//===-- EHScopeStack.h - Stack for cleanup IR generation --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes should be the minimum interface required for other parts of // CodeGen to emit cleanups. The implementation is in CGCleanup.cpp and other // implemenentation details that are not widely needed are in CGCleanup.h. // //===----------------------------------------------------------------------===// #ifndef CLANG_CODEGEN_EHSCOPESTACK_H #define CLANG_CODEGEN_EHSCOPESTACK_H #include "clang/Basic/LLVM.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Value.h" #include "llvm/IR/Instructions.h" namespace clang { namespace CodeGen { class CodeGenFunction; /// A branch fixup. These are required when emitting a goto to a /// label which hasn't been emitted yet. The goto is optimistically /// emitted as a branch to the basic block for the label, and (if it /// occurs in a scope with non-trivial cleanups) a fixup is added to /// the innermost cleanup. When a (normal) cleanup is popped, any /// unresolved fixups in that scope are threaded through the cleanup. struct BranchFixup { /// The block containing the terminator which needs to be modified /// into a switch if this fixup is resolved into the current scope. /// If null, LatestBranch points directly to the destination. llvm::BasicBlock *OptimisticBranchBlock; /// The ultimate destination of the branch. /// /// This can be set to null to indicate that this fixup was /// successfully resolved. llvm::BasicBlock *Destination; /// The destination index value. unsigned DestinationIndex; /// The initial branch of the fixup. llvm::BranchInst *InitialBranch; }; template struct InvariantValue { typedef T type; typedef T saved_type; static bool needsSaving(type value) { return false; } static saved_type save(CodeGenFunction &CGF, type value) { return value; } static type restore(CodeGenFunction &CGF, saved_type value) { return value; } }; /// A metaprogramming class for ensuring that a value will dominate an /// arbitrary position in a function. template struct DominatingValue : InvariantValue {}; template ::value && !llvm::is_base_of::value && !llvm::is_base_of::value> struct DominatingPointer; template struct DominatingPointer : InvariantValue {}; // template struct DominatingPointer at end of file template struct DominatingValue : DominatingPointer {}; enum CleanupKind { EHCleanup = 0x1, NormalCleanup = 0x2, NormalAndEHCleanup = EHCleanup | NormalCleanup, InactiveCleanup = 0x4, InactiveEHCleanup = EHCleanup | InactiveCleanup, InactiveNormalCleanup = NormalCleanup | InactiveCleanup, InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup }; /// A stack of scopes which respond to exceptions, including cleanups /// and catch blocks. class EHScopeStack { public: /// A saved depth on the scope stack. This is necessary because /// pushing scopes onto the stack invalidates iterators. class stable_iterator { friend class EHScopeStack; /// Offset from StartOfData to EndOfBuffer. ptrdiff_t Size; stable_iterator(ptrdiff_t Size) : Size(Size) {} public: static stable_iterator invalid() { return stable_iterator(-1); } stable_iterator() : Size(-1) {} bool isValid() const { return Size >= 0; } /// Returns true if this scope encloses I. /// Returns false if I is invalid. /// This scope must be valid. bool encloses(stable_iterator I) const { return Size <= I.Size; } /// Returns true if this scope strictly encloses I: that is, /// if it encloses I and is not I. /// Returns false is I is invalid. /// This scope must be valid. bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } friend bool operator==(stable_iterator A, stable_iterator B) { return A.Size == B.Size; } friend bool operator!=(stable_iterator A, stable_iterator B) { return A.Size != B.Size; } }; /// Information for lazily generating a cleanup. Subclasses must be /// POD-like: cleanups will not be destructed, and they will be /// allocated on the cleanup stack and freely copied and moved /// around. /// /// Cleanup implementations should generally be declared in an /// anonymous namespace. class Cleanup { // Anchor the construction vtable. virtual void anchor(); public: /// Generation flags. class Flags { enum { F_IsForEH = 0x1, F_IsNormalCleanupKind = 0x2, F_IsEHCleanupKind = 0x4 }; unsigned flags; public: Flags() : flags(0) {} /// isForEH - true if the current emission is for an EH cleanup. bool isForEHCleanup() const { return flags & F_IsForEH; } bool isForNormalCleanup() const { return !isForEHCleanup(); } void setIsForEHCleanup() { flags |= F_IsForEH; } bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } /// isEHCleanupKind - true if the cleanup was pushed as an EH /// cleanup. bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } }; // Provide a virtual destructor to suppress a very common warning // that unfortunately cannot be suppressed without this. Cleanups // should not rely on this destructor ever being called. virtual ~Cleanup() {} /// Emit the cleanup. For normal cleanups, this is run in the /// same EH context as when the cleanup was pushed, i.e. the /// immediately-enclosing context of the cleanup scope. For /// EH cleanups, this is run in a terminate context. /// // \param flags cleanup kind. virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; }; /// ConditionalCleanupN stores the saved form of its N parameters, /// then restores them and performs the cleanup. template class ConditionalCleanup1 : public Cleanup { typedef typename DominatingValue::saved_type A0_saved; A0_saved a0_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue::restore(CGF, a0_saved); T(a0).Emit(CGF, flags); } public: ConditionalCleanup1(A0_saved a0) : a0_saved(a0) {} }; template class ConditionalCleanup2 : public Cleanup { typedef typename DominatingValue::saved_type A0_saved; typedef typename DominatingValue::saved_type A1_saved; A0_saved a0_saved; A1_saved a1_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue::restore(CGF, a0_saved); A1 a1 = DominatingValue::restore(CGF, a1_saved); T(a0, a1).Emit(CGF, flags); } public: ConditionalCleanup2(A0_saved a0, A1_saved a1) : a0_saved(a0), a1_saved(a1) {} }; template class ConditionalCleanup3 : public Cleanup { typedef typename DominatingValue::saved_type A0_saved; typedef typename DominatingValue::saved_type A1_saved; typedef typename DominatingValue::saved_type A2_saved; A0_saved a0_saved; A1_saved a1_saved; A2_saved a2_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue::restore(CGF, a0_saved); A1 a1 = DominatingValue::restore(CGF, a1_saved); A2 a2 = DominatingValue::restore(CGF, a2_saved); T(a0, a1, a2).Emit(CGF, flags); } public: ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} }; template class ConditionalCleanup4 : public Cleanup { typedef typename DominatingValue::saved_type A0_saved; typedef typename DominatingValue::saved_type A1_saved; typedef typename DominatingValue::saved_type A2_saved; typedef typename DominatingValue::saved_type A3_saved; A0_saved a0_saved; A1_saved a1_saved; A2_saved a2_saved; A3_saved a3_saved; void Emit(CodeGenFunction &CGF, Flags flags) { A0 a0 = DominatingValue::restore(CGF, a0_saved); A1 a1 = DominatingValue::restore(CGF, a1_saved); A2 a2 = DominatingValue::restore(CGF, a2_saved); A3 a3 = DominatingValue::restore(CGF, a3_saved); T(a0, a1, a2, a3).Emit(CGF, flags); } public: ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} }; private: // The implementation for this class is in CGException.h and // CGException.cpp; the definition is here because it's used as a // member of CodeGenFunction. /// The start of the scope-stack buffer, i.e. the allocated pointer /// for the buffer. All of these pointers are either simultaneously /// null or simultaneously valid. char *StartOfBuffer; /// The end of the buffer. char *EndOfBuffer; /// The first valid entry in the buffer. char *StartOfData; /// The innermost normal cleanup on the stack. stable_iterator InnermostNormalCleanup; /// The innermost EH scope on the stack. stable_iterator InnermostEHScope; /// The current set of branch fixups. A branch fixup is a jump to /// an as-yet unemitted label, i.e. a label for which we don't yet /// know the EH stack depth. Whenever we pop a cleanup, we have /// to thread all the current branch fixups through it. /// /// Fixups are recorded as the Use of the respective branch or /// switch statement. The use points to the final destination. /// When popping out of a cleanup, these uses are threaded through /// the cleanup and adjusted to point to the new cleanup. /// /// Note that branches are allowed to jump into protected scopes /// in certain situations; e.g. the following code is legal: /// struct A { ~A(); }; // trivial ctor, non-trivial dtor /// goto foo; /// A a; /// foo: /// bar(); SmallVector BranchFixups; char *allocate(size_t Size); void *pushCleanup(CleanupKind K, size_t DataSize); public: EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), InnermostNormalCleanup(stable_end()), InnermostEHScope(stable_end()) {} ~EHScopeStack() { delete[] StartOfBuffer; } // Variadic templates would make this not terrible. /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(); (void) Obj; } /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind, A0 a0) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0); (void) Obj; } /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1); (void) Obj; } /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1, a2); (void) Obj; } /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); (void) Obj; } /// Push a lazily-created cleanup on the stack. template void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { void *Buffer = pushCleanup(Kind, sizeof(T)); Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); (void) Obj; } // Feel free to add more variants of the following: /// Push a cleanup with non-constant storage requirements on the /// stack. The cleanup type must provide an additional static method: /// static size_t getExtraSize(size_t); /// The argument to this method will be the value N, which will also /// be passed as the first argument to the constructor. /// /// The data stored in the extra storage must obey the same /// restrictions as normal cleanup member data. /// /// The pointer returned from this method is valid until the cleanup /// stack is modified. template T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); return new (Buffer) T(N, a0, a1, a2); } void pushCopyOfCleanup(CleanupKind Kind, const void *Cleanup, size_t Size) { void *Buffer = pushCleanup(Kind, Size); std::memcpy(Buffer, Cleanup, Size); } /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. void popCleanup(); /// Push a set of catch handlers on the stack. The catch is /// uninitialized and will need to have the given number of handlers /// set on it. class EHCatchScope *pushCatch(unsigned NumHandlers); /// Pops a catch scope off the stack. This is private to CGException.cpp. void popCatch(); /// Push an exceptions filter on the stack. class EHFilterScope *pushFilter(unsigned NumFilters); /// Pops an exceptions filter off the stack. void popFilter(); /// Push a terminate handler on the stack. void pushTerminate(); /// Pops a terminate handler off the stack. void popTerminate(); /// Determines whether the exception-scopes stack is empty. bool empty() const { return StartOfData == EndOfBuffer; } bool requiresLandingPad() const { return InnermostEHScope != stable_end(); } /// Determines whether there are any normal cleanups on the stack. bool hasNormalCleanups() const { return InnermostNormalCleanup != stable_end(); } /// Returns the innermost normal cleanup on the stack, or /// stable_end() if there are no normal cleanups. stable_iterator getInnermostNormalCleanup() const { return InnermostNormalCleanup; } stable_iterator getInnermostActiveNormalCleanup() const; stable_iterator getInnermostEHScope() const { return InnermostEHScope; } stable_iterator getInnermostActiveEHScope() const; /// An unstable reference to a scope-stack depth. Invalidated by /// pushes but not pops. class iterator; /// Returns an iterator pointing to the innermost EH scope. iterator begin() const; /// Returns an iterator pointing to the outermost EH scope. iterator end() const; /// Create a stable reference to the top of the EH stack. The /// returned reference is valid until that scope is popped off the /// stack. stable_iterator stable_begin() const { return stable_iterator(EndOfBuffer - StartOfData); } /// Create a stable reference to the bottom of the EH stack. static stable_iterator stable_end() { return stable_iterator(0); } /// Translates an iterator into a stable_iterator. stable_iterator stabilize(iterator it) const; /// Turn a stable reference to a scope depth into a unstable pointer /// to the EH stack. iterator find(stable_iterator save) const; /// Removes the cleanup pointed to by the given stable_iterator. void removeCleanup(stable_iterator save); /// Add a branch fixup to the current cleanup scope. BranchFixup &addBranchFixup() { assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); BranchFixups.push_back(BranchFixup()); return BranchFixups.back(); } unsigned getNumBranchFixups() const { return BranchFixups.size(); } BranchFixup &getBranchFixup(unsigned I) { assert(I < getNumBranchFixups()); return BranchFixups[I]; } /// Pops lazily-removed fixups from the end of the list. This /// should only be called by procedures which have just popped a /// cleanup or resolved one or more fixups. void popNullFixups(); /// Clears the branch-fixups list. This should only be called by /// ResolveAllBranchFixups. void clearFixups() { BranchFixups.clear(); } }; } // namespace CodeGen } // namespace clang #endif