define SANITIZER_CHECK(Enum, Name, Version) Enum, LIST_SANITIZER_CHECKS #undef SANITIZER_CHECK }; /// Helper class with most of the code for saving a value for a /// conditional expression cleanup. struct DominatingLLVMValue { typedef llvm::PointerIntPair saved_type; /// Answer whether the given value needs extra work to be saved. static bool needsSaving(llvm::Value *value) { // If it's not an instruction, we don't need to save. if (!isa(value)) return false; // If it's an instruction in the entry block, we don't need to save. llvm::BasicBlock *block = cast(value)->getParent(); return (block != &block->getParent()->getEntryBlock()); } static saved_type save(CodeGenFunction &CGF, llvm::Value *value); static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); }; /// A partial specialization of DominatingValue for llvm::Values that /// might be llvm::Instructions. template struct DominatingPointer : DominatingLLVMValue { typedef T *type; static type restore(CodeGenFunction &CGF, saved_type value) { return static_cast(DominatingLLVMValue::restore(CGF, value)); } }; /// A specialization of DominatingValue for Address. template <> struct DominatingValue
{ typedef Address type; struct saved_type { DominatingLLVMValue::saved_type SavedValue; CharUnits Alignment; }; static bool needsSaving(type value) { return DominatingLLVMValue::needsSaving(value.getPointer()); } static saved_type save(CodeGenFunction &CGF, type value) { return { DominatingLLVMValue::save(CGF, value.getPointer()), value.getAlignment() }; } static type restore(CodeGenFunction &CGF, saved_type value) { return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), value.Alignment); } }; /// A specialization of DominatingValue for RValue. template <> struct DominatingValue { typedef RValue type; class saved_type { enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, AggregateAddress, ComplexAddress }; llvm::Value *Value; unsigned K : 3; unsigned Align : 29; saved_type(llvm::Value *v, Kind k, unsigned a = 0) : Value(v), K(k), Align(a) {} public: static bool needsSaving(RValue value); static saved_type save(CodeGenFunction &CGF, RValue value); RValue restore(CodeGenFunction &CGF); // implementations in CGCleanup.cpp }; static bool needsSaving(type value) { return saved_type::needsSaving(value); } static saved_type save(CodeGenFunction &CGF, type value) { return saved_type::save(CGF, value); } static type restore(CodeGenFunction &CGF, saved_type value) { return value.restore(CGF); } }; /// CodeGenFunction - This class organizes the per-function state that is used /// while generating LLVM code. class CodeGenFunction : public CodeGenTypeCache { CodeGenFunction(const CodeGenFunction &) = delete; void operator=(const CodeGenFunction &) = delete; friend class CGCXXABI; public: /// A jump destination is an abstract label, branching to which may /// require a jump out through normal cleanups. struct JumpDest { JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, unsigned Index) : Block(Block), ScopeDepth(Depth), Index(Index) {} bool isValid() const { return Block != nullptr; } llvm::BasicBlock *getBlock() const { return Block; } EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } unsigned getDestIndex() const { return Index; } // This should be used cautiously. void setScopeDepth(EHScopeStack::stable_iterator depth) { ScopeDepth = depth; } private: llvm::BasicBlock *Block; EHScopeStack::stable_iterator ScopeDepth; unsigned Index; }; CodeGenModule &CGM; // Per-module state. const TargetInfo &Target; typedef std::pair ComplexPairTy; LoopInfoStack LoopStack; CGBuilderTy Builder; // Stores variables for which we can't generate correct lifetime markers // because of jumps. VarBypassDetector Bypasses; // CodeGen lambda for loops and support for ordered clause typedef llvm::function_ref CodeGenLoopTy; typedef llvm::function_ref CodeGenOrderedTy; // Codegen lambda for loop bounds in worksharing loop constructs typedef llvm::function_ref( CodeGenFunction &, const OMPExecutableDirective &S)> CodeGenLoopBoundsTy; // Codegen lambda for loop bounds in dispatch-based loop implementation typedef llvm::function_ref( CodeGenFunction &, const OMPExecutableDirective &S, Address LB, Address UB)> CodeGenDispatchBoundsTy; /// CGBuilder insert helper. This function is called after an /// instruction is created using Builder. void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, llvm::BasicBlock::iterator InsertPt) const; /// CurFuncDecl - Holds the Decl for the current outermost /// non-closure context. const Decl *CurFuncDecl; /// CurCodeDecl - This is the inner-most code context, which includes blocks. const Decl *CurCodeDecl; const CGFunctionInfo *CurFnInfo; QualType FnRetTy; llvm::Function *CurFn = nullptr; // Holds coroutine data if the current function is a coroutine. We use a // wrapper to manage its lifetime, so that we don't have to define CGCoroData // in this header. struct CGCoroInfo { std::unique_ptr Data; CGCoroInfo(); ~CGCoroInfo(); }; CGCoroInfo CurCoro; bool isCoroutine() const { return CurCoro.Data != nullptr; } /// CurGD - The GlobalDecl for the current function being compiled. GlobalDecl CurGD; /// PrologueCleanupDepth - The cleanup depth enclosing all the /// cleanups associated with the parameters. EHScopeStack::stable_iterator PrologueCleanupDepth; /// ReturnBlock - Unified return block. JumpDest ReturnBlock; /// ReturnValue - The temporary alloca to hold the return /// value. This is invalid iff the function has no return value. Address ReturnValue = Address::invalid(); /// Return true if a label was seen in the current scope. bool hasLabelBeenSeenInCurrentScope() const { if (CurLexicalScope) return CurLexicalScope->hasLabels(); return !LabelMap.empty(); } /// AllocaInsertPoint - This is an instruction in the entry block before which /// we prefer to insert allocas. llvm::AssertingVH AllocaInsertPt; /// API for captured statement code generation. class CGCapturedStmtInfo { public: explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} explicit CGCapturedStmtInfo(const CapturedStmt &S, CapturedRegionKind K = CR_Default) : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { RecordDecl::field_iterator Field = S.getCapturedRecordDecl()->field_begin(); for (CapturedStmt::const_capture_iterator I = S.capture_begin(), E = S.capture_end(); I != E; ++I, ++Field) { if (I->capturesThis()) CXXThisFieldDecl = *Field; else if (I->capturesVariable()) CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; else if (I->capturesVariableByCopy()) CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; } } virtual ~CGCapturedStmtInfo(); CapturedRegionKind getKind() const { return Kind; } virtual void setContextValue(llvm::Value *V) { ThisValue = V; } // Retrieve the value of the context parameter. virtual llvm::Value *getContextValue() const { return ThisValue; } /// Lookup the captured field decl for a variable. virtual const FieldDecl *lookup(const VarDecl *VD) const { return CaptureFields.lookup(VD->getCanonicalDecl()); } bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } static bool classof(const CGCapturedStmtInfo *) { return true; } /// Emit the captured statement body. virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { CGF.incrementProfileCounter(S); CGF.EmitStmt(S); } /// Get the name of the capture helper. virtual StringRef getHelperName() const { return "__captured_stmt"; } private: /// The kind of captured statement being generated. CapturedRegionKind Kind; /// Keep the map between VarDecl and FieldDecl. llvm::SmallDenseMap CaptureFields; /// The base address of the captured record, passed in as the first /// argument of the parallel region function. llvm::Value *ThisValue; /// Captured 'this' type. FieldDecl *CXXThisFieldDecl; }; CGCapturedStmtInfo *CapturedStmtInfo = nullptr; /// RAII for correct setting/restoring of CapturedStmtInfo. class CGCapturedStmtRAII { private: CodeGenFunction &CGF; CGCapturedStmtInfo *PrevCapturedStmtInfo; public: CGCapturedStmtRAII(CodeGenFunction &CGF, CGCapturedStmtInfo *NewCapturedStmtInfo) : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { CGF.CapturedStmtInfo = NewCapturedStmtInfo; } ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } }; /// An abstract representation of regular/ObjC call/message targets. class AbstractCallee { /// The function declaration of the callee. const Decl *CalleeDecl; public: AbstractCallee() : CalleeDecl(nullptr) {} AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} bool hasFunctionDecl() const { return dyn_cast_or_null(CalleeDecl); } const Decl *getDecl() const { return CalleeDecl; } unsigned getNumParams() const { if (const auto *FD = dyn_cast(CalleeDecl)) return FD->getNumParams(); return cast(CalleeDecl)->param_size(); } const ParmVarDecl *getParamDecl(unsigned I) const { if (const auto *FD = dyn_cast(CalleeDecl)) return FD->getParamDecl(I); return *(cast(CalleeDecl)->param_begin() + I); } }; /// Sanitizers enabled for this function. SanitizerSet SanOpts; /// True if CodeGen currently emits code implementing sanitizer checks. bool IsSanitizerScope = false; /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. class SanitizerScope { CodeGenFunction *CGF; public: SanitizerScope(CodeGenFunction *CGF); ~SanitizerScope(); }; /// In C++, whether we are code generating a thunk. This controls whether we /// should emit cleanups. bool CurFuncIsThunk = false; /// In ARC, whether we should autorelease the return value. bool AutoreleaseResult = false; /// Whether we processed a Microsoft-style asm block during CodeGen. These can /// potentially set the return value. bool SawAsmBlock = false; const FunctionDecl *CurSEHParent = nullptr; /// True if the current function is an outlined SEH helper. This can be a /// finally block or filter expression. bool IsOutlinedSEHHelper = false; const CodeGen::CGBlockInfo *BlockInfo = nullptr; llvm::Value *BlockPointer = nullptr; llvm::DenseMap LambdaCaptureFields; FieldDecl *LambdaThisCaptureField = nullptr; /// A mapping from NRVO variables to the flags used to indicate /// when the NRVO has been applied to this variable. llvm::DenseMap NRVOFlags; EHScopeStack EHStack; llvm::SmallVector LifetimeExtendedCleanupStack; llvm::SmallVector SEHTryEpilogueStack; llvm::Instruction *CurrentFuncletPad = nullptr; class CallLifetimeEnd final : public EHScopeStack::Cleanup { llvm::Value *Addr; llvm::Value *Size; public: CallLifetimeEnd(Address addr, llvm::Value *size) : Addr(addr.getPointer()), Size(size) {} void Emit(CodeGenFunction &CGF, Flags flags) override { CGF.EmitLifetimeEnd(Size, Addr); } }; /// Header for data within LifetimeExtendedCleanupStack. struct LifetimeExtendedCleanupHeader { /// The size of the following cleanup object. unsigned Size; /// The kind of cleanup to push: a value from the CleanupKind enumeration. unsigned Kind : 31; /// Whether this is a conditional cleanup. unsigned IsConditional : 1; size_t getSize() const { return Size; } CleanupKind getKind() const { return (CleanupKind)Kind; } bool isConditional() const { return IsConditional; } }; /// i32s containing the indexes of the cleanup destinations. Address NormalCleanupDest = Address::invalid(); unsigned NextCleanupDestIndex = 1; /// FirstBlockInfo - The head of a singly-linked-list of block layouts. CGBlockInfo *FirstBlockInfo = nullptr; /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. llvm::BasicBlock *EHResumeBlock = nullptr; /// The exception slot. All landing pads write the current exception pointer /// into this alloca. llvm::Value *ExceptionSlot = nullptr; /// The selector slot. Under the MandatoryCleanup model, all landing pads /// write the current selector value into this alloca. llvm::AllocaInst *EHSelectorSlot = nullptr; /// A stack of exception code slots. Entering an __except block pushes a slot /// on the stack and leaving pops one. The __exception_code() intrinsic loads /// a value from the top of the stack. SmallVector SEHCodeSlotStack; /// Value returned by __exception_info intrinsic. llvm::Value *SEHInfo = nullptr; /// Emits a landing pad for the current EH stack. llvm::BasicBlock *EmitLandingPad(); llvm::BasicBlock *getInvokeDestImpl(); template typename DominatingValue::saved_type saveValueInCond(T value) { return DominatingValue::save(*this, value); } public: /// ObjCEHValueStack - Stack of Objective-C exception values, used for /// rethrows. SmallVector ObjCEHValueStack; /// A class controlling the emission of a finally block. class FinallyInfo { /// Where the catchall's edge through the cleanup should go. JumpDest RethrowDest; /// A function to call to enter the catch. llvm::Constant *BeginCatchFn; /// An i1 variable indicating whether or not the @finally is /// running for an exception. llvm::AllocaInst *ForEHVar; /// An i8* variable into which the exception pointer to rethrow /// has been saved. llvm::AllocaInst *SavedExnVar; public: void enter(CodeGenFunction &CGF, const Stmt *Finally, llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, llvm::Constant *rethrowFn); void exit(CodeGenFunction &CGF); }; /// Returns true inside SEH __try blocks. bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } /// Returns true while emitting a cleanuppad. bool isCleanupPadScope() const { return CurrentFuncletPad && isa(CurrentFuncletPad); } /// pushFullExprCleanup - Push a cleanup to be run at the end of the /// current full-expression. Safe against the possibility that /// we're currently inside a conditionally-evaluated expression. template void pushFullExprCleanup(CleanupKind kind, As... A) { // If we're not in a conditional branch, or if none of the // arguments requires saving, then use the unconditional cleanup. if (!isInConditionalBranch()) return EHStack.pushCleanup(kind, A...); // Stash values in a tuple so we can guarantee the order of saves. typedef std::tuple::saved_type...> SavedTuple; SavedTuple Saved{saveValueInCond(A)...}; typedef EHScopeStack::ConditionalCleanup CleanupType; EHStack.pushCleanupTuple(kind, Saved); initFullExprCleanup(); } /// Queue a cleanup to be pushed after finishing the current /// full-expression. template void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { if (!isInConditionalBranch()) return pushCleanupAfterFullExprImpl(Kind, Address::invalid(), A...); Address ActiveFlag = createCleanupActiveFlag(); assert(!DominatingValue
::needsSaving(ActiveFlag) && "cleanup active flag should never need saving"); typedef std::tuple::saved_type...> SavedTuple; SavedTuple Saved{saveValueInCond(A)...}; typedef EHScopeStack::ConditionalCleanup CleanupType; pushCleanupAfterFullExprImpl(Kind, ActiveFlag, Saved); } template void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, As... A) { LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, ActiveFlag.isValid()}; size_t OldSize = LifetimeExtendedCleanupStack.size(); LifetimeExtendedCleanupStack.resize( LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + (Header.IsConditional ? sizeof(ActiveFlag) : 0)); static_assert(sizeof(Header) % alignof(T) == 0, "Cleanup will be allocated on misaligned address"); char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; new (Buffer) LifetimeExtendedCleanupHeader(Header); new (Buffer + sizeof(Header)) T(A...); if (Header.IsConditional) new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); } /// Set up the last cleanup that was pushed as a conditional /// full-expression cleanup. void initFullExprCleanup() { initFullExprCleanupWithFlag(createCleanupActiveFlag()); } void initFullExprCleanupWithFlag(Address ActiveFlag); Address createCleanupActiveFlag(); /// PushDestructorCleanup - Push a cleanup to call the /// complete-object destructor of an object of the given type at the /// given address. Does nothing if T is not a C++ class type with a /// non-trivial destructor. void PushDestructorCleanup(QualType T, Address Addr); /// PushDestructorCleanup - Push a cleanup to call the /// complete-object variant of the given destructor on the object at /// the given address. void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); /// PopCleanupBlock - Will pop the cleanup entry on the stack and /// process all branch fixups. void PopCleanupBlock(bool FallThroughIsBranchThrough = false); /// DeactivateCleanupBlock - Deactivates the given cleanup block. /// The block cannot be reactivated. Pops it if it's the top of the /// stack. /// /// \param DominatingIP - An instruction which is known to /// dominate the current IP (if set) and which lies along /// all paths of execution between the current IP and the /// the point at which the cleanup comes into scope. void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *DominatingIP); /// ActivateCleanupBlock - Activates an initially-inactive cleanup. /// Cannot be used to resurrect a deactivated cleanup. /// /// \param DominatingIP - An instruction which is known to /// dominate the current IP (if set) and which lies along /// all paths of execution between the current IP and the /// the point at which the cleanup comes into scope. void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *DominatingIP); /// Enters a new scope for capturing cleanups, all of which /// will be executed once the scope is exited. class RunCleanupsScope { EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; size_t LifetimeExtendedCleanupStackSize; bool OldDidCallStackSave; protected: bool PerformCleanup; private: RunCleanupsScope(const RunCleanupsScope &) = delete; void operator=(const RunCleanupsScope &) = delete; protected: CodeGenFunction& CGF; public: /// Enter a new cleanup scope. explicit RunCleanupsScope(CodeGenFunction &CGF) : PerformCleanup(true), CGF(CGF) { CleanupStackDepth = CGF.EHStack.stable_begin(); LifetimeExtendedCleanupStackSize = CGF.LifetimeExtendedCleanupStack.size(); OldDidCallStackSave = CGF.DidCallStackSave; CGF.DidCallStackSave = false; OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; CGF.CurrentCleanupScopeDepth = CleanupStackDepth; } /// Exit this cleanup scope, emitting any accumulated cleanups. ~RunCleanupsScope() { if (PerformCleanup) ForceCleanup(); } /// Determine whether this scope requires any cleanups. bool requiresCleanups() const { return CGF.EHStack.stable_begin() != CleanupStackDepth; } /// Force the emission of cleanups now, instead of waiting /// until this object is destroyed. /// \param ValuesToReload - A list of values that need to be available at /// the insertion point after cleanup emission. If cleanup emission created /// a shared cleanup block, these value pointers will be rewritten. /// Otherwise, they not will be modified. void ForceCleanup(std::initializer_list ValuesToReload = {}) { assert(PerformCleanup && "Already forced cleanup"); CGF.DidCallStackSave = OldDidCallStackSave; CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, ValuesToReload); PerformCleanup = false; CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; } }; // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. EHScopeStack::stable_iterator CurrentCleanupScopeDepth = EHScopeStack::stable_end(); class LexicalScope : public RunCleanupsScope { SourceRange Range; SmallVector Labels; LexicalScope *ParentScope; LexicalScope(const LexicalScope &) = delete; void operator=(const LexicalScope &) = delete; public: /// Enter a new cleanup scope. explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { CGF.CurLexicalScope = this; if (CGDebugInfo *DI = CGF.getDebugInfo()) DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); } void addLabel(const LabelDecl *label) { assert(PerformCleanup && "adding label to dead scope?"); Labels.push_back(label); } /// Exit this cleanup scope, emitting any accumulated /// cleanups. ~LexicalScope() { if (CGDebugInfo *DI = CGF.getDebugInfo()) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); // If we should perform a cleanup, force them now. Note that // this ends the cleanup scope before rescoping any labels. if (PerformCleanup) { ApplyDebugLocation DL(CGF, Range.getEnd()); ForceCleanup(); } } /// Force the emission of cleanups now, instead of waiting /// until this object is destroyed. void ForceCleanup() { CGF.CurLexicalScope = ParentScope; RunCleanupsScope::ForceCleanup(); if (!Labels.empty()) rescopeLabels(); } bool hasLabels() const { return !Labels.empty(); } void rescopeLabels(); }; typedef llvm::DenseMap DeclMapTy; /// The class used to assign some variables some temporarily addresses. class OMPMapVars { DeclMapTy SavedLocals; DeclMapTy SavedTempAddresses; OMPMapVars(const OMPMapVars &) = delete; void operator=(const OMPMapVars &) = delete; public: explicit OMPMapVars() = default; ~OMPMapVars() { assert(SavedLocals.empty() && "Did not restored original addresses."); }; /// Sets the address of the variable \p LocalVD to be \p TempAddr in /// function \p CGF. /// \return true if at least one variable was set already, false otherwise. bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, Address TempAddr) { LocalVD = LocalVD->getCanonicalDecl(); // Only save it once. if (SavedLocals.count(LocalVD)) return false; // Copy the existing local entry to SavedLocals. auto it = CGF.LocalDeclMap.find(LocalVD); if (it != CGF.LocalDeclMap.end()) SavedLocals.try_emplace(LocalVD, it->second); else SavedLocals.try_emplace(LocalVD, Address::invalid()); // Generate the private entry. QualType VarTy = LocalVD->getType(); if (VarTy->isReferenceType()) { Address Temp = CGF.CreateMemTemp(VarTy); CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); TempAddr = Temp; } SavedTempAddresses.try_emplace(LocalVD, TempAddr); return true; } /// Applies new addresses to the list of the variables. /// \return true if at least one variable is using new address, false /// otherwise. bool apply(CodeGenFunction &CGF) { copyInto(SavedTempAddresses, CGF.LocalDeclMap); SavedTempAddresses.clear(); return !SavedLocals.empty(); } /// Restores original addresses of the variables. void restore(CodeGenFunction &CGF) { if (!SavedLocals.empty()) { copyInto(SavedLocals, CGF.LocalDeclMap); SavedLocals.clear(); } } private: /// Copy all the entries in the source map over the corresponding /// entries in the destination, which must exist. static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { for (auto &Pair : Src) { if (!Pair.second.isValid()) { Dest.erase(Pair.first); continue; } auto I = Dest.find(Pair.first); if (I != Dest.end()) I->second = Pair.second; else Dest.insert(Pair); } } }; /// The scope used to remap some variables as private in the OpenMP loop body /// (or other captured region emitted without outlining), and to restore old /// vars back on exit. class OMPPrivateScope : public RunCleanupsScope { OMPMapVars MappedVars; OMPPrivateScope(const OMPPrivateScope &) = delete; void operator=(const OMPPrivateScope &) = delete; public: /// Enter a new OpenMP private scope. explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} /// Registers \p LocalVD variable as a private and apply \p PrivateGen /// function for it to generate corresponding private variable. \p /// PrivateGen returns an address of the generated private variable. /// \return true if the variable is registered as private, false if it has /// been privatized already. bool addPrivate(const VarDecl *LocalVD, const llvm::function_ref PrivateGen) { assert(PerformCleanup && "adding private to dead scope"); return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); } /// Privatizes local variables previously registered as private. /// Registration is separate from the actual privatization to allow /// initializers use values of the original variables, not the private one. /// This is important, for example, if the private variable is a class /// variable initialized by a constructor that references other private /// variables. But at initialization original variables must be used, not /// private copies. /// \return true if at least one variable was privatized, false otherwise. bool Privatize() { return MappedVars.apply(CGF); } void ForceCleanup() { RunCleanupsScope::ForceCleanup(); MappedVars.restore(CGF); } /// Exit scope - all the mapped variables are restored. ~OMPPrivateScope() { if (PerformCleanup) ForceCleanup(); } /// Checks if the global variable is captured in current function. bool isGlobalVarCaptured(const VarDecl *VD) const { VD = VD->getCanonicalDecl(); return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; } }; /// Takes the old cleanup stack size and emits the cleanup blocks /// that have been added. void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list ValuesToReload = {}); /// Takes the old cleanup stack size and emits the cleanup blocks /// that have been added, then adds all lifetime-extended cleanups from /// the given position to the stack. void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, size_t OldLifetimeExtendedStackSize, std::initializer_list ValuesToReload = {}); void ResolveBranchFixups(llvm::BasicBlock *Target); /// The given basic block lies in the current EH scope, but may be a /// target of a potentially scope-crossing jump; get a stable handle /// to which we can perform this jump later. JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { return JumpDest(Target, EHStack.getInnermostNormalCleanup(), NextCleanupDestIndex++); } /// The given basic block lies in the current EH scope, but may be a /// target of a potentially scope-crossing jump; get a stable handle /// to which we can perform this jump later. JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { return getJumpDestInCurrentScope(createBasicBlock(Name)); } /// EmitBranchThroughCleanup - Emit a branch from the current insert /// block through the normal cleanup handling code (if any) and then /// on to \arg Dest. void EmitBranchThroughCleanup(JumpDest Dest); /// isObviouslyBranchWithoutCleanups - Return true if a branch to the /// specified destination obviously has no cleanups to run. 'false' is always /// a conservatively correct answer for this method. bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; /// popCatchScope - Pops the catch scope at the top of the EHScope /// stack, emitting any required code (other than the catch handlers /// themselves). void popCatchScope(); llvm::BasicBlock *getEHResumeBlock(bool isCleanup); llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); llvm::BasicBlock * getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); /// An object to manage conditionally-evaluated expressions. class ConditionalEvaluation { llvm::BasicBlock *StartBB; public: ConditionalEvaluation(CodeGenFunction &CGF) : StartBB(CGF.Builder.GetInsertBlock()) {} void begin(CodeGenFunction &CGF) { assert(CGF.OutermostConditional != this); if (!CGF.OutermostConditional) CGF.OutermostConditional = this; } void end(CodeGenFunction &CGF) { assert(CGF.OutermostConditional != nullptr); if (CGF.OutermostConditional == this) CGF.OutermostConditional = nullptr; } /// Returns a block which will be executed prior to each /// evaluation of the conditional code. llvm::BasicBlock *getStartingBlock() const { return StartBB; } }; /// isInConditionalBranch - Return true if we're currently emitting /// one branch or the other of a conditional expression. bool isInConditionalBranch() const { return OutermostConditional != nullptr; } void setBeforeOutermostConditional(llvm::Value *value, Address addr) { assert(isInConditionalBranch()); llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); store->setAlignment(addr.getAlignment().getQuantity()); } /// An RAII object to record that we're evaluating a statement /// expression. class StmtExprEvaluation { CodeGenFunction &CGF; /// We have to save the outermost conditional: cleanups in a /// statement expression aren't conditional just because the /// StmtExpr is. ConditionalEvaluation *SavedOutermostConditional; public: StmtExprEvaluation(CodeGenFunction &CGF) : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { CGF.OutermostConditional = nullptr; } ~StmtExprEvaluation() { CGF.OutermostConditional = SavedOutermostConditional; CGF.EnsureInsertPoint(); } }; /// An object which temporarily prevents a value from being /// destroyed by aggressive peephole optimizations that assume that /// all uses of a value have been realized in the IR. class PeepholeProtection { llvm::Instruction *Inst; friend class CodeGenFunction; public: PeepholeProtection() : Inst(nullptr) {} }; /// A non-RAII class containing all the information about a bound /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for /// this which makes individual mappings very simple; using this /// class directly is useful when you have a variable number of /// opaque values or don't want the RAII functionality for some /// reason. class OpaqueValueMappingData { const OpaqueValueExpr *OpaqueValue; bool BoundLValue; CodeGenFunction::PeepholeProtection Protection; OpaqueValueMappingData(const OpaqueValueExpr *ov, bool boundLValue) : OpaqueValue(ov), BoundLValue(boundLValue) {} public: OpaqueValueMappingData() : OpaqueValue(nullptr) {} static bool shouldBindAsLValue(const Expr *expr) { // gl-values should be bound as l-values for obvious reasons. // Records should be bound as l-values because IR generation // always keeps them in memory. Expressions of function type // act exactly like l-values but are formally required to be // r-values in C. return expr->isGLValue() || expr->getType()->isFunctionType() || hasAggregateEvaluationKind(expr->getType()); } static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const Expr *e) { if (shouldBindAsLValue(ov)) return bind(CGF, ov, CGF.EmitLValue(e)); return bind(CGF, ov, CGF.EmitAnyExpr(e)); } static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv) { assert(shouldBindAsLValue(ov)); CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); return OpaqueValueMappingData(ov, true); } static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv) { assert(!shouldBindAsLValue(ov)); CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); OpaqueValueMappingData data(ov, false); // Work around an extremely aggressive peephole optimization in // EmitScalarConversion which assumes that all other uses of a // value are extant. data.Protection = CGF.protectFromPeepholes(rv); return data; } bool isValid() const { return OpaqueValue != nullptr; } void clear() { OpaqueValue = nullptr; } void unbind(CodeGenFunction &CGF) { assert(OpaqueValue && "no data to unbind!"); if (BoundLValue) { CGF.OpaqueLValues.erase(OpaqueValue); } else { CGF.OpaqueRValues.erase(OpaqueValue); CGF.unprotectFromPeepholes(Protection); } } }; /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. class OpaqueValueMapping { CodeGenFunction &CGF; OpaqueValueMappingData Data; public: static bool shouldBindAsLValue(const Expr *expr) { return OpaqueValueMappingData::shouldBindAsLValue(expr); } /// Build the opaque value mapping for the given conditional /// operator if it's the GNU ?: extension. This is a common /// enough pattern that the convenience operator is really /// helpful. /// OpaqueValueMapping(CodeGenFunction &CGF, const AbstractConditionalOperator *op) : CGF(CGF) { if (isa(op)) // Leave Data empty. return; const BinaryConditionalOperator *e = cast(op); Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), e->getCommon()); } /// Build the opaque value mapping for an OpaqueValueExpr whose source /// expression is set to the expression the OVE represents. OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) : CGF(CGF) { if (OV) { assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " "for OVE with no source expression"); Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); } } OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, LValue lvalue) : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { } OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, RValue rvalue) : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { } void pop() { Data.unbind(CGF); Data.clear(); } ~OpaqueValueMapping() { if (Data.isValid()) Data.unbind(CGF); } }; private: CGDebugInfo *DebugInfo; bool DisableDebugInfo = false; /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid /// calling llvm.stacksave for multiple VLAs in the same scope. bool DidCallStackSave = false; /// IndirectBranch - The first time an indirect goto is seen we create a block /// with an indirect branch. Every time we see the address of a label taken, /// we add the label to the indirect goto. Every subsequent indirect goto is /// codegen'd as a jump to the IndirectBranch's basic block. llvm::IndirectBrInst *IndirectBranch = nullptr; /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C /// decls. DeclMapTy LocalDeclMap; // Keep track of the cleanups for callee-destructed parameters pushed to the // cleanup stack so that they can be deactivated later. llvm::DenseMap CalleeDestructedParamCleanups; /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this /// will contain a mapping from said ParmVarDecl to its implicit "object_size" /// parameter. llvm::SmallDenseMap SizeArguments; /// Track escaped local variables with auto storage. Used during SEH /// outlining to produce a call to llvm.localescape. llvm::DenseMap EscapedLocals; /// LabelMap - This keeps track of the LLVM basic block for each C label. llvm::DenseMap LabelMap; // BreakContinueStack - This keeps track of where break and continue // statements should jump to. struct BreakContinue { BreakContinue(JumpDest Break, JumpDest Continue) : BreakBlock(Break), ContinueBlock(Continue) {} JumpDest BreakBlock; JumpDest ContinueBlock; }; SmallVector BreakContinueStack; /// Handles cancellation exit points in OpenMP-related constructs. class OpenMPCancelExitStack { /// Tracks cancellation exit point and join point for cancel-related exit /// and normal exit. struct CancelExit { CancelExit() = default; CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, JumpDest ContBlock) : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} OpenMPDirectiveKind Kind = OMPD_unknown; /// true if the exit block has been emitted already by the special /// emitExit() call, false if the default codegen is used. bool HasBeenEmitted = false; JumpDest ExitBlock; JumpDest ContBlock; }; SmallVector Stack; public: OpenMPCancelExitStack() : Stack(1) {} ~OpenMPCancelExitStack() = default; /// Fetches the exit block for the current OpenMP construct. JumpDest getExitBlock() const { return Stack.back().ExitBlock; } /// Emits exit block with special codegen procedure specific for the related /// OpenMP construct + emits code for normal construct cleanup. void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, const llvm::function_ref CodeGen) { if (Stack.back().Kind == Kind && getExitBlock().isValid()) { assert(CGF.getOMPCancelDestination(Kind).isValid()); assert(CGF.HaveInsertPoint()); assert(!Stack.back().HasBeenEmitted); auto IP = CGF.Builder.saveAndClearIP(); CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); CodeGen(CGF); CGF.EmitBranch(Stack.back().ContBlock.getBlock()); CGF.Builder.restoreIP(IP); Stack.back().HasBeenEmitted = true; } CodeGen(CGF); } /// Enter the cancel supporting \a Kind construct. /// \param Kind OpenMP directive that supports cancel constructs. /// \param HasCancel true, if the construct has inner cancel directive, /// false otherwise. void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { Stack.push_back({Kind, HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") : JumpDest(), HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") : JumpDest()}); } /// Emits default exit point for the cancel construct (if the special one /// has not be used) + join point for cancel/normal exits. void exit(CodeGenFunction &CGF) { if (getExitBlock().isValid()) { assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); bool HaveIP = CGF.HaveInsertPoint(); if (!Stack.back().HasBeenEmitted) { if (HaveIP) CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); } CGF.EmitBlock(Stack.back().ContBlock.getBlock()); if (!HaveIP) { CGF.Builder.CreateUnreachable(); CGF.Builder.ClearInsertionPoint(); } } Stack.pop_back(); } }; OpenMPCancelExitStack OMPCancelStack; CodeGenPGO PGO; /// Calculate branch weights appropriate for PGO data llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); llvm::MDNode *createProfileWeights(ArrayRef Weights); llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, uint64_t LoopCount); public: /// Increment the profiler's counter for the given statement by \p StepV. /// If \p StepV is null, the default increment is 1. void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { if (CGM.getCodeGenOpts().hasProfileClangInstr()) PGO.emitCounterIncrement(Builder, S, StepV); PGO.setCurrentStmt(S); } /// Get the profiler's count for the given statement. uint64_t getProfileCount(const Stmt *S) { Optional Count = PGO.getStmtCount(S); if (!Count.hasValue()) return 0; return *Count; } /// Set the profiler's current count. void setCurrentProfileCount(uint64_t Count) { PGO.setCurrentRegionCount(Count); } /// Get the profiler's current count. This is generally the count for the most /// recently incremented counter. uint64_t getCurrentProfileCount() { return PGO.getCurrentRegionCount(); } private: /// SwitchInsn - This is nearest current switch instruction. It is null if /// current context is not in a switch. llvm::SwitchInst *SwitchInsn = nullptr; /// The branch weights of SwitchInsn when doing instrumentation based PGO. SmallVector *SwitchWeights = nullptr; /// CaseRangeBlock - This block holds if condition check for last case /// statement range in current switch instruction. llvm::BasicBlock *CaseRangeBlock = nullptr; /// OpaqueLValues - Keeps track of the current set of opaque value /// expressions. llvm::DenseMap OpaqueLValues; llvm::DenseMap OpaqueRValues; // VLASizeMap - This keeps track of the associated size for each VLA type. // We track this by the size expression rather than the type itself because // in certain situations, like a const qualifier applied to an VLA typedef, // multiple VLA types can share the same size expression. // FIXME: Maybe this could be a stack of maps that is pushed/popped as we // enter/leave scopes. llvm::DenseMap VLASizeMap; /// A block containing a single 'unreachable' instruction. Created /// lazily by getUnreachableBlock(). llvm::BasicBlock *UnreachableBlock = nullptr; /// Counts of the number return expressions in the function. unsigned NumReturnExprs = 0; /// Count the number of simple (constant) return expressions in the function. unsigned NumSimpleReturnExprs = 0; /// The last regular (non-return) debug location (breakpoint) in the function. SourceLocation LastStopPoint; public: /// A scope within which we are constructing the fields of an object which /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. class FieldConstructionScope { public: FieldConstructionScope(CodeGenFunction &CGF, Address This) : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { CGF.CXXDefaultInitExprThis = This; } ~FieldConstructionScope() { CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; } private: CodeGenFunction &CGF; Address OldCXXDefaultInitExprThis; }; /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' /// is overridden to be the object under construction. class CXXDefaultInitExprScope { public: CXXDefaultInitExprScope(CodeGenFunction &CGF) : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), OldCXXThisAlignment(CGF.CXXThisAlignment) { CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); } ~CXXDefaultInitExprScope() { CGF.CXXThisValue = OldCXXThisValue; CGF.CXXThisAlignment = OldCXXThisAlignment; } public: CodeGenFunction &CGF; llvm::Value *OldCXXThisValue; CharUnits OldCXXThisAlignment; }; /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the /// current loop index is overridden. class ArrayInitLoopExprScope { public: ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { CGF.ArrayInitIndex = Index; } ~ArrayInitLoopExprScope() { CGF.ArrayInitIndex = OldArrayInitIndex; } private: CodeGenFunction &CGF; llvm::Value *OldArrayInitIndex; }; class InlinedInheritingConstructorScope { public: InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), OldCurCodeDecl(CGF.CurCodeDecl), OldCXXABIThisDecl(CGF.CXXABIThisDecl), OldCXXABIThisValue(CGF.CXXABIThisValue), OldCXXThisValue(CGF.CXXThisValue), OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), OldCXXThisAlignment(CGF.CXXThisAlignment), OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), OldCXXInheritedCtorInitExprArgs( std::move(CGF.CXXInheritedCtorInitExprArgs)) { CGF.CurGD = GD; CGF.CurFuncDecl = CGF.CurCodeDecl = cast(GD.getDecl()); CGF.CXXABIThisDecl = nullptr; CGF.CXXABIThisValue = nullptr; CGF.CXXThisValue = nullptr; CGF.CXXABIThisAlignment = CharUnits(); CGF.CXXThisAlignment = CharUnits(); CGF.ReturnValue = Address::invalid(); CGF.FnRetTy = QualType(); CGF.CXXInheritedCtorInitExprArgs.clear(); } ~InlinedInheritingConstructorScope() { CGF.CurGD = OldCurGD; CGF.CurFuncDecl = OldCurFuncDecl; CGF.CurCodeDecl = OldCurCodeDecl; CGF.CXXABIThisDecl = OldCXXABIThisDecl; CGF.CXXABIThisValue = OldCXXABIThisValue; CGF.CXXThisValue = OldCXXThisValue; CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; CGF.CXXThisAlignment = OldCXXThisAlignment; CGF.ReturnValue = OldReturnValue; CGF.FnRetTy = OldFnRetTy; CGF.CXXInheritedCtorInitExprArgs = std::move(OldCXXInheritedCtorInitExprArgs); } private: CodeGenFunction &CGF; GlobalDecl OldCurGD; const Decl *OldCurFuncDecl; const Decl *OldCurCodeDecl; ImplicitParamDecl *OldCXXABIThisDecl; llvm::Value *OldCXXABIThisValue; llvm::Value *OldCXXThisValue; CharUnits OldCXXABIThisAlignment; CharUnits OldCXXThisAlignment; Address OldReturnValue; QualType OldFnRetTy; CallArgList OldCXXInheritedCtorInitExprArgs; }; private: /// CXXThisDecl - When generating code for a C++ member function, /// this will hold the implicit 'this' declaration. ImplicitParamDecl *CXXABIThisDecl = nullptr; llvm::Value *CXXABIThisValue = nullptr; llvm::Value *CXXThisValue = nullptr; CharUnits CXXABIThisAlignment; CharUnits CXXThisAlignment; /// The value of 'this' to use when evaluating CXXDefaultInitExprs within /// this expression. Address CXXDefaultInitExprThis = Address::invalid(); /// The current array initialization index when evaluating an /// ArrayInitIndexExpr within an ArrayInitLoopExpr. llvm::Value *ArrayInitIndex = nullptr; /// The values of function arguments to use when evaluating /// CXXInheritedCtorInitExprs within this context. CallArgList CXXInheritedCtorInitExprArgs; /// CXXStructorImplicitParamDecl - When generating code for a constructor or /// destructor, this will hold the implicit argument (e.g. VTT). ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; llvm::Value *CXXStructorImplicitParamValue = nullptr; /// OutermostConditional - Points to the outermost active /// conditional control. This is used so that we know if a /// temporary should be destroyed conditionally. ConditionalEvaluation *OutermostConditional = nullptr; /// The current lexical scope. LexicalScope *CurLexicalScope = nullptr; /// The current source location that should be used for exception /// handling code. SourceLocation CurEHLocation; /// BlockByrefInfos - For each __block variable, contains /// information about the layout of the variable. llvm::DenseMap BlockByrefInfos; /// Used by -fsanitize=nullability-return to determine whether the return /// value can be checked. llvm::Value *RetValNullabilityPrecondition = nullptr; /// Check if -fsanitize=nullability-return instrumentation is required for /// this function. bool requiresReturnValueNullabilityCheck() const { return RetValNullabilityPrecondition; } /// Used to store precise source locations for return statements by the /// runtime return value checks. Address ReturnLocation = Address::invalid(); /// Check if the return value of this function requires sanitization. bool requiresReturnValueCheck() const { return requiresReturnValueNullabilityCheck() || (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && CurCodeDecl->getAttr()); } llvm::BasicBlock *TerminateLandingPad = nullptr; llvm::BasicBlock *TerminateHandler = nullptr; llvm::BasicBlock *TrapBB = nullptr; /// Terminate funclets keyed by parent funclet pad. llvm::MapVector TerminateFunclets; /// Largest vector width used in ths function. Will be used to create a /// function attribute. unsigned LargestVectorWidth = 0; /// True if we need emit the life-time markers. const bool ShouldEmitLifetimeMarkers; /// Add OpenCL kernel arg metadata and the kernel attribute metadata to /// the function metadata. void EmitOpenCLKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); public: CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); ~CodeGenFunction(); CodeGenTypes &getTypes() const { return CGM.getTypes(); } ASTContext &getContext() const { return CGM.getContext(); } CGDebugInfo *getDebugInfo() { if (DisableDebugInfo) return nullptr; return DebugInfo; } void disableDebugInfo() { DisableDebugInfo = true; } void enableDebugInfo() { DisableDebugInfo = false; } bool shouldUseFusedARCCalls() { return CGM.getCodeGenOpts().OptimizationLevel == 0; } const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } /// Returns a pointer to the function's exception object and selector slot, /// which is assigned in every landing pad. Address getExceptionSlot(); Address getEHSelectorSlot(); /// Returns the contents of the function's exception object and selector /// slots. llvm::Value *getExceptionFromSlot(); llvm::Value *getSelectorFromSlot(); Address getNormalCleanupDestSlot(); llvm::BasicBlock *getUnreachableBlock() { if (!UnreachableBlock) { UnreachableBlock = createBasicBlock("unreachable"); new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); } return UnreachableBlock; } llvm::BasicBlock *getInvokeDest() { if (!EHStack.requiresLandingPad()) return nullptr; return getInvokeDestImpl(); } bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } const TargetInfo &getTarget() const { return Target; } llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } const TargetCodeGenInfo &getTargetHooks() const { return CGM.getTargetCodeGenInfo(); } //===--------------------------------------------------------------------===// // Cleanups //===--------------------------------------------------------------------===// typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, Address arrayEndPointer, QualType elementType, CharUnits elementAlignment, Destroyer *destroyer); void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, llvm::Value *arrayEnd, QualType elementType, CharUnits elementAlignment, Destroyer *destroyer); void pushDestroy(QualType::DestructionKind dtorKind, Address addr, QualType type); void pushEHDestroy(QualType::DestructionKind dtorKind, Address addr, QualType type); void pushDestroy(CleanupKind kind, Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray); void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray); void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, llvm::Value *CompletePtr, QualType ElementType); void pushStackRestore(CleanupKind kind, Address SPMem); void emitDestroy(Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray); llvm::Function *generateDestroyHelper(Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray, const VarDecl *VD); void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup); Destroyer *getDestroyer(QualType::DestructionKind destructionKind); /// Determines whether an EH cleanup is required to destroy a type /// with the given destruction kind. bool needsEHCleanup(QualType::DestructionKind kind) { switch (kind) { case QualType::DK_none: return false; case QualType::DK_cxx_destructor: case QualType::DK_objc_weak_lifetime: case QualType::DK_nontrivial_c_struct: return getLangOpts().Exceptions; case QualType::DK_objc_strong_lifetime: return getLangOpts().Exceptions && CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; } llvm_unreachable("bad destruction kind"); } CleanupKind getCleanupKind(QualType::DestructionKind kind) { return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); } //===--------------------------------------------------------------------===// // Objective-C //===--------------------------------------------------------------------===// void GenerateObjCMethod(const ObjCMethodDecl *OMD); void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); /// GenerateObjCGetter - Synthesize an Objective-C property getter function. void GenerateObjCGetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID); void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, const ObjCPropertyImplDecl *propImpl, const ObjCMethodDecl *GetterMothodDecl, llvm::Constant *AtomicHelperFn); void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, ObjCMethodDecl *MD, bool ctor); /// GenerateObjCSetter - Synthesize an Objective-C property setter function /// for the given property. void GenerateObjCSetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID); void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, const ObjCPropertyImplDecl *propImpl, llvm::Constant *AtomicHelperFn); //===--------------------------------------------------------------------===// // Block Bits //===--------------------------------------------------------------------===// /// Emit block literal. /// \return an LLVM value which is a pointer to a struct which contains /// information about the block, including the block invoke function, the /// captured variables, etc. llvm::Value *EmitBlockLiteral(const BlockExpr *); static void destroyBlockInfos(CGBlockInfo *info); llvm::Function *GenerateBlockFunction(GlobalDecl GD, const CGBlockInfo &Info, const DeclMapTy &ldm, bool IsLambdaConversionToBlock, bool BuildGlobalBlock); llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( const ObjCPropertyImplDecl *PID); llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( const ObjCPropertyImplDecl *PID); llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); class AutoVarEmission; void emitByrefStructureInit(const AutoVarEmission &emission); /// Enter a cleanup to destroy a __block variable. Note that this /// cleanup should be a no-op if the variable hasn't left the stack /// yet; if a cleanup is required for the variable itself, that needs /// to be done externally. /// /// \param Kind Cleanup kind. /// /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block /// structure that will be passed to _Block_object_dispose. When /// \p LoadBlockVarAddr is true, the address of the field of the block /// structure that holds the address of the __block structure. /// /// \param Flags The flag that will be passed to _Block_object_dispose. /// /// \param LoadBlockVarAddr Indicates whether we need to emit a load from /// \p Addr to get the address of the __block structure. void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, bool LoadBlockVarAddr); void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, llvm::Value *ptr); Address LoadBlockStruct(); Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); /// BuildBlockByrefAddress - Computes the location of the /// data in a variable which is declared as __block. Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, bool followForward = true); Address emitBlockByrefAddress(Address baseAddr, const BlockByrefInfo &info, bool followForward, const llvm::Twine &name); const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); void GenerateCode(GlobalDecl GD, llvm::Function *Fn, const CGFunctionInfo &FnInfo); /// Emit code for the start of a function. /// \param Loc The location to be associated with the function. /// \param StartLoc The location of the function body. void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc = SourceLocation(), SourceLocation StartLoc = SourceLocation()); static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); void EmitConstructorBody(FunctionArgList &Args); void EmitDestructorBody(FunctionArgList &Args); void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, CallArgList &CallArgs); void EmitLambdaBlockInvokeBody(); void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); void EmitAsanPrologueOrEpilogue(bool Prologue); /// Emit the unified return block, trying to avoid its emission when /// possible. /// \return The debug location of the user written return statement if the /// return block is is avoided. llvm::DebugLoc EmitReturnBlock(); /// FinishFunction - Complete IR generation of the current function. It is /// legal to call this function even if there is no current insertion point. void FinishFunction(SourceLocation EndLoc=SourceLocation()); void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo, bool IsUnprototyped); void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk, bool IsUnprototyped); void FinishThunk(); /// Emit a musttail call for a thunk with a potentially adjusted this pointer. void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, llvm::Value *Callee); /// Generate a thunk for the given method. void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk, bool IsUnprototyped); llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, GlobalDecl GD, const ThunkInfo &Thunk); void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, FunctionArgList &Args); void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); /// Struct with all information about dynamic [sub]class needed to set vptr. struct VPtr { BaseSubobject Base; const CXXRecordDecl *NearestVBase; CharUnits OffsetFromNearestVBase; const CXXRecordDecl *VTableClass; }; /// Initialize the vtable pointer of the given subobject. void InitializeVTablePointer(const VPtr &vptr); typedef llvm::SmallVector VPtrsVector; typedef llvm::SmallPtrSet VisitedVirtualBasesSetTy; VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, CharUnits OffsetFromNearestVBase, bool BaseIsNonVirtualPrimaryBase, const CXXRecordDecl *VTableClass, VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); /// GetVTablePtr - Return the Value of the vtable pointer member pointed /// to by This. llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, const CXXRecordDecl *VTableClass); enum CFITypeCheckKind { CFITCK_VCall, CFITCK_NVCall, CFITCK_DerivedCast, CFITCK_UnrelatedCast, CFITCK_ICall, CFITCK_NVMFCall, CFITCK_VMFCall, }; /// Derived is the presumed address of an object of type T after a /// cast. If T is a polymorphic class type, emit a check that the virtual /// table for Derived belongs to a class derived from T. void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, bool MayBeNull, CFITypeCheckKind TCK, SourceLocation Loc); /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. /// If vptr CFI is enabled, emit a check that VTable is valid. void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, CFITypeCheckKind TCK, SourceLocation Loc); /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for /// RD using llvm.type.test. void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, CFITypeCheckKind TCK, SourceLocation Loc); /// If whole-program virtual table optimization is enabled, emit an assumption /// that VTable is a member of RD's type identifier. Or, if vptr CFI is /// enabled, emit a check that VTable is a member of RD's type identifier. void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, llvm::Value *VTable, SourceLocation Loc); /// Returns whether we should perform a type checked load when loading a /// virtual function for virtual calls to members of RD. This is generally /// true when both vcall CFI and whole-program-vtables are enabled. bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); /// Emit a type checked load from the given vtable. llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset); /// EnterDtorCleanups - Enter the cleanups necessary to complete the /// given phase of destruction for a destructor. The end result /// should call destructors on members and base classes in reverse /// order of their construction. void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); /// ShouldInstrumentFunction - Return true if the current function should be /// instrumented with __cyg_profile_func_* calls bool ShouldInstrumentFunction(); /// ShouldXRayInstrument - Return true if the current function should be /// instrumented with XRay nop sleds. bool ShouldXRayInstrumentFunction() const; /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit /// XRay custom event handling calls. bool AlwaysEmitXRayCustomEvents() const; /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit /// XRay typed event handling calls. bool AlwaysEmitXRayTypedEvents() const; /// Encode an address into a form suitable for use in a function prologue. llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, llvm::Constant *Addr); /// Decode an address used in a function prologue, encoded by \c /// EncodeAddrForUseInPrologue. llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, llvm::Value *EncodedAddr); /// EmitFunctionProlog - Emit the target specific LLVM code to load the /// arguments for the given function. This is also responsible for naming the /// LLVM function arguments. void EmitFunctionProlog(const CGFunctionInfo &FI, llvm::Function *Fn, const FunctionArgList &Args); /// EmitFunctionEpilog - Emit the target specific LLVM code to return the /// given temporary. void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, SourceLocation EndLoc); /// Emit a test that checks if the return value \p RV is nonnull. void EmitReturnValueCheck(llvm::Value *RV); /// EmitStartEHSpec - Emit the start of the exception spec. void EmitStartEHSpec(const Decl *D); /// EmitEndEHSpec - Emit the end of the exception spec. void EmitEndEHSpec(const Decl *D); /// getTerminateLandingPad - Return a landing pad that just calls terminate. llvm::BasicBlock *getTerminateLandingPad(); /// getTerminateLandingPad - Return a cleanup funclet that just calls /// terminate. llvm::BasicBlock *getTerminateFunclet(); /// getTerminateHandler - Return a handler (not a landing pad, just /// a catch handler) that just calls terminate. This is used when /// a terminate scope encloses a try. llvm::BasicBlock *getTerminateHandler(); llvm::Type *ConvertTypeForMem(QualType T); llvm::Type *ConvertType(QualType T); llvm::Type *ConvertType(const TypeDecl *T) { return ConvertType(getContext().getTypeDeclType(T)); } /// LoadObjCSelf - Load the value of self. This function is only valid while /// generating code for an Objective-C method. llvm::Value *LoadObjCSelf(); /// TypeOfSelfObject - Return type of object that this self represents. QualType TypeOfSelfObject(); /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. static TypeEvaluationKind getEvaluationKind(QualType T); static bool hasScalarEvaluationKind(QualType T) { return getEvaluationKind(T) == TEK_Scalar; } static bool hasAggregateEvaluationKind(QualType T) { return getEvaluationKind(T) == TEK_Aggregate; } /// createBasicBlock - Create an LLVM basic block. llvm::BasicBlock *createBasicBlock(const Twine &name = "", llvm::Function *parent = nullptr, llvm::BasicBlock *before = nullptr) { return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); } /// getBasicBlockForLabel - Return the LLVM basicblock that the specified /// label maps to. JumpDest getJumpDestForLabel(const LabelDecl *S); /// SimplifyForwardingBlocks - If the given basic block is only a branch to /// another basic block, simplify it. This assumes that no other code could /// potentially reference the basic block. void SimplifyForwardingBlocks(llvm::BasicBlock *BB); /// EmitBlock - Emit the given block \arg BB and set it as the insert point, /// adding a fall-through branch from the current insert block if /// necessary. It is legal to call this function even if there is no current /// insertion point. /// /// IsFinished - If true, indicates that the caller has finished emitting /// branches to the given block and does not expect to emit code into it. This /// means the block can be ignored if it is unreachable. void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); /// EmitBlockAfterUses - Emit the given block somewhere hopefully /// near its uses, and leave the insertion point in it. void EmitBlockAfterUses(llvm::BasicBlock *BB); /// EmitBranch - Emit a branch to the specified basic block from the current /// insert block, taking care to avoid creation of branches from dummy /// blocks. It is legal to call this function even if there is no current /// insertion point. /// /// This function clears the current insertion point. The caller should follow /// calls to this function with calls to Emit*Block prior to generation new /// code. void EmitBranch(llvm::BasicBlock *Block); /// HaveInsertPoint - True if an insertion point is defined. If not, this /// indicates that the current code being emitted is unreachable. bool HaveInsertPoint() const { return Builder.GetInsertBlock() != nullptr; } /// EnsureInsertPoint - Ensure that an insertion point is defined so that /// emitted IR has a place to go. Note that by definition, if this function /// creates a block then that block is unreachable; callers may do better to /// detect when no insertion point is defined and simply skip IR generation. void EnsureInsertPoint() { if (!HaveInsertPoint()) EmitBlock(createBasicBlock()); } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified stmt yet. void ErrorUnsupported(const Stmt *S, const char *Type); //===--------------------------------------------------------------------===// // Helpers //===--------------------------------------------------------------------===// LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source = AlignmentSource::Type) { return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); } LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); } LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, AlignmentSource Source = AlignmentSource::Type) { return LValue::MakeAddr(Address(V, Alignment), T, getContext(), LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); } LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, TBAAInfo); } LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); CharUnits getNaturalTypeAlignment(QualType T, LValueBaseInfo *BaseInfo = nullptr, TBAAAccessInfo *TBAAInfo = nullptr, bool forPointeeType = false); CharUnits getNaturalPointeeTypeAlignment(QualType T, LValueBaseInfo *BaseInfo = nullptr, TBAAAccessInfo *TBAAInfo = nullptr); Address EmitLoadOfReference(LValue RefLVal, LValueBaseInfo *PointeeBaseInfo = nullptr, TBAAAccessInfo *PointeeTBAAInfo = nullptr); LValue EmitLoadOfReferenceLValue(LValue RefLVal); LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, AlignmentSource Source = AlignmentSource::Type) { LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), CGM.getTBAAAccessInfo(RefTy)); return EmitLoadOfReferenceLValue(RefLVal); } Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, LValueBaseInfo *BaseInfo = nullptr, TBAAAccessInfo *TBAAInfo = nullptr); LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); /// CreateTempAlloca - This creates an alloca and inserts it into the entry /// block if \p ArraySize is nullptr, otherwise inserts it at the current /// insertion point of the builder. The caller is responsible for setting an /// appropriate alignment on /// the alloca. /// /// \p ArraySize is the number of array elements to be allocated if it /// is not nullptr. /// /// LangAS::Default is the address space of pointers to local variables and /// temporaries, as exposed in the source language. In certain /// configurations, this is not the same as the alloca address space, and a /// cast is needed to lift the pointer from the alloca AS into /// LangAS::Default. This can happen when the target uses a restricted /// address space for the stack but the source language requires /// LangAS::Default to be a generic address space. The latter condition is /// common for most programming languages; OpenCL is an exception in that /// LangAS::Default is the private address space, which naturally maps /// to the stack. /// /// Because the address of a temporary is often exposed to the program in /// various ways, this function will perform the cast. The original alloca /// instruction is returned through \p Alloca if it is not nullptr. /// /// The cast is not performaed in CreateTempAllocaWithoutCast. This is /// more efficient if the caller knows that the address will not be exposed. llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", llvm::Value *ArraySize = nullptr); Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, const Twine &Name = "tmp", llvm::Value *ArraySize = nullptr, Address *Alloca = nullptr); Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, const Twine &Name = "tmp", llvm::Value *ArraySize = nullptr); /// CreateDefaultAlignedTempAlloca - This creates an alloca with the /// default ABI alignment of the given LLVM type. /// /// IMPORTANT NOTE: This is *not* generally the right alignment for /// any given AST type that happens to have been lowered to the /// given IR type. This should only ever be used for function-local, /// IR-driven manipulations like saving and restoring a value. Do /// not hand this address off to arbitrary IRGen routines, and especially /// do not pass it as an argument to a function that might expect a /// properly ABI-aligned value. Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp"); /// InitTempAlloca - Provide an initial value for the given alloca which /// will be observable at all locations in the function. /// /// The address should be something that was returned from one of /// the CreateTempAlloca or CreateMemTemp routines, and the /// initializer must be valid in the entry block (i.e. it must /// either be a constant or an argument value). void InitTempAlloca(Address Alloca, llvm::Value *Value); /// CreateIRTemp - Create a temporary IR object of the given type, with /// appropriate alignment. This routine should only be used when an temporary /// value needs to be stored into an alloca (for example, to avoid explicit /// PHI construction), but the type is the IR type, not the type appropriate /// for storing in memory. /// /// That is, this is exactly equivalent to CreateMemTemp, but calling /// ConvertType instead of ConvertTypeForMem. Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); /// CreateMemTemp - Create a temporary memory object of the given type, with /// appropriate alignmen and cast it to the default address space. Returns /// the original alloca instruction by \p Alloca if it is not nullptr. Address CreateMemTemp(QualType T, const Twine &Name = "tmp", Address *Alloca = nullptr); Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", Address *Alloca = nullptr); /// CreateMemTemp - Create a temporary memory object of the given type, with /// appropriate alignmen without casting it to the default address space. Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); Address CreateMemTempWithoutCast(QualType T, CharUnits Align, const Twine &Name = "tmp"); /// CreateAggTemp - Create a temporary memory object for the given /// aggregate type. AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(), AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap); } /// Emit a cast to void* in the appropriate address space. llvm::Value *EmitCastToVoidPtr(llvm::Value *value); /// EvaluateExprAsBool - Perform the usual unary conversions on the specified /// expression and compare the result against zero, returning an Int1Ty value. llvm::Value *EvaluateExprAsBool(const Expr *E); /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. void EmitIgnoredExpr(const Expr *E); /// EmitAnyExpr - Emit code to compute the specified expression which can have /// any type. The result is returned as an RValue struct. If this is an /// aggregate expression, the aggloc/agglocvolatile arguments indicate where /// the result should be returned. /// /// \param ignoreResult True if the resulting value isn't used. RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot = AggValueSlot::ignored(), bool ignoreResult = false); // EmitVAListRef - Emit a "reference" to a va_list; this is either the address // or the value of the expression, depending on how va_list is defined. Address EmitVAListRef(const Expr *E); /// Emit a "reference" to a __builtin_ms_va_list; this is /// always the value of the expression, because a __builtin_ms_va_list is a /// pointer to a char. Address EmitMSVAListRef(const Expr *E); /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will /// always be accessible even if no aggregate location is provided. RValue EmitAnyExprToTemp(const Expr *E); /// EmitAnyExprToMem - Emits the code necessary to evaluate an /// arbitrary expression into the given memory location. void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, bool IsInitializer); void EmitAnyExprToExn(const Expr *E, Address Addr); /// EmitExprAsInit - Emits the code necessary to initialize a /// location in memory with the given initializer. void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit); /// hasVolatileMember - returns true if aggregate type has a volatile /// member. bool hasVolatileMember(QualType T) { if (const RecordType *RT = T->getAs()) { const RecordDecl *RD = cast(RT->getDecl()); return RD->hasVolatileMember(); } return false; } /// Determine whether a return value slot may overlap some other object. AggValueSlot::Overlap_t overlapForReturnValue() { // FIXME: Assuming no overlap here breaks guaranteed copy elision for base // class subobjects. These cases may need to be revisited depending on the // resolution of the relevant core issue. return AggValueSlot::DoesNotOverlap; } /// Determine whether a field initialization may overlap some other object. AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) { // FIXME: These cases can result in overlap as a result of P0840R0's // [[no_unique_address]] attribute. We can still infer NoOverlap in the // presence of that attribute if the field is within the nvsize of its // containing class, because non-virtual subobjects are initialized in // address order. return AggValueSlot::DoesNotOverlap; } /// Determine whether a base class initialization may overlap some other /// object. AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual); /// Emit an aggregate assignment. void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { bool IsVolatile = hasVolatileMember(EltTy); EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); } void EmitAggregateCopyCtor(LValue Dest, LValue Src, AggValueSlot::Overlap_t MayOverlap) { EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); } /// EmitAggregateCopy - Emit an aggregate copy. /// /// \param isVolatile \c true iff either the source or the destination is /// volatile. /// \param MayOverlap Whether the tail padding of the destination might be /// occupied by some other object. More efficient code can often be /// generated if not. void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, AggValueSlot::Overlap_t MayOverlap, bool isVolatile = false); /// GetAddrOfLocalVar - Return the address of a local variable. Address GetAddrOfLocalVar(const VarDecl *VD) { auto it = LocalDeclMap.find(VD); assert(it != LocalDeclMap.end() && "Invalid argument to GetAddrOfLocalVar(), no decl!"); return it->second; } /// Given an opaque value expression, return its LValue mapping if it exists, /// otherwise create one. LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); /// Given an opaque value expression, return its RValue mapping if it exists, /// otherwise create one. RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); /// Get the index of the current ArrayInitLoopExpr, if any. llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } /// getAccessedFieldNo - Given an encoded value and a result number, return /// the input field number being accessed. static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); llvm::BasicBlock *GetIndirectGotoBlock(); /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. static bool IsWrappedCXXThis(const Expr *E); /// EmitNullInitialization - Generate code to set a value of the given type to /// null, If the type contains data member pointers, they will be initialized /// to -1 in accordance with the Itanium C++ ABI. void EmitNullInitialization(Address DestPtr, QualType Ty); /// Emits a call to an LLVM variable-argument intrinsic, either /// \c llvm.va_start or \c llvm.va_end. /// \param ArgValue A reference to the \c va_list as emitted by either /// \c EmitVAListRef or \c EmitMSVAListRef. /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, /// calls \c llvm.va_end. llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); /// Generate code to get an argument from the passed in pointer /// and update it accordingly. /// \param VE The \c VAArgExpr for which to generate code. /// \param VAListAddr Receives a reference to the \c va_list as emitted by /// either \c EmitVAListRef or \c EmitMSVAListRef. /// \returns A pointer to the argument. // FIXME: We should be able to get rid of this method and use the va_arg // instruction in LLVM instead once it works well enough. Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); /// emitArrayLength - Compute the length of an array, even if it's a /// VLA, and drill down to the base element type. llvm::Value *emitArrayLength(const ArrayType *arrayType, QualType &baseType, Address &addr); /// EmitVLASize - Capture all the sizes for the VLA expressions in /// the given variably-modified type and store them in the VLASizeMap. /// /// This function can be called with a null (unreachable) insert point. void EmitVariablyModifiedType(QualType Ty); struct VlaSizePair { llvm::Value *NumElts; QualType Type; VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} }; /// Return the number of elements for a single dimension /// for the given array type. VlaSizePair getVLAElements1D(const VariableArrayType *vla); VlaSizePair getVLAElements1D(QualType vla); /// Returns an LLVM value that corresponds to the size, /// in non-variably-sized elements, of a variable length array type, /// plus that largest non-variably-sized element type. Assumes that /// the type has already been emitted with EmitVariablyModifiedType. VlaSizePair getVLASize(const VariableArrayType *vla); VlaSizePair getVLASize(QualType vla); /// LoadCXXThis - Load the value of 'this'. This function is only valid while /// generating code for an C++ member function. llvm::Value *LoadCXXThis() { assert(CXXThisValue && "no 'this' value for this function"); return CXXThisValue; } Address LoadCXXThisAddress(); /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have /// virtual bases. // FIXME: Every place that calls LoadCXXVTT is something // that needs to be abstracted properly. llvm::Value *LoadCXXVTT() { assert(CXXStructorImplicitParamValue && "no VTT value for this function"); return CXXStructorImplicitParamValue; } /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a /// complete class to the given direct base. Address GetAddressOfDirectBaseInCompleteClass(Address Value, const CXXRecordDecl *Derived, const CXXRecordDecl *Base, bool BaseIsVirtual); static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); /// GetAddressOfBaseClass - This function will add the necessary delta to the /// load of 'this' and returns address of the base class. Address GetAddressOfBaseClass(Address Value, const CXXRecordDecl *Derived, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, bool NullCheckValue, SourceLocation Loc); Address GetAddressOfDerivedClass(Address Value, const CXXRecordDecl *Derived, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, bool NullCheckValue); /// GetVTTParameter - Return the VTT parameter that should be passed to a /// base constructor/destructor with virtual bases. /// FIXME: VTTs are Itanium ABI-specific, so the definition should move /// to ItaniumCXXABI.cpp together with all the references to VTT. llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, bool Delegating); void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, CXXCtorType CtorType, const FunctionArgList &Args, SourceLocation Loc); // It's important not to confuse this and the previous function. Delegating // constructors are the C++0x feature. The constructor delegate optimization // is used to reduce duplication in the base and complete consturctors where // they are substantially the same. void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, const FunctionArgList &Args); /// Emit a call to an inheriting constructor (that is, one that invokes a /// constructor inherited from a base class) by inlining its definition. This /// is necessary if the ABI does not support forwarding the arguments to the /// base class constructor (because they're variadic or similar). void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, bool Delegating, CallArgList &Args); /// Emit a call to a constructor inherited from a base class, passing the /// current constructor's arguments along unmodified (without even making /// a copy). void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, bool ForVirtualBase, Address This, bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E); void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, Address This, const CXXConstructExpr *E, AggValueSlot::Overlap_t Overlap); void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, Address This, CallArgList &Args, AggValueSlot::Overlap_t Overlap, SourceLocation Loc); /// Emit assumption load for all bases. Requires to be be called only on /// most-derived class and not under construction of the object. void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); /// Emit assumption that vptr load == global vtable. void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, Address This, Address Src, const CXXConstructExpr *E); void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, const ArrayType *ArrayTy, Address ArrayPtr, const CXXConstructExpr *E, bool ZeroInitialization = false); void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, llvm::Value *NumElements, Address ArrayPtr, const CXXConstructExpr *E, bool ZeroInitialization = false); static Destroyer destroyCXXObject; void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This); void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie); void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, Address Ptr); llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); void EmitCXXDeleteExpr(const CXXDeleteExpr *E); void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements = nullptr, CharUnits CookieSize = CharUnits()); RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, const CallExpr *TheCallExpr, bool IsDelete); llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); /// Situations in which we might emit a check for the suitability of a /// pointer or glvalue. enum TypeCheckKind { /// Checking the operand of a load. Must be suitably sized and aligned. TCK_Load, /// Checking the destination of a store. Must be suitably sized and aligned. TCK_Store, /// Checking the bound value in a reference binding. Must be suitably sized /// and aligned, but is not required to refer to an object (until the /// reference is used), per core issue 453. TCK_ReferenceBinding, /// Checking the object expression in a non-static data member access. Must /// be an object within its lifetime. TCK_MemberAccess, /// Checking the 'this' pointer for a call to a non-static member function. /// Must be an object within its lifetime. TCK_MemberCall, /// Checking the 'this' pointer for a constructor call. TCK_ConstructorCall, /// Checking the operand of a static_cast to a derived pointer type. Must be /// null or an object within its lifetime. TCK_DowncastPointer, /// Checking the operand of a static_cast to a derived reference type. Must /// be an object within its lifetime. TCK_DowncastReference, /// Checking the operand of a cast to a base object. Must be suitably sized /// and aligned. TCK_Upcast, /// Checking the operand of a cast to a virtual base object. Must be an /// object within its lifetime. TCK_UpcastToVirtualBase, /// Checking the value assigned to a _Nonnull pointer. Must not be null. TCK_NonnullAssign, /// Checking the operand of a dynamic_cast or a typeid expression. Must be /// null or an object within its lifetime. TCK_DynamicOperation }; /// Determine whether the pointer type check \p TCK permits null pointers. static bool isNullPointerAllowed(TypeCheckKind TCK); /// Determine whether the pointer type check \p TCK requires a vptr check. static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); /// Whether any type-checking sanitizers are enabled. If \c false, /// calls to EmitTypeCheck can be skipped. bool sanitizePerformTypeCheck() const; /// Emit a check that \p V is the address of storage of the /// appropriate size and alignment for an object of type \p Type. void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment = CharUnits::Zero(), SanitizerSet SkippedChecks = SanitizerSet()); /// Emit a check that \p Base points into an array object, which /// we can access at index \p Index. \p Accessed should be \c false if we /// this expression is used as an lvalue, for instance in "&Arr[Idx]". void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, QualType IndexType, bool Accessed); llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre); ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre); void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, llvm::Value *OffsetValue = nullptr) { Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); } /// Converts Location to a DebugLoc, if debug information is enabled. llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); //===--------------------------------------------------------------------===// // Declaration Emission //===--------------------------------------------------------------------===// /// EmitDecl - Emit a declaration. /// /// This function can be called with a null (unreachable) insert point. void EmitDecl(const Decl &D); /// EmitVarDecl - Emit a local variable declaration. /// /// This function can be called with a null (unreachable) insert point. void EmitVarDecl(const VarDecl &D); void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit); typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, llvm::Value *Address); /// Determine whether the given initializer is trivial in the sense /// that it requires no code to be generated. bool isTrivialInitializer(const Expr *Init); /// EmitAutoVarDecl - Emit an auto variable declaration. /// /// This function can be called with a null (unreachable) insert point. void EmitAutoVarDecl(const VarDecl &D); class AutoVarEmission { friend class CodeGenFunction; const VarDecl *Variable; /// The address of the alloca for languages with explicit address space /// (e.g. OpenCL) or alloca casted to generic pointer for address space /// agnostic languages (e.g. C++). Invalid if the variable was emitted /// as a global constant. Address Addr; llvm::Value *NRVOFlag; /// True if the variable is a __block variable. bool IsByRef; /// True if the variable is of aggregate type and has a constant /// initializer. bool IsConstantAggregate; /// Non-null if we should use lifetime annotations. llvm::Value *SizeForLifetimeMarkers; /// Address with original alloca instruction. Invalid if the variable was /// emitted as a global constant. Address AllocaAddr; struct Invalid {}; AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()), AllocaAddr(Address::invalid()) {} AutoVarEmission(const VarDecl &variable) : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), IsByRef(false), IsConstantAggregate(false), SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} bool wasEmittedAsGlobal() const { return !Addr.isValid(); } public: static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != nullptr; } llvm::Value *getSizeForLifetimeMarkers() const { assert(useLifetimeMarkers()); return SizeForLifetimeMarkers; } /// Returns the raw, allocated address, which is not necessarily /// the address of the object itself. It is casted to default /// address space for address space agnostic languages. Address getAllocatedAddress() const { return Addr; } /// Returns the address for the original alloca instruction. Address getOriginalAllocatedAddress() const { return AllocaAddr; } /// Returns the address of the object within this declaration. /// Note that this does not chase the forwarding pointer for /// __block decls. Address getObjectAddress(CodeGenFunction &CGF) const { if (!IsByRef) return Addr; return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); } }; AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); void EmitAutoVarInit(const AutoVarEmission &emission); void EmitAutoVarCleanups(const AutoVarEmission &emission); void emitAutoVarTypeCleanup(const AutoVarEmission &emission, QualType::DestructionKind dtorKind); /// Emits the alloca and debug information for the size expressions for each /// dimension of an array. It registers the association of its (1-dimensional) /// QualTypes and size expression's debug node, so that CGDebugInfo can /// reference this node when creating the DISubrange object to describe the /// array types. void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo); void EmitStaticVarDecl(const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage); class ParamValue { llvm::Value *Value; unsigned Alignment; ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} public: static ParamValue forDirect(llvm::Value *value) { return ParamValue(value, 0); } static ParamValue forIndirect(Address addr) { assert(!addr.getAlignment().isZero()); return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); } bool isIndirect() const { return Alignment != 0; } llvm::Value *getAnyValue() const { return Value; } llvm::Value *getDirectValue() const { assert(!isIndirect()); return Value; } Address getIndirectAddress() const { assert(isIndirect()); return Address(Value, CharUnits::fromQuantity(Alignment)); } }; /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); /// protectFromPeepholes - Protect a value that we're intending to /// store to the side, but which will probably be used later, from /// aggressive peepholing optimizations that might delete it. /// /// Pass the result to unprotectFromPeepholes to declare that /// protection is no longer required. /// /// There's no particular reason why this shouldn't apply to /// l-values, it's just that no existing peepholes work on pointers. PeepholeProtection protectFromPeepholes(RValue rvalue); void unprotectFromPeepholes(PeepholeProtection protection); void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, llvm::Value *OffsetValue = nullptr) { Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); } //===--------------------------------------------------------------------===// // Statement Emission //===--------------------------------------------------------------------===// /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. void EmitStopPoint(const Stmt *S); /// EmitStmt - Emit the code for the statement \arg S. It is legal to call /// this function even if there is no current insertion point. /// /// This function may clear the current insertion point; callers should use /// EnsureInsertPoint if they wish to subsequently generate code without first /// calling EmitBlock, EmitBranch, or EmitStmt. void EmitStmt(const Stmt *S, ArrayRef Attrs = None); /// EmitSimpleStmt - Try to emit a "simple" statement which does not /// necessarily require an insertion point or debug information; typically /// because the statement amounts to a jump or a container of other /// statements. /// /// \return True if the statement was handled. bool EmitSimpleStmt(const Stmt *S); Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, AggValueSlot AVS = AggValueSlot::ignored()); Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast = false, AggValueSlot AVS = AggValueSlot::ignored()); /// EmitLabel - Emit the block for the given label. It is legal to call this /// function even if there is no current insertion point. void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. void EmitLabelStmt(const LabelStmt &S); void EmitAttributedStmt(const AttributedStmt &S); void EmitGotoStmt(const GotoStmt &S); void EmitIndirectGotoStmt(const IndirectGotoStmt &S); void EmitIfStmt(const IfStmt &S); void EmitWhileStmt(const WhileStmt &S, ArrayRef Attrs = None); void EmitDoStmt(const DoStmt &S, ArrayRef Attrs = None); void EmitForStmt(const ForStmt &S, ArrayRef Attrs = None); void EmitReturnStmt(const ReturnStmt &S); void EmitDeclStmt(const DeclStmt &S); void EmitBreakStmt(const BreakStmt &S); void EmitContinueStmt(const ContinueStmt &S); void EmitSwitchStmt(const SwitchStmt &S); void EmitDefaultStmt(const DefaultStmt &S); void EmitCaseStmt(const CaseStmt &S); void EmitCaseStmtRange(const CaseStmt &S); void EmitAsmStmt(const AsmStmt &S); void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); void EmitCoroutineBody(const CoroutineBodyStmt &S); void EmitCoreturnStmt(const CoreturnStmt &S); RValue EmitCoawaitExpr(const CoawaitExpr &E, AggValueSlot aggSlot = AggValueSlot::ignored(), bool ignoreResult = false); LValue EmitCoawaitLValue(const CoawaitExpr *E); RValue EmitCoyieldExpr(const CoyieldExpr &E, AggValueSlot aggSlot = AggValueSlot::ignored(), bool ignoreResult = false); LValue EmitCoyieldLValue(const CoyieldExpr *E); RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); void EmitCXXTryStmt(const CXXTryStmt &S); void EmitSEHTryStmt(const SEHTryStmt &S); void EmitSEHLeaveStmt(const SEHLeaveStmt &S); void EnterSEHTryStmt(const SEHTryStmt &S); void ExitSEHTryStmt(const SEHTryStmt &S); void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, const Stmt *OutlinedStmt); llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, const SEHExceptStmt &Except); llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, const SEHFinallyStmt &Finally); void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, llvm::Value *ParentFP, llvm::Value *EntryEBP); llvm::Value *EmitSEHExceptionCode(); llvm::Value *EmitSEHExceptionInfo(); llvm::Value *EmitSEHAbnormalTermination(); /// Emit simple code for OpenMP directives in Simd-only mode. void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); /// Scan the outlined statement for captures from the parent function. For /// each capture, mark the capture as escaped and emit a call to /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, bool IsFilter); /// Recovers the address of a local in a parent function. ParentVar is the /// address of the variable used in the immediate parent function. It can /// either be an alloca or a call to llvm.localrecover if there are nested /// outlined functions. ParentFP is the frame pointer of the outermost parent /// frame. Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, Address ParentVar, llvm::Value *ParentFP); void EmitCXXForRangeStmt(const CXXForRangeStmt &S, ArrayRef Attrs = None); /// Controls insertion of cancellation exit blocks in worksharing constructs. class OMPCancelStackRAII { CodeGenFunction &CGF; public: OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) : CGF(CGF) { CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); } ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } }; /// Returns calculated size of the specified type. llvm::Value *getTypeSize(QualType Ty); LValue InitCapturedStruct(const CapturedStmt &S); llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); Address GenerateCapturedStmtArgument(const CapturedStmt &S); llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); void GenerateOpenMPCapturedVars(const CapturedStmt &S, SmallVectorImpl &CapturedVars); void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, SourceLocation Loc); /// Perform element by element copying of arrays with type \a /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure /// generated by \a CopyGen. /// /// \param DestAddr Address of the destination array. /// \param SrcAddr Address of the source array. /// \param OriginalType Type of destination and source arrays. /// \param CopyGen Copying procedure that copies value of single array element /// to another single array element. void EmitOMPAggregateAssign( Address DestAddr, Address SrcAddr, QualType OriginalType, const llvm::function_ref CopyGen); /// Emit proper copying of data from one variable to another. /// /// \param OriginalType Original type of the copied variables. /// \param DestAddr Destination address. /// \param SrcAddr Source address. /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has /// type of the base array element). /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of /// the base array element). /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a /// DestVD. void EmitOMPCopy(QualType OriginalType, Address DestAddr, Address SrcAddr, const VarDecl *DestVD, const VarDecl *SrcVD, const Expr *Copy); /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or /// \a X = \a E \a BO \a E. /// /// \param X Value to be updated. /// \param E Update value. /// \param BO Binary operation for update operation. /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update /// expression, false otherwise. /// \param AO Atomic ordering of the generated atomic instructions. /// \param CommonGen Code generator for complex expressions that cannot be /// expressed through atomicrmw instruction. /// \returns if simple 'atomicrmw' instruction was /// generated, otherwise. std::pair EmitOMPAtomicSimpleUpdateExpr( LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, llvm::AtomicOrdering AO, SourceLocation Loc, const llvm::function_ref CommonGen); bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope); void EmitOMPPrivateClause(const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope); void EmitOMPUseDevicePtrClause( const OMPClause &C, OMPPrivateScope &PrivateScope, const llvm::DenseMap &CaptureDeviceAddrMap); /// Emit code for copyin clause in \a D directive. The next code is /// generated at the start of outlined functions for directives: /// \code /// threadprivate_var1 = master_threadprivate_var1; /// operator=(threadprivate_var2, master_threadprivate_var2); /// ... /// __kmpc_barrier(&loc, global_tid); /// \endcode /// /// \param D OpenMP directive possibly with 'copyin' clause(s). /// \returns true if at least one copyin variable is found, false otherwise. bool EmitOMPCopyinClause(const OMPExecutableDirective &D); /// Emit initial code for lastprivate variables. If some variable is /// not also firstprivate, then the default initialization is used. Otherwise /// initialization of this variable is performed by EmitOMPFirstprivateClause /// method. /// /// \param D Directive that may have 'lastprivate' directives. /// \param PrivateScope Private scope for capturing lastprivate variables for /// proper codegen in internal captured statement. /// /// \returns true if there is at least one lastprivate variable, false /// otherwise. bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope); /// Emit final copying of lastprivate values to original variables at /// the end of the worksharing or simd directive. /// /// \param D Directive that has at least one 'lastprivate' directives. /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if /// it is the last iteration of the loop code in associated directive, or to /// 'i1 false' otherwise. If this item is nullptr, no final check is required. void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, bool NoFinals, llvm::Value *IsLastIterCond = nullptr); /// Emit initial code for linear clauses. void EmitOMPLinearClause(const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope); /// Emit final code for linear clauses. /// \param CondGen Optional conditional code for final part of codegen for /// linear clause. void EmitOMPLinearClauseFinal( const OMPLoopDirective &D, const llvm::function_ref CondGen); /// Emit initial code for reduction variables. Creates reduction copies /// and initializes them with the values according to OpenMP standard. /// /// \param D Directive (possibly) with the 'reduction' clause. /// \param PrivateScope Private scope for capturing reduction variables for /// proper codegen in internal captured statement. /// void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope); /// Emit final update of reduction values to original variables at /// the end of the directive. /// /// \param D Directive that has at least one 'reduction' directives. /// \param ReductionKind The kind of reduction to perform. void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind); /// Emit initial code for linear variables. Creates private copies /// and initializes them with the values according to OpenMP standard. /// /// \param D Directive (possibly) with the 'linear' clause. /// \return true if at least one linear variable is found that should be /// initialized with the value of the original variable, false otherwise. bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); typedef const llvm::function_ref TaskGenTy; void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, OMPTaskDataTy &Data); struct OMPTargetDataInfo { Address BasePointersArray = Address::invalid(); Address PointersArray = Address::invalid(); Address SizesArray = Address::invalid(); unsigned NumberOfTargetItems = 0; explicit OMPTargetDataInfo() = default; OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, Address SizesArray, unsigned NumberOfTargetItems) : BasePointersArray(BasePointersArray), PointersArray(PointersArray), SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} }; void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, OMPTargetDataInfo &InputInfo); void EmitOMPParallelDirective(const OMPParallelDirective &S); void EmitOMPSimdDirective(const OMPSimdDirective &S); void EmitOMPForDirective(const OMPForDirective &S); void EmitOMPForSimdDirective(const OMPForSimdDirective &S); void EmitOMPSectionsDirective(const OMPSectionsDirective &S); void EmitOMPSectionDirective(const OMPSectionDirective &S); void EmitOMPSingleDirective(const OMPSingleDirective &S); void EmitOMPMasterDirective(const OMPMasterDirective &S); void EmitOMPCriticalDirective(const OMPCriticalDirective &S); void EmitOMPParallelForDirective(const OMPParallelForDirective &S); void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); void EmitOMPTaskDirective(const OMPTaskDirective &S); void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); void EmitOMPBarrierDirective(const OMPBarrierDirective &S); void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); void EmitOMPFlushDirective(const OMPFlushDirective &S); void EmitOMPOrderedDirective(const OMPOrderedDirective &S); void EmitOMPAtomicDirective(const OMPAtomicDirective &S); void EmitOMPTargetDirective(const OMPTargetDirective &S); void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); void EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); void EmitOMPTeamsDirective(const OMPTeamsDirective &S); void EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); void EmitOMPCancelDirective(const OMPCancelDirective &S); void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); void EmitOMPDistributeDirective(const OMPDistributeDirective &S); void EmitOMPDistributeParallelForDirective( const OMPDistributeParallelForDirective &S); void EmitOMPDistributeParallelForSimdDirective( const OMPDistributeParallelForSimdDirective &S); void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); void EmitOMPTargetParallelForSimdDirective( const OMPTargetParallelForSimdDirective &S); void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); void EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); void EmitOMPTeamsDistributeParallelForSimdDirective( const OMPTeamsDistributeParallelForSimdDirective &S); void EmitOMPTeamsDistributeParallelForDirective( const OMPTeamsDistributeParallelForDirective &S); void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); void EmitOMPTargetTeamsDistributeDirective( const OMPTargetTeamsDistributeDirective &S); void EmitOMPTargetTeamsDistributeParallelForDirective( const OMPTargetTeamsDistributeParallelForDirective &S); void EmitOMPTargetTeamsDistributeParallelForSimdDirective( const OMPTargetTeamsDistributeParallelForSimdDirective &S); void EmitOMPTargetTeamsDistributeSimdDirective( const OMPTargetTeamsDistributeSimdDirective &S); /// Emit device code for the target directive. static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, StringRef ParentName, const OMPTargetDirective &S); static void EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, const OMPTargetParallelDirective &S); /// Emit device code for the target parallel for directive. static void EmitOMPTargetParallelForDeviceFunction( CodeGenModule &CGM, StringRef ParentName, const OMPTargetParallelForDirective &S); /// Emit device code for the target parallel for simd directive. static void EmitOMPTargetParallelForSimdDeviceFunction( CodeGenModule &CGM, StringRef ParentName, const OMPTargetParallelForSimdDirective &S); /// Emit device code for the target teams directive. static void EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, const OMPTargetTeamsDirective &S); /// Emit device code for the target teams distribute directive. static void EmitOMPTargetTeamsDistributeDeviceFunction( CodeGenModule &CGM, StringRef ParentName, const OMPTargetTeamsDistributeDirective &S); /// Emit device code for the target teams distribute simd directive. static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( CodeGenModule &CGM, StringRef ParentName, const OMPTargetTeamsDistributeSimdDirective &S); /// Emit device code for the target simd directive. static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S); /// Emit device code for the target teams distribute parallel for simd /// directive. static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( CodeGenModule &CGM, StringRef ParentName, const OMPTargetTeamsDistributeParallelForSimdDirective &S); static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( CodeGenModule &CGM, StringRef ParentName, const OMPTargetTeamsDistributeParallelForDirective &S); /// Emit inner loop of the worksharing/simd construct. /// /// \param S Directive, for which the inner loop must be emitted. /// \param RequiresCleanup true, if directive has some associated private /// variables. /// \param LoopCond Bollean condition for loop continuation. /// \param IncExpr Increment expression for loop control variable. /// \param BodyGen Generator for the inner body of the inner loop. /// \param PostIncGen Genrator for post-increment code (required for ordered /// loop directvies). void EmitOMPInnerLoop( const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, const Expr *IncExpr, const llvm::function_ref BodyGen, const llvm::function_ref PostIncGen); JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); /// Emit initial code for loop counters of loop-based directives. void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, OMPPrivateScope &LoopScope); /// Helper for the OpenMP loop directives. void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); /// Emit code for the worksharing loop-based directive. /// \return true, if this construct has any lastprivate clause, false - /// otherwise. bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, const CodeGenLoopBoundsTy &CodeGenLoopBounds, const CodeGenDispatchBoundsTy &CGDispatchBounds); /// Emit code for the distribute loop-based directive. void EmitOMPDistributeLoop(const OMPLoopDirective &S, const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); /// Helpers for the OpenMP loop directives. void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); void EmitOMPSimdFinal( const OMPLoopDirective &D, const llvm::function_ref CondGen); /// Emits the lvalue for the expression with possibly captured variable. LValue EmitOMPSharedLValue(const Expr *E); private: /// Helpers for blocks. llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); /// struct with the values to be passed to the OpenMP loop-related functions struct OMPLoopArguments { /// loop lower bound Address LB = Address::invalid(); /// loop upper bound Address UB = Address::invalid(); /// loop stride Address ST = Address::invalid(); /// isLastIteration argument for runtime functions Address IL = Address::invalid(); /// Chunk value generated by sema llvm::Value *Chunk = nullptr; /// EnsureUpperBound Expr *EUB = nullptr; /// IncrementExpression Expr *IncExpr = nullptr; /// Loop initialization Expr *Init = nullptr; /// Loop exit condition Expr *Cond = nullptr; /// Update of LB after a whole chunk has been executed Expr *NextLB = nullptr; /// Update of UB after a whole chunk has been executed Expr *NextUB = nullptr; OMPLoopArguments() = default; OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, Expr *IncExpr = nullptr, Expr *Init = nullptr, Expr *Cond = nullptr, Expr *NextLB = nullptr, Expr *NextUB = nullptr) : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), NextUB(NextUB) {} }; void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, const CodeGenLoopTy &CodeGenLoop, const CodeGenOrderedTy &CodeGenOrdered); void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, const OMPLoopArguments &LoopArgs, const CodeGenDispatchBoundsTy &CGDispatchBounds); void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, const CodeGenLoopTy &CodeGenLoopContent); /// Emit code for sections directive. void EmitSections(const OMPExecutableDirective &S); public: //===--------------------------------------------------------------------===// // LValue Expression Emission //===--------------------------------------------------------------------===// /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. RValue GetUndefRValue(QualType Ty); /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E /// and issue an ErrorUnsupported style diagnostic (using the /// provided Name). RValue EmitUnsupportedRValue(const Expr *E, const char *Name); /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue /// an ErrorUnsupported style diagnostic (using the provided Name). LValue EmitUnsupportedLValue(const Expr *E, const char *Name); /// EmitLValue - Emit code to compute a designator that specifies the location /// of the expression. /// /// This can return one of two things: a simple address or a bitfield /// reference. In either case, the LLVM Value* in the LValue structure is /// guaranteed to be an LLVM pointer type. /// /// If this returns a bitfield reference, nothing about the pointee type of /// the LLVM value is known: For example, it may not be a pointer to an /// integer. /// /// If this returns a normal address, and if the lvalue's C type is fixed /// size, this method guarantees that the returned pointer type will point to /// an LLVM type of the same size of the lvalue's type. If the lvalue has a /// variable length type, this is not possible. /// LValue EmitLValue(const Expr *E); /// Same as EmitLValue but additionally we generate checking code to /// guard against undefined behavior. This is only suitable when we know /// that the address will be used to access the object. LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); RValue convertTempToRValue(Address addr, QualType type, SourceLocation Loc); void EmitAtomicInit(Expr *E, LValue lvalue); bool LValueIsSuitableForInlineAtomic(LValue Src); RValue EmitAtomicLoad(LValue LV, SourceLocation SL, AggValueSlot Slot = AggValueSlot::ignored()); RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, llvm::AtomicOrdering AO, bool IsVolatile = false, AggValueSlot slot = AggValueSlot::ignored()); void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, bool IsVolatile, bool isInit); std::pair EmitAtomicCompareExchange( LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, llvm::AtomicOrdering Success = llvm::AtomicOrdering::SequentiallyConsistent, llvm::AtomicOrdering Failure = llvm::AtomicOrdering::SequentiallyConsistent, bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, const llvm::function_ref &UpdateOp, bool IsVolatile); /// EmitToMemory - Change a scalar value from its value /// representation to its in-memory representation. llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); /// EmitFromMemory - Change a scalar value from its memory /// representation to its value representation. llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); /// Check if the scalar \p Value is within the valid range for the given /// type \p Ty. /// /// Returns true if a check is needed (even if the range is unknown). bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, SourceLocation Loc); /// EmitLoadOfScalar - Load a scalar value from an address, taking /// care to appropriately convert from the memory representation to /// the LLVM value representation. llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source = AlignmentSource::Type, bool isNontemporal = false) { return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), CGM.getTBAAAccessInfo(Ty), isNontemporal); } llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, bool isNontemporal = false); /// EmitLoadOfScalar - Load a scalar value from an address, taking /// care to appropriately convert from the memory representation to /// the LLVM value representation. The l-value must be a simple /// l-value. llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); /// EmitStoreOfScalar - Store a scalar value to an address, taking /// care to appropriately convert from the memory representation to /// the LLVM value representation. void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source = AlignmentSource::Type, bool isInit = false, bool isNontemporal = false) { EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); } void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, bool isInit = false, bool isNontemporal = false); /// EmitStoreOfScalar - Store a scalar value to an address, taking /// care to appropriately convert from the memory representation to /// the LLVM value representation. The l-value must be a simple /// l-value. The isInit flag indicates whether this is an initialization. /// If so, atomic qualifiers are ignored and the store is always non-atomic. void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); /// EmitLoadOfLValue - Given an expression that represents a value lvalue, /// this method emits the address of the lvalue, then loads the result as an /// rvalue, returning the rvalue. RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); RValue EmitLoadOfExtVectorElementLValue(LValue V); RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); RValue EmitLoadOfGlobalRegLValue(LValue LV); /// EmitStoreThroughLValue - Store the specified rvalue into the specified /// lvalue, where both are guaranteed to the have the same type, and that type /// is 'Ty'. void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints /// as EmitStoreThroughLValue. /// /// \param Result [out] - If non-null, this will be set to a Value* for the /// bit-field contents after the store, appropriate for use as the result of /// an assignment to the bit-field. void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, llvm::Value **Result=nullptr); /// Emit an l-value for an assignment (simple or compound) of complex type. LValue EmitComplexAssignmentLValue(const BinaryOperator *E); LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result); // Note: only available for agg return types LValue EmitBinaryOperatorLValue(const BinaryOperator *E); LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); // Note: only available for agg return types LValue EmitCallExprLValue(const CallExpr *E); // Note: only available for agg return types LValue EmitVAArgExprLValue(const VAArgExpr *E); LValue EmitDeclRefLValue(const DeclRefExpr *E); LValue EmitStringLiteralLValue(const StringLiteral *E); LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); LValue EmitPredefinedLValue(const PredefinedExpr *E); LValue EmitUnaryOpLValue(const UnaryOperator *E); LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, bool Accessed = false); LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, bool IsLowerBound = true); LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); LValue EmitMemberExpr(const MemberExpr *E); LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); LValue EmitInitListLValue(const InitListExpr *E); LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); LValue EmitCastLValue(const CastExpr *E); LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); Address EmitExtVectorElementLValue(LValue V); RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); Address EmitArrayToPointerDecay(const Expr *Array, LValueBaseInfo *BaseInfo = nullptr, TBAAAccessInfo *TBAAInfo = nullptr); class ConstantEmission { llvm::PointerIntPair ValueAndIsReference; ConstantEmission(llvm::Constant *C, bool isReference) : ValueAndIsReference(C, isReference) {} public: ConstantEmission() {} static ConstantEmission forReference(llvm::Constant *C) { return ConstantEmission(C, true); } static ConstantEmission forValue(llvm::Constant *C) { return ConstantEmission(C, false); } explicit operator bool() const { return ValueAndIsReference.getOpaqueValue() != nullptr; } bool isReference() const { return ValueAndIsReference.getInt(); } LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { assert(isReference()); return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), refExpr->getType()); } llvm::Constant *getValue() const { assert(!isReference()); return ValueAndIsReference.getPointer(); } }; ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); ConstantEmission tryEmitAsConstant(const MemberExpr *ME); RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, AggValueSlot slot = AggValueSlot::ignored()); LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar); LValue EmitLValueForField(LValue Base, const FieldDecl* Field); LValue EmitLValueForLambdaField(const FieldDecl *Field); /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that /// if the Field is a reference, this will return the address of the reference /// and not the address of the value stored in the reference. LValue EmitLValueForFieldInitialization(LValue Base, const FieldDecl* Field); LValue EmitLValueForIvar(QualType ObjectTy, llvm::Value* Base, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers); LValue EmitCXXConstructLValue(const CXXConstructExpr *E); LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); LValue EmitLambdaLValue(const LambdaExpr *E); LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); LValue EmitStmtExprLValue(const StmtExpr *E); LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); //===--------------------------------------------------------------------===// // Scalar Expression Emission //===--------------------------------------------------------------------===// /// EmitCall - Generate a call of the given function, expecting the given /// result type, and using the given argument list which specifies both the /// LLVM arguments and the types they were derived from. RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke, SourceLocation Loc); RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke = nullptr) { return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, SourceLocation()); } RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); RValue EmitCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue = ReturnValueSlot()); RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); CGCallee EmitCallee(const Expr *E); void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, const Twine &name = ""); llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, ArrayRef args, const Twine &name = ""); llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, const Twine &name = ""); llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, ArrayRef args, const Twine &name = ""); SmallVector getBundlesForFunclet(llvm::Value *Callee); llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, ArrayRef Args, const Twine &Name = ""); llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, ArrayRef args, const Twine &name = ""); llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, const Twine &name = ""); void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, ArrayRef args); CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, NestedNameSpecifier *Qual, llvm::Type *Ty); CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, CXXDtorType Type, const CXXRecordDecl *RD); // These functions emit calls to the special functions of non-trivial C // structs. void defaultInitNonTrivialCStructVar(LValue Dst); void callCStructDefaultConstructor(LValue Dst); void callCStructDestructor(LValue Dst); void callCStructCopyConstructor(LValue Dst, LValue Src); void callCStructMoveConstructor(LValue Dst, LValue Src); void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); RValue EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, const CGCallee &Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, CallArgList *RtlArgs); RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, StructorType Type); RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue); RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, const Expr *Base); // Compute the object pointer. Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, llvm::Value *memberPtr, const MemberPointerType *memberPtrType, LValueBaseInfo *BaseInfo = nullptr, TBAAAccessInfo *TBAAInfo = nullptr); RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue); RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue); RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue); RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); RValue EmitBuiltinExpr(const FunctionDecl *FD, unsigned BuiltinID, const CallExpr *E, ReturnValueSlot ReturnValue); /// Emit IR for __builtin_os_log_format. RValue emitBuiltinOSLogFormat(const CallExpr &E); llvm::Function *generateBuiltinOSLogHelperFunction( const analyze_os_log::OSLogBufferLayout &Layout, CharUnits BufferAlignment); RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call /// is unhandled by the current target. llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, const llvm::CmpInst::Predicate Fp, const llvm::CmpInst::Predicate Ip, const llvm::Twine &Name = ""); llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, llvm::Triple::ArchType Arch); llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, const char *NameHint, unsigned Modifier, const CallExpr *E, SmallVectorImpl &Ops, Address PtrOp0, Address PtrOp1, llvm::Triple::ArchType Arch); llvm::Value *EmitISOVolatileLoad(const CallExpr *E); llvm::Value *EmitISOVolatileStore(const CallExpr *E); llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, unsigned Modifier, llvm::Type *ArgTy, const CallExpr *E); llvm::Value *EmitNeonCall(llvm::Function *F, SmallVectorImpl &O, const char *name, unsigned shift = 0, bool rightshift = false); llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, bool negateForRightShift); llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, llvm::Type *Ty, bool usgn, const char *name); llvm::Value *vectorWrapScalar16(llvm::Value *Op); llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, llvm::Triple::ArchType Arch); llvm::Value *BuildVector(ArrayRef Ops); llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, const CallExpr *E); llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); private: enum class MSVCIntrin; public: llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); llvm::Value *EmitBuiltinAvailable(ArrayRef Args); llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); llvm::Value *EmitObjCCollectionLiteral(const Expr *E, const ObjCMethodDecl *MethodWithObjects); llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return = ReturnValueSlot()); /// Retrieves the default cleanup kind for an ARC cleanup. /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. CleanupKind getARCCleanupKind() { return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions ? NormalAndEHCleanup : NormalCleanup; } // ARC primitives. void EmitARCInitWeak(Address addr, llvm::Value *value); void EmitARCDestroyWeak(Address addr); llvm::Value *EmitARCLoadWeak(Address addr); llvm::Value *EmitARCLoadWeakRetained(Address addr); llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); void EmitARCCopyWeak(Address dst, Address src); void EmitARCMoveWeak(Address dst, Address src); llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, bool resultIgnored); llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, bool resultIgnored); llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); llvm::Value *EmitARCAutorelease(llvm::Value *value); llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); std::pair EmitARCStoreAutoreleasing(const BinaryOperator *e); std::pair EmitARCStoreStrong(const BinaryOperator *e, bool ignored); std::pair EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); llvm::Value *EmitObjCThrowOperand(const Expr *expr); llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); llvm::Value *EmitARCExtendBlockObject(const Expr *expr); llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, bool allowUnsafeClaim); llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); void EmitARCIntrinsicUse(ArrayRef values); static Destroyer destroyARCStrongImprecise; static Destroyer destroyARCStrongPrecise; static Destroyer destroyARCWeak; static Destroyer emitARCIntrinsicUse; static Destroyer destroyNonTrivialCStruct; void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); llvm::Value *EmitObjCAutoreleasePoolPush(); llvm::Value *EmitObjCMRRAutoreleasePoolPush(); void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); /// Emits a reference binding to the passed in expression. RValue EmitReferenceBindingToExpr(const Expr *E); //===--------------------------------------------------------------------===// // Expression Emission //===--------------------------------------------------------------------===// // Expressions are broken into three classes: scalar, complex, aggregate. /// EmitScalarExpr - Emit the computation of the specified expression of LLVM /// scalar type, returning the result. llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); /// Emit a conversion from the specified type to the specified destination /// type, both of which are LLVM scalar types. llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy, SourceLocation Loc); /// Emit a conversion from the specified complex type to the specified /// destination type, where the destination type is an LLVM scalar type. llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, QualType DstTy, SourceLocation Loc); /// EmitAggExpr - Emit the computation of the specified expression /// of aggregate type. The result is computed into the given slot, /// which may be null to indicate that the value is not needed. void EmitAggExpr(const Expr *E, AggValueSlot AS); /// EmitAggExprToLValue - Emit the computation of the specified expression of /// aggregate type into a temporary LValue. LValue EmitAggExprToLValue(const Expr *E); /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, /// make sure it survives garbage collection until this point. void EmitExtendGCLifetime(llvm::Value *object); /// EmitComplexExpr - Emit the computation of the specified expression of /// complex type, returning the result. ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal = false, bool IgnoreImag = false); /// EmitComplexExprIntoLValue - Emit the given expression of complex /// type and place its result into the specified l-value. void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); /// EmitStoreOfComplex - Store a complex number into the specified l-value. void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); /// EmitLoadOfComplex - Load a complex number from the specified l-value. ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); Address emitAddrOfRealComponent(Address complex, QualType complexType); Address emitAddrOfImagComponent(Address complex, QualType complexType); /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the /// global variable that has already been created for it. If the initializer /// has a different type than GV does, this may free GV and return a different /// one. Otherwise it just returns GV. llvm::GlobalVariable * AddInitializerToStaticVarDecl(const VarDecl &D, llvm::GlobalVariable *GV); /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ /// variable with global storage. void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, bool PerformInit); llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, llvm::Constant *Addr); /// Call atexit() with a function that passes the given argument to /// the given function. void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, llvm::Constant *addr); /// Call atexit() with function dtorStub. void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); /// Emit code in this function to perform a guarded variable /// initialization. Guarded initializations are used when it's not /// possible to prove that an initialization will be done exactly /// once, e.g. with a static local variable or a static data member /// of a class template. void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, bool PerformInit); enum class GuardKind { VariableGuard, TlsGuard }; /// Emit a branch to select whether or not to perform guarded initialization. void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, llvm::BasicBlock *InitBlock, llvm::BasicBlock *NoInitBlock, GuardKind Kind, const VarDecl *D); /// GenerateCXXGlobalInitFunc - Generates code for initializing global /// variables. void GenerateCXXGlobalInitFunc(llvm::Function *Fn, ArrayRef CXXThreadLocals, Address Guard = Address::invalid()); /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global /// variables. void GenerateCXXGlobalDtorsFunc( llvm::Function *Fn, const std::vector> &DtorsAndObjects); void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, const VarDecl *D, llvm::GlobalVariable *Addr, bool PerformInit); void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); void enterFullExpression(const ExprWithCleanups *E) { if (E->getNumObjects() == 0) return; enterNonTrivialFullExpression(E); } void enterNonTrivialFullExpression(const ExprWithCleanups *E); void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); RValue EmitAtomicExpr(AtomicExpr *E); //===--------------------------------------------------------------------===// // Annotations Emission //===--------------------------------------------------------------------===// /// Emit an annotation call (intrinsic or builtin). llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, llvm::Value *AnnotatedVal, StringRef AnnotationStr, SourceLocation Location); /// Emit local annotations for the local variable V, declared by D. void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); /// Emit field annotations for the given field & value. Returns the /// annotation result. Address EmitFieldAnnotations(const FieldDecl *D, Address V); //===--------------------------------------------------------------------===// // Internal Helpers //===--------------------------------------------------------------------===// /// ContainsLabel - Return true if the statement contains a label in it. If /// this statement is not executed normally, it not containing a label means /// that we can just remove the code. static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); /// containsBreak - Return true if the statement contains a break out of it. /// If the statement (recursively) contains a switch or loop with a break /// inside of it, this is fine. static bool containsBreak(const Stmt *S); /// Determine if the given statement might introduce a declaration into the /// current scope, by being a (possibly-labelled) DeclStmt. static bool mightAddDeclToScope(const Stmt *S); /// ConstantFoldsToSimpleInteger - If the specified expression does not fold /// to a constant, or if it does but contains a label, return false. If it /// constant folds return true and set the boolean result in Result. bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, bool AllowLabels = false); /// ConstantFoldsToSimpleInteger - If the specified expression does not fold /// to a constant, or if it does but contains a label, return false. If it /// constant folds return true and set the folded value. bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, bool AllowLabels = false); /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an /// if statement) to the specified blocks. Based on the condition, this might /// try to simplify the codegen of the conditional based on the branch. /// TrueCount should be the number of times we expect the condition to /// evaluate to true based on PGO data. void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount); /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is /// nonnull, if \p LHS is marked _Nonnull. void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); /// An enumeration which makes it easier to specify whether or not an /// operation is a subtraction. enum { NotSubtraction = false, IsSubtraction = true }; /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to /// detect undefined behavior when the pointer overflow sanitizer is enabled. /// \p SignedIndices indicates whether any of the GEP indices are signed. /// \p IsSubtraction indicates whether the expression used to form the GEP /// is a subtraction. llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, ArrayRef IdxList, bool SignedIndices, bool IsSubtraction, SourceLocation Loc, const Twine &Name = ""); /// Specifies which type of sanitizer check to apply when handling a /// particular builtin. enum BuiltinCheckKind { BCK_CTZPassedZero, BCK_CLZPassedZero, }; /// Emits an argument for a call to a builtin. If the builtin sanitizer is /// enabled, a runtime check specified by \p Kind is also emitted. llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); /// Emit a description of a type in a format suitable for passing to /// a runtime sanitizer handler. llvm::Constant *EmitCheckTypeDescriptor(QualType T); /// Convert a value into a format suitable for passing to a runtime /// sanitizer handler. llvm::Value *EmitCheckValue(llvm::Value *V); /// Emit a description of a source location in a format suitable for /// passing to a runtime sanitizer handler. llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); /// Create a basic block that will call a handler function in a /// sanitizer runtime with the provided arguments, and create a conditional /// branch to it. void EmitCheck(ArrayRef> Checked, SanitizerHandler Check, ArrayRef StaticArgs, ArrayRef DynamicArgs); /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath /// if Cond if false. void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, llvm::Value *Ptr, ArrayRef StaticArgs); /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime /// checking is enabled. Otherwise, just emit an unreachable instruction. void EmitUnreachable(SourceLocation Loc); /// Create a basic block that will call the trap intrinsic, and emit a /// conditional branch to it, for the -ftrapv checks. void EmitTrapCheck(llvm::Value *Checked); /// Emit a call to trap or debugtrap and attach function attribute /// "trap-func-name" if specified. llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); /// Emit a stub for the cross-DSO CFI check function. void EmitCfiCheckStub(); /// Emit a cross-DSO CFI failure handling function. void EmitCfiCheckFail(); /// Create a check for a function parameter that may potentially be /// declared as non-null. void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, AbstractCallee AC, unsigned ParmNum); /// EmitCallArg - Emit a single call argument. void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); /// EmitDelegateCallArg - We are performing a delegate call; that /// is, the current function is delegating to another one. Produce /// a r-value suitable for passing the given parameter. void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, SourceLocation loc); /// SetFPAccuracy - Set the minimum required accuracy of the given floating /// point operation, expressed as the maximum relative error in ulp. void SetFPAccuracy(llvm::Value *Val, float Accuracy); private: llvm::MDNode *getRangeForLoadFromType(QualType Ty); void EmitReturnOfRValue(RValue RV, QualType Ty); void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); llvm::SmallVector, 4> DeferredReplacements; /// Set the address of a local variable. void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); LocalDeclMap.insert({VD, Addr}); } /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty /// from function arguments into \arg Dst. See ABIArgInfo::Expand. /// /// \param AI - The first function argument of the expansion. void ExpandTypeFromArgs(QualType Ty, LValue Dst, SmallVectorImpl::iterator &AI); /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg /// Ty, into individual arguments on the provided vector \arg IRCallArgs, /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, SmallVectorImpl &IRCallArgs, unsigned &IRCallArgPos); llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, std::string &ConstraintStr); llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, QualType InputType, std::string &ConstraintStr, SourceLocation Loc); /// Attempts to statically evaluate the object size of E. If that /// fails, emits code to figure the size of E out for us. This is /// pass_object_size aware. /// /// If EmittedExpr is non-null, this will use that instead of re-emitting E. llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, llvm::IntegerType *ResType, llvm::Value *EmittedE); /// Emits the size of E, as required by __builtin_object_size. This /// function is aware of pass_object_size parameters, and will act accordingly /// if E is a parameter with the pass_object_size attribute. llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, llvm::IntegerType *ResType, llvm::Value *EmittedE); public: #ifndef NDEBUG // Determine whether the given argument is an Objective-C method // that may have type parameters in its signature. static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { const DeclContext *dc = method->getDeclContext(); if (const ObjCInterfaceDecl *classDecl= dyn_cast(dc)) { return classDecl->getTypeParamListAsWritten(); } if (const ObjCCategoryDecl *catDecl = dyn_cast(dc)) { return catDecl->getTypeParamList(); } return false; } template static bool isObjCMethodWithTypeParams(const T *) { return false; } #endif enum class EvaluationOrder { ///! No language constraints on evaluation order. Default, ///! Language semantics require left-to-right evaluation. ForceLeftToRight, ///! Language semantics require right-to-left evaluation. ForceRightToLeft }; /// EmitCallArgs - Emit call arguments for a function. template void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range ArgRange, AbstractCallee AC = AbstractCallee(), unsigned ParamsToSkip = 0, EvaluationOrder Order = EvaluationOrder::Default) { SmallVector ArgTypes; CallExpr::const_arg_iterator Arg = ArgRange.begin(); assert((ParamsToSkip == 0 || CallArgTypeInfo) && "Can't skip parameters if type info is not provided"); if (CallArgTypeInfo) { #ifndef NDEBUG bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); #endif // First, use the argument types that the type info knows about for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, E = CallArgTypeInfo->param_type_end(); I != E; ++I, ++Arg) { assert(Arg != ArgRange.end() && "Running over edge of argument list!"); assert((isGenericMethod || ((*I)->isVariablyModifiedType() || (*I).getNonReferenceType()->isObjCRetainableType() || getContext() .getCanonicalType((*I).getNonReferenceType()) .getTypePtr() == getContext() .getCanonicalType((*Arg)->getType()) .getTypePtr())) && "type mismatch in call argument!"); ArgTypes.push_back(*I); } } // Either we've emitted all the call args, or we have a call to variadic // function. assert((Arg == ArgRange.end() || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) && "Extra arguments in non-variadic function!"); // If we still have any arguments, emit them using the type of the argument. for (auto *A : llvm::make_range(Arg, ArgRange.end())) ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); } void EmitCallArgs(CallArgList &Args, ArrayRef ArgTypes, llvm::iterator_range ArgRange, AbstractCallee AC = AbstractCallee(), unsigned ParamsToSkip = 0, EvaluationOrder Order = EvaluationOrder::Default); /// EmitPointerWithAlignment - Given an expression with a pointer type, /// emit the value and compute our best estimate of the alignment of the /// pointee. /// /// \param BaseInfo - If non-null, this will be initialized with /// information about the source of the alignment and the may-alias /// attribute. Note that this function will conservatively fall back on /// the type when it doesn't recognize the expression and may-alias will /// be set to false. /// /// One reasonable way to use this information is when there's a language /// guarantee that the pointer must be aligned to some stricter value, and /// we're simply trying to ensure that sufficiently obvious uses of under- /// aligned objects don't get miscompiled; for example, a placement new /// into the address of a local variable. In such a case, it's quite /// reasonable to just ignore the returned alignment when it isn't from an /// explicit source. Address EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr, TBAAAccessInfo *TBAAInfo = nullptr); /// If \p E references a parameter with pass_object_size info or a constant /// array size modifier, emit the object size divided by the size of \p EltTy. /// Otherwise return null. llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); struct TargetMultiVersionResolverOption { llvm::Function *Function; TargetAttr::ParsedTargetAttr ParsedAttribute; unsigned Priority; TargetMultiVersionResolverOption( const TargetInfo &TargInfo, llvm::Function *F, const clang::TargetAttr::ParsedTargetAttr &PT) : Function(F), ParsedAttribute(PT), Priority(0u) { for (StringRef Feat : PT.Features) Priority = std::max(Priority, TargInfo.multiVersionSortPriority(Feat.substr(1))); if (!PT.Architecture.empty()) Priority = std::max(Priority, TargInfo.multiVersionSortPriority(PT.Architecture)); } bool operator>(const TargetMultiVersionResolverOption &Other) const { return Priority > Other.Priority; } }; void EmitTargetMultiVersionResolver( llvm::Function *Resolver, ArrayRef Options); struct CPUDispatchMultiVersionResolverOption { llvm::Function *Function; // Note: EmitX86CPUSupports only has 32 bits available, so we store the mask // as 32 bits here. When 64-bit support is added to __builtin_cpu_supports, // this can be extended to 64 bits. uint32_t FeatureMask; CPUDispatchMultiVersionResolverOption(llvm::Function *F, uint64_t Mask) : Function(F), FeatureMask(static_cast(Mask)) {} bool operator>(const CPUDispatchMultiVersionResolverOption &Other) const { return FeatureMask > Other.FeatureMask; } }; void EmitCPUDispatchMultiVersionResolver( llvm::Function *Resolver, ArrayRef Options); static uint32_t GetX86CpuSupportsMask(ArrayRef FeatureStrs); private: QualType getVarArgType(const Expr *Arg); void EmitDeclMetadata(); BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, const AutoVarEmission &emission); void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); llvm::Value *GetValueForARMHint(unsigned BuiltinID); llvm::Value *EmitX86CpuIs(const CallExpr *E); llvm::Value *EmitX86CpuIs(StringRef CPUStr); llvm::Value *EmitX86CpuSupports(const CallExpr *E); llvm::Value *EmitX86CpuSupports(ArrayRef FeatureStrs); llvm::Value *EmitX86CpuSupports(uint32_t Mask); llvm::Value *EmitX86CpuInit(); llvm::Value * FormResolverCondition(const TargetMultiVersionResolverOption &RO); }; inline DominatingLLVMValue::saved_type DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { if (!needsSaving(value)) return saved_type(value, false); // Otherwise, we need an alloca. auto align = CharUnits::fromQuantity( CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); Address alloca = CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); CGF.Builder.CreateStore(value, alloca); return saved_type(alloca.getPointer(), true); } inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, saved_type value) { // If the value says it wasn't saved, trust that it's still dominating. if (!value.getInt()) return value.getPointer(); // Otherwise, it should be an alloca instruction, as set up in save(). auto alloca = cast(value.getPointer()); return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); } } // end namespace CodeGen } // end namespace clang #endif