//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This provides C++ code generation targeting the Itanium C++ ABI. The class // in this file generates structures that follow the Itanium C++ ABI, which is // documented at: // http://www.codesourcery.com/public/cxx-abi/abi.html // http://www.codesourcery.com/public/cxx-abi/abi-eh.html // // It also supports the closely-related ARM ABI, documented at: // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf // //===----------------------------------------------------------------------===// #include "CGCXXABI.h" #include "CGRecordLayout.h" #include "CGVTables.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/Mangle.h" #include "clang/AST/Type.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Value.h" using namespace clang; using namespace CodeGen; namespace { class ItaniumCXXABI : public CodeGen::CGCXXABI { /// VTables - All the vtables which have been defined. llvm::DenseMap VTables; protected: bool UseARMMethodPtrABI; bool UseARMGuardVarABI; ItaniumMangleContext &getMangleContext() { return cast(CodeGen::CGCXXABI::getMangleContext()); } public: ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool UseARMMethodPtrABI = false, bool UseARMGuardVarABI = false) : CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI), UseARMGuardVarABI(UseARMGuardVarABI) { } bool isReturnTypeIndirect(const CXXRecordDecl *RD) const { // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always indirect. return !RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor(); } RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const { // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always indirect. if (!RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor()) return RAA_Indirect; return RAA_Default; } bool isZeroInitializable(const MemberPointerType *MPT); llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT); llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, llvm::Value *&This, llvm::Value *MemFnPtr, const MemberPointerType *MPT); llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF, llvm::Value *Base, llvm::Value *MemPtr, const MemberPointerType *MPT); llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src); llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, llvm::Constant *Src); llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT); llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD); llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, CharUnits offset); llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT); llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD, CharUnits ThisAdjustment); llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality); llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, llvm::Value *Addr, const MemberPointerType *MPT); llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF, llvm::Value *ptr, QualType type); llvm::Value *GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This, const CXXRecordDecl *ClassDecl, const CXXRecordDecl *BaseClassDecl); void BuildConstructorSignature(const CXXConstructorDecl *Ctor, CXXCtorType T, CanQualType &ResTy, SmallVectorImpl &ArgTys); void EmitCXXConstructors(const CXXConstructorDecl *D); void BuildDestructorSignature(const CXXDestructorDecl *Dtor, CXXDtorType T, CanQualType &ResTy, SmallVectorImpl &ArgTys); bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, CXXDtorType DT) const { // Itanium does not emit any destructor variant as an inline thunk. // Delegating may occur as an optimization, but all variants are either // emitted with external linkage or as linkonce if they are inline and used. return false; } void EmitCXXDestructors(const CXXDestructorDecl *D); void BuildInstanceFunctionParams(CodeGenFunction &CGF, QualType &ResTy, FunctionArgList &Params); void EmitInstanceFunctionProlog(CodeGenFunction &CGF); void EmitConstructorCall(CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, llvm::Value *This, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd); void emitVTableDefinitions(CodeGenVTables &CGVT, const CXXRecordDecl *RD); llvm::Value *getVTableAddressPointInStructor( CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset); llvm::Constant * getVTableAddressPointForConstExpr(BaseSubobject Base, const CXXRecordDecl *VTableClass); llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, CharUnits VPtrOffset); llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, llvm::Type *Ty); void EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, SourceLocation CallLoc, llvm::Value *This); void emitVirtualInheritanceTables(const CXXRecordDecl *RD); void setThunkLinkage(llvm::Function *Thunk, bool ForVTable) { // Allow inlining of thunks by emitting them with available_externally // linkage together with vtables when needed. if (ForVTable) Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); } llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This, const ThisAdjustment &TA); llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret, const ReturnAdjustment &RA); StringRef GetPureVirtualCallName() { return "__cxa_pure_virtual"; } StringRef GetDeletedVirtualCallName() { return "__cxa_deleted_virtual"; } CharUnits getArrayCookieSizeImpl(QualType elementType); llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, llvm::Value *NewPtr, llvm::Value *NumElements, const CXXNewExpr *expr, QualType ElementType); llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr, CharUnits cookieSize); void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, llvm::GlobalVariable *DeclPtr, bool PerformInit); void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, llvm::Constant *dtor, llvm::Constant *addr); llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD, llvm::GlobalVariable *Var); void EmitThreadLocalInitFuncs( llvm::ArrayRef > Decls, llvm::Function *InitFunc); LValue EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF, const DeclRefExpr *DRE); bool NeedsVTTParameter(GlobalDecl GD); }; class ARMCXXABI : public ItaniumCXXABI { public: ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, /* UseARMGuardVarABI = */ true) {} bool HasThisReturn(GlobalDecl GD) const { return (isa(GD.getDecl()) || ( isa(GD.getDecl()) && GD.getDtorType() != Dtor_Deleting)); } void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy); CharUnits getArrayCookieSizeImpl(QualType elementType); llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, llvm::Value *NewPtr, llvm::Value *NumElements, const CXXNewExpr *expr, QualType ElementType); llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr, CharUnits cookieSize); }; } CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { switch (CGM.getTarget().getCXXABI().getKind()) { // For IR-generation purposes, there's no significant difference // between the ARM and iOS ABIs. case TargetCXXABI::GenericARM: case TargetCXXABI::iOS: return new ARMCXXABI(CGM); // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't // include the other 32-bit ARM oddities: constructor/destructor return values // and array cookies. case TargetCXXABI::GenericAArch64: return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, /* UseARMGuardVarABI = */ true); case TargetCXXABI::GenericItanium: if (CGM.getContext().getTargetInfo().getTriple().getArch() == llvm::Triple::le32) { // For PNaCl, use ARM-style method pointers so that PNaCl code // does not assume anything about the alignment of function // pointers. return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, /* UseARMGuardVarABI = */ false); } return new ItaniumCXXABI(CGM); case TargetCXXABI::Microsoft: llvm_unreachable("Microsoft ABI is not Itanium-based"); } llvm_unreachable("bad ABI kind"); } llvm::Type * ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { if (MPT->isMemberDataPointer()) return CGM.PtrDiffTy; return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy, NULL); } /// In the Itanium and ARM ABIs, method pointers have the form: /// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; /// /// In the Itanium ABI: /// - method pointers are virtual if (memptr.ptr & 1) is nonzero /// - the this-adjustment is (memptr.adj) /// - the virtual offset is (memptr.ptr - 1) /// /// In the ARM ABI: /// - method pointers are virtual if (memptr.adj & 1) is nonzero /// - the this-adjustment is (memptr.adj >> 1) /// - the virtual offset is (memptr.ptr) /// ARM uses 'adj' for the virtual flag because Thumb functions /// may be only single-byte aligned. /// /// If the member is virtual, the adjusted 'this' pointer points /// to a vtable pointer from which the virtual offset is applied. /// /// If the member is non-virtual, memptr.ptr is the address of /// the function to call. llvm::Value * ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, llvm::Value *&This, llvm::Value *MemFnPtr, const MemberPointerType *MPT) { CGBuilderTy &Builder = CGF.Builder; const FunctionProtoType *FPT = MPT->getPointeeType()->getAs(); const CXXRecordDecl *RD = cast(MPT->getClass()->getAs()->getDecl()); llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( CGM.getTypes().arrangeCXXMethodType(RD, FPT)); llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1); llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual"); llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual"); llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end"); // Extract memptr.adj, which is in the second field. llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj"); // Compute the true adjustment. llvm::Value *Adj = RawAdj; if (UseARMMethodPtrABI) Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted"); // Apply the adjustment and cast back to the original struct type // for consistency. llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy()); Ptr = Builder.CreateInBoundsGEP(Ptr, Adj); This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted"); // Load the function pointer. llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr"); // If the LSB in the function pointer is 1, the function pointer points to // a virtual function. llvm::Value *IsVirtual; if (UseARMMethodPtrABI) IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1); else IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1); IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual"); Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); // In the virtual path, the adjustment left 'This' pointing to the // vtable of the correct base subobject. The "function pointer" is an // offset within the vtable (+1 for the virtual flag on non-ARM). CGF.EmitBlock(FnVirtual); // Cast the adjusted this to a pointer to vtable pointer and load. llvm::Type *VTableTy = Builder.getInt8PtrTy(); llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo()); VTable = Builder.CreateLoad(VTable, "memptr.vtable"); // Apply the offset. llvm::Value *VTableOffset = FnAsInt; if (!UseARMMethodPtrABI) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1); VTable = Builder.CreateGEP(VTable, VTableOffset); // Load the virtual function to call. VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo()); llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn"); CGF.EmitBranch(FnEnd); // In the non-virtual path, the function pointer is actually a // function pointer. CGF.EmitBlock(FnNonVirtual); llvm::Value *NonVirtualFn = Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn"); // We're done. CGF.EmitBlock(FnEnd); llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2); Callee->addIncoming(VirtualFn, FnVirtual); Callee->addIncoming(NonVirtualFn, FnNonVirtual); return Callee; } /// Compute an l-value by applying the given pointer-to-member to a /// base object. llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF, llvm::Value *Base, llvm::Value *MemPtr, const MemberPointerType *MPT) { assert(MemPtr->getType() == CGM.PtrDiffTy); CGBuilderTy &Builder = CGF.Builder; unsigned AS = Base->getType()->getPointerAddressSpace(); // Cast to char*. Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS)); // Apply the offset, which we assume is non-null. llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset"); // Cast the address to the appropriate pointer type, adopting the // address space of the base pointer. llvm::Type *PType = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); return Builder.CreateBitCast(Addr, PType); } /// Perform a bitcast, derived-to-base, or base-to-derived member pointer /// conversion. /// /// Bitcast conversions are always a no-op under Itanium. /// /// Obligatory offset/adjustment diagram: /// <-- offset --> <-- adjustment --> /// |--------------------------|----------------------|--------------------| /// ^Derived address point ^Base address point ^Member address point /// /// So when converting a base member pointer to a derived member pointer, /// we add the offset to the adjustment because the address point has /// decreased; and conversely, when converting a derived MP to a base MP /// we subtract the offset from the adjustment because the address point /// has increased. /// /// The standard forbids (at compile time) conversion to and from /// virtual bases, which is why we don't have to consider them here. /// /// The standard forbids (at run time) casting a derived MP to a base /// MP when the derived MP does not point to a member of the base. /// This is why -1 is a reasonable choice for null data member /// pointers. llvm::Value * ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *src) { assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || E->getCastKind() == CK_BaseToDerivedMemberPointer || E->getCastKind() == CK_ReinterpretMemberPointer); // Under Itanium, reinterprets don't require any additional processing. if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; // Use constant emission if we can. if (isa(src)) return EmitMemberPointerConversion(E, cast(src)); llvm::Constant *adj = getMemberPointerAdjustment(E); if (!adj) return src; CGBuilderTy &Builder = CGF.Builder; bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); const MemberPointerType *destTy = E->getType()->castAs(); // For member data pointers, this is just a matter of adding the // offset if the source is non-null. if (destTy->isMemberDataPointer()) { llvm::Value *dst; if (isDerivedToBase) dst = Builder.CreateNSWSub(src, adj, "adj"); else dst = Builder.CreateNSWAdd(src, adj, "adj"); // Null check. llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType()); llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull"); return Builder.CreateSelect(isNull, src, dst); } // The this-adjustment is left-shifted by 1 on ARM. if (UseARMMethodPtrABI) { uint64_t offset = cast(adj)->getZExtValue(); offset <<= 1; adj = llvm::ConstantInt::get(adj->getType(), offset); } llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj"); llvm::Value *dstAdj; if (isDerivedToBase) dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj"); else dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj"); return Builder.CreateInsertValue(src, dstAdj, 1); } llvm::Constant * ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E, llvm::Constant *src) { assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || E->getCastKind() == CK_BaseToDerivedMemberPointer || E->getCastKind() == CK_ReinterpretMemberPointer); // Under Itanium, reinterprets don't require any additional processing. if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; // If the adjustment is trivial, we don't need to do anything. llvm::Constant *adj = getMemberPointerAdjustment(E); if (!adj) return src; bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); const MemberPointerType *destTy = E->getType()->castAs(); // For member data pointers, this is just a matter of adding the // offset if the source is non-null. if (destTy->isMemberDataPointer()) { // null maps to null. if (src->isAllOnesValue()) return src; if (isDerivedToBase) return llvm::ConstantExpr::getNSWSub(src, adj); else return llvm::ConstantExpr::getNSWAdd(src, adj); } // The this-adjustment is left-shifted by 1 on ARM. if (UseARMMethodPtrABI) { uint64_t offset = cast(adj)->getZExtValue(); offset <<= 1; adj = llvm::ConstantInt::get(adj->getType(), offset); } llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1); llvm::Constant *dstAdj; if (isDerivedToBase) dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj); else dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj); return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1); } llvm::Constant * ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { // Itanium C++ ABI 2.3: // A NULL pointer is represented as -1. if (MPT->isMemberDataPointer()) return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true); llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0); llvm::Constant *Values[2] = { Zero, Zero }; return llvm::ConstantStruct::getAnon(Values); } llvm::Constant * ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, CharUnits offset) { // Itanium C++ ABI 2.3: // A pointer to data member is an offset from the base address of // the class object containing it, represented as a ptrdiff_t return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()); } llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) { return BuildMemberPointer(MD, CharUnits::Zero()); } llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD, CharUnits ThisAdjustment) { assert(MD->isInstance() && "Member function must not be static!"); MD = MD->getCanonicalDecl(); CodeGenTypes &Types = CGM.getTypes(); // Get the function pointer (or index if this is a virtual function). llvm::Constant *MemPtr[2]; if (MD->isVirtual()) { uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(MD); const ASTContext &Context = getContext(); CharUnits PointerWidth = Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); uint64_t VTableOffset = (Index * PointerWidth.getQuantity()); if (UseARMMethodPtrABI) { // ARM C++ ABI 3.2.1: // This ABI specifies that adj contains twice the this // adjustment, plus 1 if the member function is virtual. The // least significant bit of adj then makes exactly the same // discrimination as the least significant bit of ptr does for // Itanium. MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset); MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, 2 * ThisAdjustment.getQuantity() + 1); } else { // Itanium C++ ABI 2.3: // For a virtual function, [the pointer field] is 1 plus the // virtual table offset (in bytes) of the function, // represented as a ptrdiff_t. MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1); MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, ThisAdjustment.getQuantity()); } } else { const FunctionProtoType *FPT = MD->getType()->castAs(); llvm::Type *Ty; // Check whether the function has a computable LLVM signature. if (Types.isFuncTypeConvertible(FPT)) { // The function has a computable LLVM signature; use the correct type. Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); } else { // Use an arbitrary non-function type to tell GetAddrOfFunction that the // function type is incomplete. Ty = CGM.PtrDiffTy; } llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty); MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy); MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, (UseARMMethodPtrABI ? 2 : 1) * ThisAdjustment.getQuantity()); } return llvm::ConstantStruct::getAnon(MemPtr); } llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP, QualType MPType) { const MemberPointerType *MPT = MPType->castAs(); const ValueDecl *MPD = MP.getMemberPointerDecl(); if (!MPD) return EmitNullMemberPointer(MPT); CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP); if (const CXXMethodDecl *MD = dyn_cast(MPD)) return BuildMemberPointer(MD, ThisAdjustment); CharUnits FieldOffset = getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); } /// The comparison algorithm is pretty easy: the member pointers are /// the same if they're either bitwise identical *or* both null. /// /// ARM is different here only because null-ness is more complicated. llvm::Value * ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality) { CGBuilderTy &Builder = CGF.Builder; llvm::ICmpInst::Predicate Eq; llvm::Instruction::BinaryOps And, Or; if (Inequality) { Eq = llvm::ICmpInst::ICMP_NE; And = llvm::Instruction::Or; Or = llvm::Instruction::And; } else { Eq = llvm::ICmpInst::ICMP_EQ; And = llvm::Instruction::And; Or = llvm::Instruction::Or; } // Member data pointers are easy because there's a unique null // value, so it just comes down to bitwise equality. if (MPT->isMemberDataPointer()) return Builder.CreateICmp(Eq, L, R); // For member function pointers, the tautologies are more complex. // The Itanium tautology is: // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) // The ARM tautology is: // (L == R) <==> (L.ptr == R.ptr && // (L.adj == R.adj || // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) // The inequality tautologies have exactly the same structure, except // applying De Morgan's laws. llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr"); llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr"); // This condition tests whether L.ptr == R.ptr. This must always be // true for equality to hold. llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr"); // This condition, together with the assumption that L.ptr == R.ptr, // tests whether the pointers are both null. ARM imposes an extra // condition. llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType()); llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null"); // This condition tests whether L.adj == R.adj. If this isn't // true, the pointers are unequal unless they're both null. llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj"); llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj"); llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj"); // Null member function pointers on ARM clear the low bit of Adj, // so the zero condition has to check that neither low bit is set. if (UseARMMethodPtrABI) { llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1); // Compute (l.adj | r.adj) & 1 and test it against zero. llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj"); llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One); llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero, "cmp.or.adj"); EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero); } // Tie together all our conditions. llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq); Result = Builder.CreateBinOp(And, PtrEq, Result, Inequality ? "memptr.ne" : "memptr.eq"); return Result; } llvm::Value * ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, llvm::Value *MemPtr, const MemberPointerType *MPT) { CGBuilderTy &Builder = CGF.Builder; /// For member data pointers, this is just a check against -1. if (MPT->isMemberDataPointer()) { assert(MemPtr->getType() == CGM.PtrDiffTy); llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(MemPtr->getType()); return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool"); } // In Itanium, a member function pointer is not null if 'ptr' is not null. llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr"); llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0); llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool"); // On ARM, a member function pointer is also non-null if the low bit of 'adj' // (the virtual bit) is set. if (UseARMMethodPtrABI) { llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1); llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj"); llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit"); llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero, "memptr.isvirtual"); Result = Builder.CreateOr(Result, IsVirtual); } return Result; } /// The Itanium ABI requires non-zero initialization only for data /// member pointers, for which '0' is a valid offset. bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { return MPT->getPointeeType()->isFunctionType(); } /// The Itanium ABI always places an offset to the complete object /// at entry -2 in the vtable. llvm::Value *ItaniumCXXABI::adjustToCompleteObject(CodeGenFunction &CGF, llvm::Value *ptr, QualType type) { // Grab the vtable pointer as an intptr_t*. llvm::Value *vtable = CGF.GetVTablePtr(ptr, CGF.IntPtrTy->getPointerTo()); // Track back to entry -2 and pull out the offset there. llvm::Value *offsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64(vtable, -2, "complete-offset.ptr"); llvm::LoadInst *offset = CGF.Builder.CreateLoad(offsetPtr); offset->setAlignment(CGF.PointerAlignInBytes); // Apply the offset. ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); return CGF.Builder.CreateInBoundsGEP(ptr, offset); } llvm::Value * ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This, const CXXRecordDecl *ClassDecl, const CXXRecordDecl *BaseClassDecl) { llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy); CharUnits VBaseOffsetOffset = CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl); llvm::Value *VBaseOffsetPtr = CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(), "vbase.offset.ptr"); VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr, CGM.PtrDiffTy->getPointerTo()); llvm::Value *VBaseOffset = CGF.Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset"); return VBaseOffset; } /// The generic ABI passes 'this', plus a VTT if it's initializing a /// base subobject. void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor, CXXCtorType Type, CanQualType &ResTy, SmallVectorImpl &ArgTys) { ASTContext &Context = getContext(); // 'this' parameter is already there, as well as 'this' return if // HasThisReturn(GlobalDecl(Ctor, Type)) is true // Check if we need to add a VTT parameter (which has type void **). if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0) ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); } void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { // Just make sure we're in sync with TargetCXXABI. assert(CGM.getTarget().getCXXABI().hasConstructorVariants()); // The constructor used for constructing this as a complete class; // constucts the virtual bases, then calls the base constructor. if (!D->getParent()->isAbstract()) { // We don't need to emit the complete ctor if the class is abstract. CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); } // The constructor used for constructing this as a base class; // ignores virtual bases. CGM.EmitGlobal(GlobalDecl(D, Ctor_Base)); } /// The generic ABI passes 'this', plus a VTT if it's destroying a /// base subobject. void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor, CXXDtorType Type, CanQualType &ResTy, SmallVectorImpl &ArgTys) { ASTContext &Context = getContext(); // 'this' parameter is already there, as well as 'this' return if // HasThisReturn(GlobalDecl(Dtor, Type)) is true // Check if we need to add a VTT parameter (which has type void **). if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0) ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); } void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { // The destructor in a virtual table is always a 'deleting' // destructor, which calls the complete destructor and then uses the // appropriate operator delete. if (D->isVirtual()) CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting)); // The destructor used for destructing this as a most-derived class; // call the base destructor and then destructs any virtual bases. CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); // The destructor used for destructing this as a base class; ignores // virtual bases. CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); } void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF, QualType &ResTy, FunctionArgList &Params) { /// Create the 'this' variable. BuildThisParam(CGF, Params); const CXXMethodDecl *MD = cast(CGF.CurGD.getDecl()); assert(MD->isInstance()); // Check if we need a VTT parameter as well. if (NeedsVTTParameter(CGF.CurGD)) { ASTContext &Context = getContext(); // FIXME: avoid the fake decl QualType T = Context.getPointerType(Context.VoidPtrTy); ImplicitParamDecl *VTTDecl = ImplicitParamDecl::Create(Context, 0, MD->getLocation(), &Context.Idents.get("vtt"), T); Params.push_back(VTTDecl); getVTTDecl(CGF) = VTTDecl; } } void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { /// Initialize the 'this' slot. EmitThisParam(CGF); /// Initialize the 'vtt' slot if needed. if (getVTTDecl(CGF)) { getVTTValue(CGF) = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)), "vtt"); } /// If this is a function that the ABI specifies returns 'this', initialize /// the return slot to 'this' at the start of the function. /// /// Unlike the setting of return types, this is done within the ABI /// implementation instead of by clients of CGCXXABI because: /// 1) getThisValue is currently protected /// 2) in theory, an ABI could implement 'this' returns some other way; /// HasThisReturn only specifies a contract, not the implementation if (HasThisReturn(CGF.CurGD)) CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); } void ItaniumCXXABI::EmitConstructorCall(CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, llvm::Value *This, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd) { llvm::Value *VTT = CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, Delegating); QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy); llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type); // FIXME: Provide a source location here. CGF.EmitCXXMemberCall(D, SourceLocation(), Callee, ReturnValueSlot(), This, VTT, VTTTy, ArgBeg, ArgEnd); } void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, const CXXRecordDecl *RD) { llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits()); if (VTable->hasInitializer()) return; ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext(); const VTableLayout &VTLayout = VTContext.getVTableLayout(RD); llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); // Create and set the initializer. llvm::Constant *Init = CGVT.CreateVTableInitializer( RD, VTLayout.vtable_component_begin(), VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(), VTLayout.getNumVTableThunks()); VTable->setInitializer(Init); // Set the correct linkage. VTable->setLinkage(Linkage); // Set the right visibility. CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForVTable); // If this is the magic class __cxxabiv1::__fundamental_type_info, // we will emit the typeinfo for the fundamental types. This is the // same behaviour as GCC. const DeclContext *DC = RD->getDeclContext(); if (RD->getIdentifier() && RD->getIdentifier()->isStr("__fundamental_type_info") && isa(DC) && cast(DC)->getIdentifier() && cast(DC)->getIdentifier()->isStr("__cxxabiv1") && DC->getParent()->isTranslationUnit()) CGM.EmitFundamentalRTTIDescriptors(); } llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor( CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) { bool NeedsVTTParam = CGM.getCXXABI().NeedsVTTParameter(CGF.CurGD); NeedsVirtualOffset = (NeedsVTTParam && NearestVBase); llvm::Value *VTableAddressPoint; if (NeedsVTTParam && (Base.getBase()->getNumVBases() || NearestVBase)) { // Get the secondary vpointer index. uint64_t VirtualPointerIndex = CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base); /// Load the VTT. llvm::Value *VTT = CGF.LoadCXXVTT(); if (VirtualPointerIndex) VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex); // And load the address point from the VTT. VTableAddressPoint = CGF.Builder.CreateLoad(VTT); } else { llvm::Constant *VTable = CGM.getCXXABI().getAddrOfVTable(VTableClass, CharUnits()); uint64_t AddressPoint = CGM.getItaniumVTableContext() .getVTableLayout(VTableClass) .getAddressPoint(Base); VTableAddressPoint = CGF.Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint); } return VTableAddressPoint; } llvm::Constant *ItaniumCXXABI::getVTableAddressPointForConstExpr( BaseSubobject Base, const CXXRecordDecl *VTableClass) { llvm::Constant *VTable = getAddrOfVTable(VTableClass, CharUnits()); // Find the appropriate vtable within the vtable group. uint64_t AddressPoint = CGM.getItaniumVTableContext() .getVTableLayout(VTableClass) .getAddressPoint(Base); llvm::Value *Indices[] = { llvm::ConstantInt::get(CGM.Int64Ty, 0), llvm::ConstantInt::get(CGM.Int64Ty, AddressPoint) }; return llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Indices); } llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, CharUnits VPtrOffset) { assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets"); llvm::GlobalVariable *&VTable = VTables[RD]; if (VTable) return VTable; // Queue up this v-table for possible deferred emission. CGM.addDeferredVTable(RD); SmallString<256> OutName; llvm::raw_svector_ostream Out(OutName); getMangleContext().mangleCXXVTable(RD, Out); Out.flush(); StringRef Name = OutName.str(); ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext(); llvm::ArrayType *ArrayType = llvm::ArrayType::get( CGM.Int8PtrTy, VTContext.getVTableLayout(RD).getNumVTableComponents()); VTable = CGM.CreateOrReplaceCXXRuntimeVariable( Name, ArrayType, llvm::GlobalValue::ExternalLinkage); VTable->setUnnamedAddr(true); return VTable; } llvm::Value *ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, llvm::Type *Ty) { GD = GD.getCanonicalDecl(); Ty = Ty->getPointerTo()->getPointerTo(); llvm::Value *VTable = CGF.GetVTablePtr(This, Ty); uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD); llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfn"); return CGF.Builder.CreateLoad(VFuncPtr); } void ItaniumCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, SourceLocation CallLoc, llvm::Value *This) { assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, DtorType); llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); llvm::Value *Callee = getVirtualFunctionPointer(CGF, GlobalDecl(Dtor, DtorType), This, Ty); CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValueSlot(), This, /*ImplicitParam=*/0, QualType(), 0, 0); } void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { CodeGenVTables &VTables = CGM.getVTables(); llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD); VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD); } static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF, llvm::Value *Ptr, int64_t NonVirtualAdjustment, int64_t VirtualAdjustment, bool IsReturnAdjustment) { if (!NonVirtualAdjustment && !VirtualAdjustment) return Ptr; llvm::Type *Int8PtrTy = CGF.Int8PtrTy; llvm::Value *V = CGF.Builder.CreateBitCast(Ptr, Int8PtrTy); if (NonVirtualAdjustment && !IsReturnAdjustment) { // Perform the non-virtual adjustment for a base-to-derived cast. V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment); } if (VirtualAdjustment) { llvm::Type *PtrDiffTy = CGF.ConvertType(CGF.getContext().getPointerDiffType()); // Perform the virtual adjustment. llvm::Value *VTablePtrPtr = CGF.Builder.CreateBitCast(V, Int8PtrTy->getPointerTo()); llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr); llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment); OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo()); // Load the adjustment offset from the vtable. llvm::Value *Offset = CGF.Builder.CreateLoad(OffsetPtr); // Adjust our pointer. V = CGF.Builder.CreateInBoundsGEP(V, Offset); } if (NonVirtualAdjustment && IsReturnAdjustment) { // Perform the non-virtual adjustment for a derived-to-base cast. V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment); } // Cast back to the original type. return CGF.Builder.CreateBitCast(V, Ptr->getType()); } llvm::Value *ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This, const ThisAdjustment &TA) { return performTypeAdjustment(CGF, This, TA.NonVirtual, TA.Virtual.Itanium.VCallOffsetOffset, /*IsReturnAdjustment=*/false); } llvm::Value * ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret, const ReturnAdjustment &RA) { return performTypeAdjustment(CGF, Ret, RA.NonVirtual, RA.Virtual.Itanium.VBaseOffsetOffset, /*IsReturnAdjustment=*/true); } void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResultType) { if (!isa(CGF.CurGD.getDecl())) return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); // Destructor thunks in the ARM ABI have indeterminate results. llvm::Type *T = cast(CGF.ReturnValue->getType())->getElementType(); RValue Undef = RValue::get(llvm::UndefValue::get(T)); return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType); } /************************** Array allocation cookies **************************/ CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) { // The array cookie is a size_t; pad that up to the element alignment. // The cookie is actually right-justified in that space. return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes), CGM.getContext().getTypeAlignInChars(elementType)); } llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, llvm::Value *NewPtr, llvm::Value *NumElements, const CXXNewExpr *expr, QualType ElementType) { assert(requiresArrayCookie(expr)); unsigned AS = NewPtr->getType()->getPointerAddressSpace(); ASTContext &Ctx = getContext(); QualType SizeTy = Ctx.getSizeType(); CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy); // The size of the cookie. CharUnits CookieSize = std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType)); assert(CookieSize == getArrayCookieSizeImpl(ElementType)); // Compute an offset to the cookie. llvm::Value *CookiePtr = NewPtr; CharUnits CookieOffset = CookieSize - SizeSize; if (!CookieOffset.isZero()) CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr, CookieOffset.getQuantity()); // Write the number of elements into the appropriate slot. llvm::Value *NumElementsPtr = CGF.Builder.CreateBitCast(CookiePtr, CGF.ConvertType(SizeTy)->getPointerTo(AS)); CGF.Builder.CreateStore(NumElements, NumElementsPtr); // Finally, compute a pointer to the actual data buffer by skipping // over the cookie completely. return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr, CookieSize.getQuantity()); } llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr, CharUnits cookieSize) { // The element size is right-justified in the cookie. llvm::Value *numElementsPtr = allocPtr; CharUnits numElementsOffset = cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes); if (!numElementsOffset.isZero()) numElementsPtr = CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr, numElementsOffset.getQuantity()); unsigned AS = allocPtr->getType()->getPointerAddressSpace(); numElementsPtr = CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS)); return CGF.Builder.CreateLoad(numElementsPtr); } CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) { // ARM says that the cookie is always: // struct array_cookie { // std::size_t element_size; // element_size != 0 // std::size_t element_count; // }; // But the base ABI doesn't give anything an alignment greater than // 8, so we can dismiss this as typical ABI-author blindness to // actual language complexity and round up to the element alignment. return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes), CGM.getContext().getTypeAlignInChars(elementType)); } llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, llvm::Value *newPtr, llvm::Value *numElements, const CXXNewExpr *expr, QualType elementType) { assert(requiresArrayCookie(expr)); // NewPtr is a char*, but we generalize to arbitrary addrspaces. unsigned AS = newPtr->getType()->getPointerAddressSpace(); // The cookie is always at the start of the buffer. llvm::Value *cookie = newPtr; // The first element is the element size. cookie = CGF.Builder.CreateBitCast(cookie, CGF.SizeTy->getPointerTo(AS)); llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy, getContext().getTypeSizeInChars(elementType).getQuantity()); CGF.Builder.CreateStore(elementSize, cookie); // The second element is the element count. cookie = CGF.Builder.CreateConstInBoundsGEP1_32(cookie, 1); CGF.Builder.CreateStore(numElements, cookie); // Finally, compute a pointer to the actual data buffer by skipping // over the cookie completely. CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType); return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr, cookieSize.getQuantity()); } llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr, CharUnits cookieSize) { // The number of elements is at offset sizeof(size_t) relative to // the allocated pointer. llvm::Value *numElementsPtr = CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes); unsigned AS = allocPtr->getType()->getPointerAddressSpace(); numElementsPtr = CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS)); return CGF.Builder.CreateLoad(numElementsPtr); } /*********************** Static local initialization **************************/ static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM, llvm::PointerType *GuardPtrTy) { // int __cxa_guard_acquire(__guard *guard_object); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy), GuardPtrTy, /*isVarArg=*/false); return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire", llvm::AttributeSet::get(CGM.getLLVMContext(), llvm::AttributeSet::FunctionIndex, llvm::Attribute::NoUnwind)); } static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM, llvm::PointerType *GuardPtrTy) { // void __cxa_guard_release(__guard *guard_object); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release", llvm::AttributeSet::get(CGM.getLLVMContext(), llvm::AttributeSet::FunctionIndex, llvm::Attribute::NoUnwind)); } static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM, llvm::PointerType *GuardPtrTy) { // void __cxa_guard_abort(__guard *guard_object); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort", llvm::AttributeSet::get(CGM.getLLVMContext(), llvm::AttributeSet::FunctionIndex, llvm::Attribute::NoUnwind)); } namespace { struct CallGuardAbort : EHScopeStack::Cleanup { llvm::GlobalVariable *Guard; CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} void Emit(CodeGenFunction &CGF, Flags flags) { CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard); } }; } /// The ARM code here follows the Itanium code closely enough that we /// just special-case it at particular places. void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, llvm::GlobalVariable *var, bool shouldPerformInit) { CGBuilderTy &Builder = CGF.Builder; // We only need to use thread-safe statics for local non-TLS variables; // global initialization is always single-threaded. bool threadsafe = getContext().getLangOpts().ThreadsafeStatics && D.isLocalVarDecl() && !D.getTLSKind(); // If we have a global variable with internal linkage and thread-safe statics // are disabled, we can just let the guard variable be of type i8. bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage(); llvm::IntegerType *guardTy; if (useInt8GuardVariable) { guardTy = CGF.Int8Ty; } else { // Guard variables are 64 bits in the generic ABI and size width on ARM // (i.e. 32-bit on AArch32, 64-bit on AArch64). guardTy = (UseARMGuardVarABI ? CGF.SizeTy : CGF.Int64Ty); } llvm::PointerType *guardPtrTy = guardTy->getPointerTo(); // Create the guard variable if we don't already have it (as we // might if we're double-emitting this function body). llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D); if (!guard) { // Mangle the name for the guard. SmallString<256> guardName; { llvm::raw_svector_ostream out(guardName); getMangleContext().mangleStaticGuardVariable(&D, out); out.flush(); } // Create the guard variable with a zero-initializer. // Just absorb linkage and visibility from the guarded variable. guard = new llvm::GlobalVariable(CGM.getModule(), guardTy, false, var->getLinkage(), llvm::ConstantInt::get(guardTy, 0), guardName.str()); guard->setVisibility(var->getVisibility()); // If the variable is thread-local, so is its guard variable. guard->setThreadLocalMode(var->getThreadLocalMode()); CGM.setStaticLocalDeclGuardAddress(&D, guard); } // Test whether the variable has completed initialization. llvm::Value *isInitialized; // ARM C++ ABI 3.2.3.1: // To support the potential use of initialization guard variables // as semaphores that are the target of ARM SWP and LDREX/STREX // synchronizing instructions we define a static initialization // guard variable to be a 4-byte aligned, 4- byte word with the // following inline access protocol. // #define INITIALIZED 1 // if ((obj_guard & INITIALIZED) != INITIALIZED) { // if (__cxa_guard_acquire(&obj_guard)) // ... // } if (UseARMGuardVarABI && !useInt8GuardVariable) { llvm::Value *V = Builder.CreateLoad(guard); llvm::Value *Test1 = llvm::ConstantInt::get(guardTy, 1); V = Builder.CreateAnd(V, Test1); isInitialized = Builder.CreateIsNull(V, "guard.uninitialized"); // Itanium C++ ABI 3.3.2: // The following is pseudo-code showing how these functions can be used: // if (obj_guard.first_byte == 0) { // if ( __cxa_guard_acquire (&obj_guard) ) { // try { // ... initialize the object ...; // } catch (...) { // __cxa_guard_abort (&obj_guard); // throw; // } // ... queue object destructor with __cxa_atexit() ...; // __cxa_guard_release (&obj_guard); // } // } } else { // Load the first byte of the guard variable. llvm::LoadInst *LI = Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy)); LI->setAlignment(1); // Itanium ABI: // An implementation supporting thread-safety on multiprocessor // systems must also guarantee that references to the initialized // object do not occur before the load of the initialization flag. // // In LLVM, we do this by marking the load Acquire. if (threadsafe) LI->setAtomic(llvm::Acquire); isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized"); } llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check"); llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); // Check if the first byte of the guard variable is zero. Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock); CGF.EmitBlock(InitCheckBlock); // Variables used when coping with thread-safe statics and exceptions. if (threadsafe) { // Call __cxa_guard_acquire. llvm::Value *V = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard); llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"), InitBlock, EndBlock); // Call __cxa_guard_abort along the exceptional edge. CGF.EHStack.pushCleanup(EHCleanup, guard); CGF.EmitBlock(InitBlock); } // Emit the initializer and add a global destructor if appropriate. CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit); if (threadsafe) { // Pop the guard-abort cleanup if we pushed one. CGF.PopCleanupBlock(); // Call __cxa_guard_release. This cannot throw. CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), guard); } else { Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard); } CGF.EmitBlock(EndBlock); } /// Register a global destructor using __cxa_atexit. static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF, llvm::Constant *dtor, llvm::Constant *addr, bool TLS) { const char *Name = "__cxa_atexit"; if (TLS) { const llvm::Triple &T = CGF.getTarget().getTriple(); Name = T.isMacOSX() ? "_tlv_atexit" : "__cxa_thread_atexit"; } // We're assuming that the destructor function is something we can // reasonably call with the default CC. Go ahead and cast it to the // right prototype. llvm::Type *dtorTy = llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo(); // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d); llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy }; llvm::FunctionType *atexitTy = llvm::FunctionType::get(CGF.IntTy, paramTys, false); // Fetch the actual function. llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name); if (llvm::Function *fn = dyn_cast(atexit)) fn->setDoesNotThrow(); // Create a variable that binds the atexit to this shared object. llvm::Constant *handle = CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle"); llvm::Value *args[] = { llvm::ConstantExpr::getBitCast(dtor, dtorTy), llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy), handle }; CGF.EmitNounwindRuntimeCall(atexit, args); } /// Register a global destructor as best as we know how. void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, llvm::Constant *dtor, llvm::Constant *addr) { // Use __cxa_atexit if available. if (CGM.getCodeGenOpts().CXAAtExit) return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind()); if (D.getTLSKind()) CGM.ErrorUnsupported(&D, "non-trivial TLS destruction"); // In Apple kexts, we want to add a global destructor entry. // FIXME: shouldn't this be guarded by some variable? if (CGM.getLangOpts().AppleKext) { // Generate a global destructor entry. return CGM.AddCXXDtorEntry(dtor, addr); } CGF.registerGlobalDtorWithAtExit(D, dtor, addr); } /// Get the appropriate linkage for the wrapper function. This is essentially /// the weak form of the variable's linkage; every translation unit which wneeds /// the wrapper emits a copy, and we want the linker to merge them. static llvm::GlobalValue::LinkageTypes getThreadLocalWrapperLinkage( llvm::GlobalValue::LinkageTypes VarLinkage) { if (llvm::GlobalValue::isLinkerPrivateLinkage(VarLinkage)) return llvm::GlobalValue::LinkerPrivateWeakLinkage; // For internal linkage variables, we don't need an external or weak wrapper. if (llvm::GlobalValue::isLocalLinkage(VarLinkage)) return VarLinkage; return llvm::GlobalValue::WeakODRLinkage; } llvm::Function * ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD, llvm::GlobalVariable *Var) { // Mangle the name for the thread_local wrapper function. SmallString<256> WrapperName; { llvm::raw_svector_ostream Out(WrapperName); getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out); Out.flush(); } if (llvm::Value *V = Var->getParent()->getNamedValue(WrapperName)) return cast(V); llvm::Type *RetTy = Var->getType(); if (VD->getType()->isReferenceType()) RetTy = RetTy->getPointerElementType(); llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, false); llvm::Function *Wrapper = llvm::Function::Create( FnTy, getThreadLocalWrapperLinkage(Var->getLinkage()), WrapperName.str(), &CGM.getModule()); // Always resolve references to the wrapper at link time. Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility); return Wrapper; } void ItaniumCXXABI::EmitThreadLocalInitFuncs( llvm::ArrayRef > Decls, llvm::Function *InitFunc) { for (unsigned I = 0, N = Decls.size(); I != N; ++I) { const VarDecl *VD = Decls[I].first; llvm::GlobalVariable *Var = Decls[I].second; // Mangle the name for the thread_local initialization function. SmallString<256> InitFnName; { llvm::raw_svector_ostream Out(InitFnName); getMangleContext().mangleItaniumThreadLocalInit(VD, Out); Out.flush(); } // If we have a definition for the variable, emit the initialization // function as an alias to the global Init function (if any). Otherwise, // produce a declaration of the initialization function. llvm::GlobalValue *Init = 0; bool InitIsInitFunc = false; if (VD->hasDefinition()) { InitIsInitFunc = true; if (InitFunc) Init = new llvm::GlobalAlias(InitFunc->getType(), Var->getLinkage(), InitFnName.str(), InitFunc, &CGM.getModule()); } else { // Emit a weak global function referring to the initialization function. // This function will not exist if the TU defining the thread_local // variable in question does not need any dynamic initialization for // its thread_local variables. llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false); Init = llvm::Function::Create( FnTy, llvm::GlobalVariable::ExternalWeakLinkage, InitFnName.str(), &CGM.getModule()); } if (Init) Init->setVisibility(Var->getVisibility()); llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var); llvm::LLVMContext &Context = CGM.getModule().getContext(); llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper); CGBuilderTy Builder(Entry); if (InitIsInitFunc) { if (Init) Builder.CreateCall(Init); } else { // Don't know whether we have an init function. Call it if it exists. llvm::Value *Have = Builder.CreateIsNotNull(Init); llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper); llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper); Builder.CreateCondBr(Have, InitBB, ExitBB); Builder.SetInsertPoint(InitBB); Builder.CreateCall(Init); Builder.CreateBr(ExitBB); Builder.SetInsertPoint(ExitBB); } // For a reference, the result of the wrapper function is a pointer to // the referenced object. llvm::Value *Val = Var; if (VD->getType()->isReferenceType()) { llvm::LoadInst *LI = Builder.CreateLoad(Val); LI->setAlignment(CGM.getContext().getDeclAlign(VD).getQuantity()); Val = LI; } Builder.CreateRet(Val); } } LValue ItaniumCXXABI::EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF, const DeclRefExpr *DRE) { const VarDecl *VD = cast(DRE->getDecl()); QualType T = VD->getType(); llvm::Type *Ty = CGF.getTypes().ConvertTypeForMem(T); llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD, Ty); llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, cast(Val)); Val = CGF.Builder.CreateCall(Wrapper); LValue LV; if (VD->getType()->isReferenceType()) LV = CGF.MakeNaturalAlignAddrLValue(Val, T); else LV = CGF.MakeAddrLValue(Val, DRE->getType(), CGF.getContext().getDeclAlign(VD)); // FIXME: need setObjCGCLValueClass? return LV; } /// Return whether the given global decl needs a VTT parameter, which it does /// if it's a base constructor or destructor with virtual bases. bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) { const CXXMethodDecl *MD = cast(GD.getDecl()); // We don't have any virtual bases, just return early. if (!MD->getParent()->getNumVBases()) return false; // Check if we have a base constructor. if (isa(MD) && GD.getCtorType() == Ctor_Base) return true; // Check if we have a base destructor. if (isa(MD) && GD.getDtorType() == Dtor_Base) return true; return false; }