//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes wrap the information about a call or function // definition used to handle ABI compliancy. // //===----------------------------------------------------------------------===// #include "TargetInfo.h" #include "ABIInfo.h" #include "CodeGenFunction.h" #include "clang/AST/RecordLayout.h" #include "clang/Frontend/CodeGenOptions.h" #include "llvm/Type.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/Triple.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace CodeGen; static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, llvm::Value *Array, llvm::Value *Value, unsigned FirstIndex, unsigned LastIndex) { // Alternatively, we could emit this as a loop in the source. for (unsigned I = FirstIndex; I <= LastIndex; ++I) { llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); Builder.CreateStore(Value, Cell); } } static bool isAggregateTypeForABI(QualType T) { return CodeGenFunction::hasAggregateLLVMType(T) || T->isMemberFunctionPointerType(); } ABIInfo::~ABIInfo() {} ASTContext &ABIInfo::getContext() const { return CGT.getContext(); } llvm::LLVMContext &ABIInfo::getVMContext() const { return CGT.getLLVMContext(); } const llvm::TargetData &ABIInfo::getTargetData() const { return CGT.getTargetData(); } void ABIArgInfo::dump() const { llvm::raw_ostream &OS = llvm::errs(); OS << "(ABIArgInfo Kind="; switch (TheKind) { case Direct: OS << "Direct Type="; if (const llvm::Type *Ty = getCoerceToType()) Ty->print(OS); else OS << "null"; break; case Extend: OS << "Extend"; break; case Ignore: OS << "Ignore"; break; case Indirect: OS << "Indirect Align=" << getIndirectAlign() << " ByVal=" << getIndirectByVal() << " Realign=" << getIndirectRealign(); break; case Expand: OS << "Expand"; break; } OS << ")\n"; } TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); /// isEmptyField - Return true iff a the field is "empty", that is it /// is an unnamed bit-field or an (array of) empty record(s). static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, bool AllowArrays) { if (FD->isUnnamedBitfield()) return true; QualType FT = FD->getType(); // Constant arrays of empty records count as empty, strip them off. if (AllowArrays) while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) FT = AT->getElementType(); const RecordType *RT = FT->getAs(); if (!RT) return false; // C++ record fields are never empty, at least in the Itanium ABI. // // FIXME: We should use a predicate for whether this behavior is true in the // current ABI. if (isa(RT->getDecl())) return false; return isEmptyRecord(Context, FT, AllowArrays); } /// isEmptyRecord - Return true iff a structure contains only empty /// fields. Note that a structure with a flexible array member is not /// considered empty. static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { const RecordType *RT = T->getAs(); if (!RT) return 0; const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), e = CXXRD->bases_end(); i != e; ++i) if (!isEmptyRecord(Context, i->getType(), true)) return false; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) if (!isEmptyField(Context, *i, AllowArrays)) return false; return true; } /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either /// a non-trivial destructor or a non-trivial copy constructor. static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) { const CXXRecordDecl *RD = dyn_cast(RT->getDecl()); if (!RD) return false; return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor(); } /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is /// a record type with either a non-trivial destructor or a non-trivial copy /// constructor. static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) { const RecordType *RT = T->getAs(); if (!RT) return false; return hasNonTrivialDestructorOrCopyConstructor(RT); } /// isSingleElementStruct - Determine if a structure is a "single /// element struct", i.e. it has exactly one non-empty field or /// exactly one field which is itself a single element /// struct. Structures with flexible array members are never /// considered single element structs. /// /// \return The field declaration for the single non-empty field, if /// it exists. static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { const RecordType *RT = T->getAsStructureType(); if (!RT) return 0; const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return 0; const Type *Found = 0; // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), e = CXXRD->bases_end(); i != e; ++i) { // Ignore empty records. if (isEmptyRecord(Context, i->getType(), true)) continue; // If we already found an element then this isn't a single-element struct. if (Found) return 0; // If this is non-empty and not a single element struct, the composite // cannot be a single element struct. Found = isSingleElementStruct(i->getType(), Context); if (!Found) return 0; } } // Check for single element. for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { const FieldDecl *FD = *i; QualType FT = FD->getType(); // Ignore empty fields. if (isEmptyField(Context, FD, true)) continue; // If we already found an element then this isn't a single-element // struct. if (Found) return 0; // Treat single element arrays as the element. while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { if (AT->getSize().getZExtValue() != 1) break; FT = AT->getElementType(); } if (!isAggregateTypeForABI(FT)) { Found = FT.getTypePtr(); } else { Found = isSingleElementStruct(FT, Context); if (!Found) return 0; } } return Found; } static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { if (!Ty->getAs() && !Ty->hasPointerRepresentation() && !Ty->isAnyComplexType() && !Ty->isEnumeralType() && !Ty->isBlockPointerType()) return false; uint64_t Size = Context.getTypeSize(Ty); return Size == 32 || Size == 64; } /// canExpandIndirectArgument - Test whether an argument type which is to be /// passed indirectly (on the stack) would have the equivalent layout if it was /// expanded into separate arguments. If so, we prefer to do the latter to avoid /// inhibiting optimizations. /// // FIXME: This predicate is missing many cases, currently it just follows // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We // should probably make this smarter, or better yet make the LLVM backend // capable of handling it. static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { // We can only expand structure types. const RecordType *RT = Ty->getAs(); if (!RT) return false; // We can only expand (C) structures. // // FIXME: This needs to be generalized to handle classes as well. const RecordDecl *RD = RT->getDecl(); if (!RD->isStruct() || isa(RD)) return false; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { const FieldDecl *FD = *i; if (!is32Or64BitBasicType(FD->getType(), Context)) return false; // FIXME: Reject bit-fields wholesale; there are two problems, we don't know // how to expand them yet, and the predicate for telling if a bitfield still // counts as "basic" is more complicated than what we were doing previously. if (FD->isBitField()) return false; } return true; } namespace { /// DefaultABIInfo - The default implementation for ABI specific /// details. This implementation provides information which results in /// self-consistent and sensible LLVM IR generation, but does not /// conform to any particular ABI. class DefaultABIInfo : public ABIInfo { public: DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; virtual void computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); } virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { public: DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} }; llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { return 0; } ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { if (isAggregateTypeForABI(Ty)) return ABIArgInfo::getIndirect(0); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy)) return ABIArgInfo::getIndirect(0); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } /// UseX86_MMXType - Return true if this is an MMX type that should use the special /// x86_mmx type. bool UseX86_MMXType(const llvm::Type *IRType) { // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the // special x86_mmx type. return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && cast(IRType)->getElementType()->isIntegerTy() && IRType->getScalarSizeInBits() != 64; } static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, llvm::StringRef Constraint, llvm::Type* Ty) { if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); return Ty; } //===----------------------------------------------------------------------===// // X86-32 ABI Implementation //===----------------------------------------------------------------------===// /// X86_32ABIInfo - The X86-32 ABI information. class X86_32ABIInfo : public ABIInfo { static const unsigned MinABIStackAlignInBytes = 4; bool IsDarwinVectorABI; bool IsSmallStructInRegABI; bool IsMMXDisabled; static bool isRegisterSize(unsigned Size) { return (Size == 8 || Size == 16 || Size == 32 || Size == 64); } static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be passed in memory. ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const; /// \brief Return the alignment to use for the given type on the stack. unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; public: ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; virtual void computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); } virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m) : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), IsMMXDisabled(m) {} }; class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { public: X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m) :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m)) {} void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const; int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { // Darwin uses different dwarf register numbers for EH. if (CGM.isTargetDarwin()) return 5; return 4; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const; llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, llvm::StringRef Constraint, llvm::Type* Ty) const { return X86AdjustInlineAsmType(CGF, Constraint, Ty); } }; } /// shouldReturnTypeInRegister - Determine if the given type should be /// passed in a register (for the Darwin ABI). bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) { uint64_t Size = Context.getTypeSize(Ty); // Type must be register sized. if (!isRegisterSize(Size)) return false; if (Ty->isVectorType()) { // 64- and 128- bit vectors inside structures are not returned in // registers. if (Size == 64 || Size == 128) return false; return true; } // If this is a builtin, pointer, enum, complex type, member pointer, or // member function pointer it is ok. if (Ty->getAs() || Ty->hasPointerRepresentation() || Ty->isAnyComplexType() || Ty->isEnumeralType() || Ty->isBlockPointerType() || Ty->isMemberPointerType()) return true; // Arrays are treated like records. if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) return shouldReturnTypeInRegister(AT->getElementType(), Context); // Otherwise, it must be a record type. const RecordType *RT = Ty->getAs(); if (!RT) return false; // FIXME: Traverse bases here too. // Structure types are passed in register if all fields would be // passed in a register. for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), e = RT->getDecl()->field_end(); i != e; ++i) { const FieldDecl *FD = *i; // Empty fields are ignored. if (isEmptyField(Context, FD, true)) continue; // Check fields recursively. if (!shouldReturnTypeInRegister(FD->getType(), Context)) return false; } return true; } ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (const VectorType *VT = RetTy->getAs()) { // On Darwin, some vectors are returned in registers. if (IsDarwinVectorABI) { uint64_t Size = getContext().getTypeSize(RetTy); // 128-bit vectors are a special case; they are returned in // registers and we need to make sure to pick a type the LLVM // backend will like. if (Size == 128) return ABIArgInfo::getDirect(llvm::VectorType::get( llvm::Type::getInt64Ty(getVMContext()), 2)); // Always return in register if it fits in a general purpose // register, or if it is 64 bits and has a single element. if ((Size == 8 || Size == 16 || Size == 32) || (Size == 64 && VT->getNumElements() == 1)) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); return ABIArgInfo::getIndirect(0); } return ABIArgInfo::getDirect(); } if (isAggregateTypeForABI(RetTy)) { if (const RecordType *RT = RetTy->getAs()) { // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always indirect. if (hasNonTrivialDestructorOrCopyConstructor(RT)) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // Structures with flexible arrays are always indirect. if (RT->getDecl()->hasFlexibleArrayMember()) return ABIArgInfo::getIndirect(0); } // If specified, structs and unions are always indirect. if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) return ABIArgInfo::getIndirect(0); // Classify "single element" structs as their element type. if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) { if (const BuiltinType *BT = SeltTy->getAs()) { if (BT->isIntegerType()) { // We need to use the size of the structure, padding // bit-fields can adjust that to be larger than the single // element type. uint64_t Size = getContext().getTypeSize(RetTy); return ABIArgInfo::getDirect( llvm::IntegerType::get(getVMContext(), (unsigned)Size)); } if (BT->getKind() == BuiltinType::Float) { assert(getContext().getTypeSize(RetTy) == getContext().getTypeSize(SeltTy) && "Unexpect single element structure size!"); return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext())); } if (BT->getKind() == BuiltinType::Double) { assert(getContext().getTypeSize(RetTy) == getContext().getTypeSize(SeltTy) && "Unexpect single element structure size!"); return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext())); } } else if (SeltTy->isPointerType()) { // FIXME: It would be really nice if this could come out as the proper // pointer type. llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext()); return ABIArgInfo::getDirect(PtrTy); } else if (SeltTy->isVectorType()) { // 64- and 128-bit vectors are never returned in a // register when inside a structure. uint64_t Size = getContext().getTypeSize(RetTy); if (Size == 64 || Size == 128) return ABIArgInfo::getIndirect(0); return classifyReturnType(QualType(SeltTy, 0)); } } // Small structures which are register sized are generally returned // in a register. if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) { uint64_t Size = getContext().getTypeSize(RetTy); return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); } return ABIArgInfo::getIndirect(0); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { const RecordType *RT = Ty->getAs(); if (!RT) return 0; const RecordDecl *RD = RT->getDecl(); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), e = CXXRD->bases_end(); i != e; ++i) if (!isRecordWithSSEVectorType(Context, i->getType())) return false; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { QualType FT = i->getType(); if (FT->getAs() && Context.getTypeSize(Ty) == 128) return true; if (isRecordWithSSEVectorType(Context, FT)) return true; } return false; } unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, unsigned Align) const { // Otherwise, if the alignment is less than or equal to the minimum ABI // alignment, just use the default; the backend will handle this. if (Align <= MinABIStackAlignInBytes) return 0; // Use default alignment. // On non-Darwin, the stack type alignment is always 4. if (!IsDarwinVectorABI) { // Set explicit alignment, since we may need to realign the top. return MinABIStackAlignInBytes; } // Otherwise, if the type contains an SSE vector type, the alignment is 16. if (isRecordWithSSEVectorType(getContext(), Ty)) return 16; return MinABIStackAlignInBytes; } ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const { if (!ByVal) return ABIArgInfo::getIndirect(0, false); // Compute the byval alignment. unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); if (StackAlign == 0) return ABIArgInfo::getIndirect(4); // If the stack alignment is less than the type alignment, realign the // argument. if (StackAlign < TypeAlign) return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, /*Realign=*/true); return ABIArgInfo::getIndirect(StackAlign); } ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const { // FIXME: Set alignment on indirect arguments. if (isAggregateTypeForABI(Ty)) { // Structures with flexible arrays are always indirect. if (const RecordType *RT = Ty->getAs()) { // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always indirect. if (hasNonTrivialDestructorOrCopyConstructor(RT)) return getIndirectResult(Ty, /*ByVal=*/false); if (RT->getDecl()->hasFlexibleArrayMember()) return getIndirectResult(Ty); } // Ignore empty structs. if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0) return ABIArgInfo::getIgnore(); // Expand small (<= 128-bit) record types when we know that the stack layout // of those arguments will match the struct. This is important because the // LLVM backend isn't smart enough to remove byval, which inhibits many // optimizations. if (getContext().getTypeSize(Ty) <= 4*32 && canExpandIndirectArgument(Ty, getContext())) return ABIArgInfo::getExpand(); return getIndirectResult(Ty); } if (const VectorType *VT = Ty->getAs()) { // On Darwin, some vectors are passed in memory, we handle this by passing // it as an i8/i16/i32/i64. if (IsDarwinVectorABI) { uint64_t Size = getContext().getTypeSize(Ty); if ((Size == 8 || Size == 16 || Size == 32) || (Size == 64 && VT->getNumElements() == 1)) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } llvm::Type *IRType = CGT.ConvertType(Ty); if (UseX86_MMXType(IRType)) { if (IsMMXDisabled) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); ABIArgInfo AAI = ABIArgInfo::getDirect(IRType); AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext())); return AAI; } return ABIArgInfo::getDirect(); } if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); uint64_t Offset = llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { if (const FunctionDecl *FD = dyn_cast(D)) { if (FD->hasAttr()) { // Get the LLVM function. llvm::Function *Fn = cast(GV); // Now add the 'alignstack' attribute with a value of 16. Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16)); } } } bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::LLVMContext &Context = CGF.getLLVMContext(); const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); // 0-7 are the eight integer registers; the order is different // on Darwin (for EH), but the range is the same. // 8 is %eip. AssignToArrayRange(Builder, Address, Four8, 0, 8); if (CGF.CGM.isTargetDarwin()) { // 12-16 are st(0..4). Not sure why we stop at 4. // These have size 16, which is sizeof(long double) on // platforms with 8-byte alignment for that type. llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); } else { // 9 is %eflags, which doesn't get a size on Darwin for some // reason. Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); // 11-16 are st(0..5). Not sure why we stop at 5. // These have size 12, which is sizeof(long double) on // platforms with 4-byte alignment for that type. llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12); AssignToArrayRange(Builder, Address, Twelve8, 11, 16); } return false; } //===----------------------------------------------------------------------===// // X86-64 ABI Implementation //===----------------------------------------------------------------------===// namespace { /// X86_64ABIInfo - The X86_64 ABI information. class X86_64ABIInfo : public ABIInfo { enum Class { Integer = 0, SSE, SSEUp, X87, X87Up, ComplexX87, NoClass, Memory }; /// merge - Implement the X86_64 ABI merging algorithm. /// /// Merge an accumulating classification \arg Accum with a field /// classification \arg Field. /// /// \param Accum - The accumulating classification. This should /// always be either NoClass or the result of a previous merge /// call. In addition, this should never be Memory (the caller /// should just return Memory for the aggregate). static Class merge(Class Accum, Class Field); /// postMerge - Implement the X86_64 ABI post merging algorithm. /// /// Post merger cleanup, reduces a malformed Hi and Lo pair to /// final MEMORY or SSE classes when necessary. /// /// \param AggregateSize - The size of the current aggregate in /// the classification process. /// /// \param Lo - The classification for the parts of the type /// residing in the low word of the containing object. /// /// \param Hi - The classification for the parts of the type /// residing in the higher words of the containing object. /// void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; /// classify - Determine the x86_64 register classes in which the /// given type T should be passed. /// /// \param Lo - The classification for the parts of the type /// residing in the low word of the containing object. /// /// \param Hi - The classification for the parts of the type /// residing in the high word of the containing object. /// /// \param OffsetBase - The bit offset of this type in the /// containing object. Some parameters are classified different /// depending on whether they straddle an eightbyte boundary. /// /// If a word is unused its result will be NoClass; if a type should /// be passed in Memory then at least the classification of \arg Lo /// will be Memory. /// /// The \arg Lo class will be NoClass iff the argument is ignored. /// /// If the \arg Lo class is ComplexX87, then the \arg Hi class will /// also be ComplexX87. void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const; llvm::Type *GetByteVectorType(QualType Ty) const; llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const; llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be returned in memory. ABIArgInfo getIndirectReturnResult(QualType Ty) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be passed in memory. ABIArgInfo getIndirectResult(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty, unsigned &neededInt, unsigned &neededSSE) const; /// The 0.98 ABI revision clarified a lot of ambiguities, /// unfortunately in ways that were not always consistent with /// certain previous compilers. In particular, platforms which /// required strict binary compatibility with older versions of GCC /// may need to exempt themselves. bool honorsRevision0_98() const { return !getContext().Target.getTriple().isOSDarwin(); } public: X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; /// WinX86_64ABIInfo - The Windows X86_64 ABI information. class WinX86_64ABIInfo : public ABIInfo { ABIArgInfo classify(QualType Ty) const; public: WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { return 7; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::LLVMContext &Context = CGF.getLLVMContext(); const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); // 0-15 are the 16 integer registers. // 16 is %rip. AssignToArrayRange(Builder, Address, Eight8, 0, 16); return false; } llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, llvm::StringRef Constraint, llvm::Type* Ty) const { return X86AdjustInlineAsmType(CGF, Constraint, Ty); } }; class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { return 7; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::LLVMContext &Context = CGF.getLLVMContext(); const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); // 0-15 are the 16 integer registers. // 16 is %rip. AssignToArrayRange(Builder, Address, Eight8, 0, 16); return false; } }; } void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const { // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: // // (a) If one of the classes is Memory, the whole argument is passed in // memory. // // (b) If X87UP is not preceded by X87, the whole argument is passed in // memory. // // (c) If the size of the aggregate exceeds two eightbytes and the first // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole // argument is passed in memory. NOTE: This is necessary to keep the // ABI working for processors that don't support the __m256 type. // // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. // // Some of these are enforced by the merging logic. Others can arise // only with unions; for example: // union { _Complex double; unsigned; } // // Note that clauses (b) and (c) were added in 0.98. // if (Hi == Memory) Lo = Memory; if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) Lo = Memory; if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) Lo = Memory; if (Hi == SSEUp && Lo != SSE) Hi = SSE; } X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is // classified recursively so that always two fields are // considered. The resulting class is calculated according to // the classes of the fields in the eightbyte: // // (a) If both classes are equal, this is the resulting class. // // (b) If one of the classes is NO_CLASS, the resulting class is // the other class. // // (c) If one of the classes is MEMORY, the result is the MEMORY // class. // // (d) If one of the classes is INTEGER, the result is the // INTEGER. // // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, // MEMORY is used as class. // // (f) Otherwise class SSE is used. // Accum should never be memory (we should have returned) or // ComplexX87 (because this cannot be passed in a structure). assert((Accum != Memory && Accum != ComplexX87) && "Invalid accumulated classification during merge."); if (Accum == Field || Field == NoClass) return Accum; if (Field == Memory) return Memory; if (Accum == NoClass) return Field; if (Accum == Integer || Field == Integer) return Integer; if (Field == X87 || Field == X87Up || Field == ComplexX87 || Accum == X87 || Accum == X87Up) return Memory; return SSE; } void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, Class &Hi) const { // FIXME: This code can be simplified by introducing a simple value class for // Class pairs with appropriate constructor methods for the various // situations. // FIXME: Some of the split computations are wrong; unaligned vectors // shouldn't be passed in registers for example, so there is no chance they // can straddle an eightbyte. Verify & simplify. Lo = Hi = NoClass; Class &Current = OffsetBase < 64 ? Lo : Hi; Current = Memory; if (const BuiltinType *BT = Ty->getAs()) { BuiltinType::Kind k = BT->getKind(); if (k == BuiltinType::Void) { Current = NoClass; } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { Lo = Integer; Hi = Integer; } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { Current = Integer; } else if (k == BuiltinType::Float || k == BuiltinType::Double) { Current = SSE; } else if (k == BuiltinType::LongDouble) { Lo = X87; Hi = X87Up; } // FIXME: _Decimal32 and _Decimal64 are SSE. // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). return; } if (const EnumType *ET = Ty->getAs()) { // Classify the underlying integer type. classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi); return; } if (Ty->hasPointerRepresentation()) { Current = Integer; return; } if (Ty->isMemberPointerType()) { if (Ty->isMemberFunctionPointerType()) Lo = Hi = Integer; else Current = Integer; return; } if (const VectorType *VT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(VT); if (Size == 32) { // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x // float> as integer. Current = Integer; // If this type crosses an eightbyte boundary, it should be // split. uint64_t EB_Real = (OffsetBase) / 64; uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; if (EB_Real != EB_Imag) Hi = Lo; } else if (Size == 64) { // gcc passes <1 x double> in memory. :( if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) return; // gcc passes <1 x long long> as INTEGER. if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) Current = Integer; else Current = SSE; // If this type crosses an eightbyte boundary, it should be // split. if (OffsetBase && OffsetBase != 64) Hi = Lo; } else if (Size == 128 || Size == 256) { // Arguments of 256-bits are split into four eightbyte chunks. The // least significant one belongs to class SSE and all the others to class // SSEUP. The original Lo and Hi design considers that types can't be // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. // This design isn't correct for 256-bits, but since there're no cases // where the upper parts would need to be inspected, avoid adding // complexity and just consider Hi to match the 64-256 part. Lo = SSE; Hi = SSEUp; } return; } if (const ComplexType *CT = Ty->getAs()) { QualType ET = getContext().getCanonicalType(CT->getElementType()); uint64_t Size = getContext().getTypeSize(Ty); if (ET->isIntegralOrEnumerationType()) { if (Size <= 64) Current = Integer; else if (Size <= 128) Lo = Hi = Integer; } else if (ET == getContext().FloatTy) Current = SSE; else if (ET == getContext().DoubleTy) Lo = Hi = SSE; else if (ET == getContext().LongDoubleTy) Current = ComplexX87; // If this complex type crosses an eightbyte boundary then it // should be split. uint64_t EB_Real = (OffsetBase) / 64; uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; if (Hi == NoClass && EB_Real != EB_Imag) Hi = Lo; return; } if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { // Arrays are treated like structures. uint64_t Size = getContext().getTypeSize(Ty); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger // than four eightbytes, ..., it has class MEMORY. if (Size > 256) return; // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned // fields, it has class MEMORY. // // Only need to check alignment of array base. if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) return; // Otherwise implement simplified merge. We could be smarter about // this, but it isn't worth it and would be harder to verify. Current = NoClass; uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); uint64_t ArraySize = AT->getSize().getZExtValue(); // The only case a 256-bit wide vector could be used is when the array // contains a single 256-bit element. Since Lo and Hi logic isn't extended // to work for sizes wider than 128, early check and fallback to memory. if (Size > 128 && EltSize != 256) return; for (uint64_t i=0, Offset=OffsetBase; igetElementType(), Offset, FieldLo, FieldHi); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } postMerge(Size, Lo, Hi); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); return; } if (const RecordType *RT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(Ty); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger // than four eightbytes, ..., it has class MEMORY. if (Size > 256) return; // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial // copy constructor or a non-trivial destructor, it is passed by invisible // reference. if (hasNonTrivialDestructorOrCopyConstructor(RT)) return; const RecordDecl *RD = RT->getDecl(); // Assume variable sized types are passed in memory. if (RD->hasFlexibleArrayMember()) return; const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); // Reset Lo class, this will be recomputed. Current = NoClass; // If this is a C++ record, classify the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), e = CXXRD->bases_end(); i != e; ++i) { assert(!i->isVirtual() && !i->getType()->isDependentType() && "Unexpected base class!"); const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); // Classify this field. // // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a // single eightbyte, each is classified separately. Each eightbyte gets // initialized to class NO_CLASS. Class FieldLo, FieldHi; uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base); classify(i->getType(), Offset, FieldLo, FieldHi); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } } // Classify the fields one at a time, merging the results. unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); bool BitField = i->isBitField(); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than // four eightbytes, or it contains unaligned fields, it has class MEMORY. // // The only case a 256-bit wide vector could be used is when the struct // contains a single 256-bit element. Since Lo and Hi logic isn't extended // to work for sizes wider than 128, early check and fallback to memory. // if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { Lo = Memory; return; } // Note, skip this test for bit-fields, see below. if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { Lo = Memory; return; } // Classify this field. // // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate // exceeds a single eightbyte, each is classified // separately. Each eightbyte gets initialized to class // NO_CLASS. Class FieldLo, FieldHi; // Bit-fields require special handling, they do not force the // structure to be passed in memory even if unaligned, and // therefore they can straddle an eightbyte. if (BitField) { // Ignore padding bit-fields. if (i->isUnnamedBitfield()) continue; uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); uint64_t Size = i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue(); uint64_t EB_Lo = Offset / 64; uint64_t EB_Hi = (Offset + Size - 1) / 64; FieldLo = FieldHi = NoClass; if (EB_Lo) { assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); FieldLo = NoClass; FieldHi = Integer; } else { FieldLo = Integer; FieldHi = EB_Hi ? Integer : NoClass; } } else classify(i->getType(), Offset, FieldLo, FieldHi); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } postMerge(Size, Lo, Hi); } } ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { // If this is a scalar LLVM value then assume LLVM will pass it in the right // place naturally. if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } return ABIArgInfo::getIndirect(0); } ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const { // If this is a scalar LLVM value then assume LLVM will pass it in the right // place naturally. if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // Compute the byval alignment. We specify the alignment of the byval in all // cases so that the mid-level optimizer knows the alignment of the byval. unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); return ABIArgInfo::getIndirect(Align); } /// GetByteVectorType - The ABI specifies that a value should be passed in an /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a /// vector register. llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { llvm::Type *IRType = CGT.ConvertType(Ty); // Wrapper structs that just contain vectors are passed just like vectors, // strip them off if present. llvm::StructType *STy = dyn_cast(IRType); while (STy && STy->getNumElements() == 1) { IRType = STy->getElementType(0); STy = dyn_cast(IRType); } // If the preferred type is a 16-byte vector, prefer to pass it. if (llvm::VectorType *VT = dyn_cast(IRType)){ llvm::Type *EltTy = VT->getElementType(); unsigned BitWidth = VT->getBitWidth(); if ((BitWidth == 128 || BitWidth == 256) && (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || EltTy->isIntegerTy(128))) return VT; } return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); } /// BitsContainNoUserData - Return true if the specified [start,end) bit range /// is known to either be off the end of the specified type or being in /// alignment padding. The user type specified is known to be at most 128 bits /// in size, and have passed through X86_64ABIInfo::classify with a successful /// classification that put one of the two halves in the INTEGER class. /// /// It is conservatively correct to return false. static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, unsigned EndBit, ASTContext &Context) { // If the bytes being queried are off the end of the type, there is no user // data hiding here. This handles analysis of builtins, vectors and other // types that don't contain interesting padding. unsigned TySize = (unsigned)Context.getTypeSize(Ty); if (TySize <= StartBit) return true; if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); // Check each element to see if the element overlaps with the queried range. for (unsigned i = 0; i != NumElts; ++i) { // If the element is after the span we care about, then we're done.. unsigned EltOffset = i*EltSize; if (EltOffset >= EndBit) break; unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; if (!BitsContainNoUserData(AT->getElementType(), EltStart, EndBit-EltOffset, Context)) return false; } // If it overlaps no elements, then it is safe to process as padding. return true; } if (const RecordType *RT = Ty->getAs()) { const RecordDecl *RD = RT->getDecl(); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), e = CXXRD->bases_end(); i != e; ++i) { assert(!i->isVirtual() && !i->getType()->isDependentType() && "Unexpected base class!"); const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); // If the base is after the span we care about, ignore it. unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base); if (BaseOffset >= EndBit) continue; unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; if (!BitsContainNoUserData(i->getType(), BaseStart, EndBit-BaseOffset, Context)) return false; } } // Verify that no field has data that overlaps the region of interest. Yes // this could be sped up a lot by being smarter about queried fields, // however we're only looking at structs up to 16 bytes, so we don't care // much. unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); // If we found a field after the region we care about, then we're done. if (FieldOffset >= EndBit) break; unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, Context)) return false; } // If nothing in this record overlapped the area of interest, then we're // clean. return true; } return false; } /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a /// float member at the specified offset. For example, {int,{float}} has a /// float at offset 4. It is conservatively correct for this routine to return /// false. static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset, const llvm::TargetData &TD) { // Base case if we find a float. if (IROffset == 0 && IRType->isFloatTy()) return true; // If this is a struct, recurse into the field at the specified offset. if (const llvm::StructType *STy = dyn_cast(IRType)) { const llvm::StructLayout *SL = TD.getStructLayout(STy); unsigned Elt = SL->getElementContainingOffset(IROffset); IROffset -= SL->getElementOffset(Elt); return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); } // If this is an array, recurse into the field at the specified offset. if (const llvm::ArrayType *ATy = dyn_cast(IRType)) { const llvm::Type *EltTy = ATy->getElementType(); unsigned EltSize = TD.getTypeAllocSize(EltTy); IROffset -= IROffset/EltSize*EltSize; return ContainsFloatAtOffset(EltTy, IROffset, TD); } return false; } /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the /// low 8 bytes of an XMM register, corresponding to the SSE class. llvm::Type *X86_64ABIInfo:: GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const { // The only three choices we have are either double, <2 x float>, or float. We // pass as float if the last 4 bytes is just padding. This happens for // structs that contain 3 floats. if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, SourceOffset*8+64, getContext())) return llvm::Type::getFloatTy(getVMContext()); // We want to pass as <2 x float> if the LLVM IR type contains a float at // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the // case. if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) && ContainsFloatAtOffset(IRType, IROffset+4, getTargetData())) return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); return llvm::Type::getDoubleTy(getVMContext()); } /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in /// an 8-byte GPR. This means that we either have a scalar or we are talking /// about the high or low part of an up-to-16-byte struct. This routine picks /// the best LLVM IR type to represent this, which may be i64 or may be anything /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, /// etc). /// /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for /// the source type. IROffset is an offset in bytes into the LLVM IR type that /// the 8-byte value references. PrefType may be null. /// /// SourceTy is the source level type for the entire argument. SourceOffset is /// an offset into this that we're processing (which is always either 0 or 8). /// llvm::Type *X86_64ABIInfo:: GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const { // If we're dealing with an un-offset LLVM IR type, then it means that we're // returning an 8-byte unit starting with it. See if we can safely use it. if (IROffset == 0) { // Pointers and int64's always fill the 8-byte unit. if (isa(IRType) || IRType->isIntegerTy(64)) return IRType; // If we have a 1/2/4-byte integer, we can use it only if the rest of the // goodness in the source type is just tail padding. This is allowed to // kick in for struct {double,int} on the int, but not on // struct{double,int,int} because we wouldn't return the second int. We // have to do this analysis on the source type because we can't depend on // unions being lowered a specific way etc. if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || IRType->isIntegerTy(32)) { unsigned BitWidth = cast(IRType)->getBitWidth(); if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, SourceOffset*8+64, getContext())) return IRType; } } if (const llvm::StructType *STy = dyn_cast(IRType)) { // If this is a struct, recurse into the field at the specified offset. const llvm::StructLayout *SL = getTargetData().getStructLayout(STy); if (IROffset < SL->getSizeInBytes()) { unsigned FieldIdx = SL->getElementContainingOffset(IROffset); IROffset -= SL->getElementOffset(FieldIdx); return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, SourceTy, SourceOffset); } } if (const llvm::ArrayType *ATy = dyn_cast(IRType)) { llvm::Type *EltTy = ATy->getElementType(); unsigned EltSize = getTargetData().getTypeAllocSize(EltTy); unsigned EltOffset = IROffset/EltSize*EltSize; return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, SourceOffset); } // Okay, we don't have any better idea of what to pass, so we pass this in an // integer register that isn't too big to fit the rest of the struct. unsigned TySizeInBytes = (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); assert(TySizeInBytes != SourceOffset && "Empty field?"); // It is always safe to classify this as an integer type up to i64 that // isn't larger than the structure. return llvm::IntegerType::get(getVMContext(), std::min(TySizeInBytes-SourceOffset, 8U)*8); } /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally /// be used as elements of a two register pair to pass or return, return a /// first class aggregate to represent them. For example, if the low part of /// a by-value argument should be passed as i32* and the high part as float, /// return {i32*, float}. static llvm::Type * GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, const llvm::TargetData &TD) { // In order to correctly satisfy the ABI, we need to the high part to start // at offset 8. If the high and low parts we inferred are both 4-byte types // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have // the second element at offset 8. Check for this: unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); unsigned HiAlign = TD.getABITypeAlignment(Hi); unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign); assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); // To handle this, we have to increase the size of the low part so that the // second element will start at an 8 byte offset. We can't increase the size // of the second element because it might make us access off the end of the // struct. if (HiStart != 8) { // There are only two sorts of types the ABI generation code can produce for // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. // Promote these to a larger type. if (Lo->isFloatTy()) Lo = llvm::Type::getDoubleTy(Lo->getContext()); else { assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); Lo = llvm::Type::getInt64Ty(Lo->getContext()); } } llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); // Verify that the second element is at an 8-byte offset. assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && "Invalid x86-64 argument pair!"); return Result; } ABIArgInfo X86_64ABIInfo:: classifyReturnType(QualType RetTy) const { // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the // classification algorithm. X86_64ABIInfo::Class Lo, Hi; classify(RetTy, 0, Lo, Hi); // Check some invariants. assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); llvm::Type *ResType = 0; switch (Lo) { case NoClass: if (Hi == NoClass) return ABIArgInfo::getIgnore(); // If the low part is just padding, it takes no register, leave ResType // null. assert((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part"); break; case SSEUp: case X87Up: assert(0 && "Invalid classification for lo word."); // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via // hidden argument. case Memory: return getIndirectReturnResult(RetTy); // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next // available register of the sequence %rax, %rdx is used. case Integer: ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); // If we have a sign or zero extended integer, make sure to return Extend // so that the parameter gets the right LLVM IR attributes. if (Hi == NoClass && isa(ResType)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); if (RetTy->isIntegralOrEnumerationType() && RetTy->isPromotableIntegerType()) return ABIArgInfo::getExtend(); } break; // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next // available SSE register of the sequence %xmm0, %xmm1 is used. case SSE: ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); break; // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is // returned on the X87 stack in %st0 as 80-bit x87 number. case X87: ResType = llvm::Type::getX86_FP80Ty(getVMContext()); break; // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real // part of the value is returned in %st0 and the imaginary part in // %st1. case ComplexX87: assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), llvm::Type::getX86_FP80Ty(getVMContext()), NULL); break; } llvm::Type *HighPart = 0; switch (Hi) { // Memory was handled previously and X87 should // never occur as a hi class. case Memory: case X87: assert(0 && "Invalid classification for hi word."); case ComplexX87: // Previously handled. case NoClass: break; case Integer: HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; case SSE: HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte // is passed in the next available eightbyte chunk if the last used // vector register. // // SSEUP should always be preceded by SSE, just widen. case SSEUp: assert(Lo == SSE && "Unexpected SSEUp classification."); ResType = GetByteVectorType(RetTy); break; // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is // returned together with the previous X87 value in %st0. case X87Up: // If X87Up is preceded by X87, we don't need to do // anything. However, in some cases with unions it may not be // preceded by X87. In such situations we follow gcc and pass the // extra bits in an SSE reg. if (Lo != X87) { HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); } break; } // If a high part was specified, merge it together with the low part. It is // known to pass in the high eightbyte of the result. We do this by forming a // first class struct aggregate with the high and low part: {low, high} if (HighPart) ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData()); return ABIArgInfo::getDirect(ResType); } ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt, unsigned &neededSSE) const { X86_64ABIInfo::Class Lo, Hi; classify(Ty, 0, Lo, Hi); // Check some invariants. // FIXME: Enforce these by construction. assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); neededInt = 0; neededSSE = 0; llvm::Type *ResType = 0; switch (Lo) { case NoClass: if (Hi == NoClass) return ABIArgInfo::getIgnore(); // If the low part is just padding, it takes no register, leave ResType // null. assert((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part"); break; // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument // on the stack. case Memory: // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or // COMPLEX_X87, it is passed in memory. case X87: case ComplexX87: if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) ++neededInt; return getIndirectResult(Ty); case SSEUp: case X87Up: assert(0 && "Invalid classification for lo word."); // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 // and %r9 is used. case Integer: ++neededInt; // Pick an 8-byte type based on the preferred type. ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); // If we have a sign or zero extended integer, make sure to return Extend // so that the parameter gets the right LLVM IR attributes. if (Hi == NoClass && isa(ResType)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (Ty->isIntegralOrEnumerationType() && Ty->isPromotableIntegerType()) return ABIArgInfo::getExtend(); } break; // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next // available SSE register is used, the registers are taken in the // order from %xmm0 to %xmm7. case SSE: { llvm::Type *IRType = CGT.ConvertType(Ty); ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); ++neededSSE; break; } } llvm::Type *HighPart = 0; switch (Hi) { // Memory was handled previously, ComplexX87 and X87 should // never occur as hi classes, and X87Up must be preceded by X87, // which is passed in memory. case Memory: case X87: case ComplexX87: assert(0 && "Invalid classification for hi word."); break; case NoClass: break; case Integer: ++neededInt; // Pick an 8-byte type based on the preferred type. HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); if (Lo == NoClass) // Pass HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; // X87Up generally doesn't occur here (long double is passed in // memory), except in situations involving unions. case X87Up: case SSE: HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); if (Lo == NoClass) // Pass HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); ++neededSSE; break; // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the // eightbyte is passed in the upper half of the last used SSE // register. This only happens when 128-bit vectors are passed. case SSEUp: assert(Lo == SSE && "Unexpected SSEUp classification"); ResType = GetByteVectorType(Ty); break; } // If a high part was specified, merge it together with the low part. It is // known to pass in the high eightbyte of the result. We do this by forming a // first class struct aggregate with the high and low part: {low, high} if (HighPart) ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData()); return ABIArgInfo::getDirect(ResType); } void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); // Keep track of the number of assigned registers. unsigned freeIntRegs = 6, freeSSERegs = 8; // If the return value is indirect, then the hidden argument is consuming one // integer register. if (FI.getReturnInfo().isIndirect()) --freeIntRegs; // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers // get assigned (in left-to-right order) for passing as follows... for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) { unsigned neededInt, neededSSE; it->info = classifyArgumentType(it->type, neededInt, neededSSE); // AMD64-ABI 3.2.3p3: If there are no registers available for any // eightbyte of an argument, the whole argument is passed on the // stack. If registers have already been assigned for some // eightbytes of such an argument, the assignments get reverted. if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { freeIntRegs -= neededInt; freeSSERegs -= neededSSE; } else { it->info = getIndirectResult(it->type); } } } static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) { llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); llvm::Value *overflow_arg_area = CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 // byte boundary if alignment needed by type exceeds 8 byte boundary. uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; if (Align > 8) { // Note that we follow the ABI & gcc here, even though the type // could in theory have an alignment greater than 16. This case // shouldn't ever matter in practice. // overflow_arg_area = (overflow_arg_area + 15) & ~15; llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, 15); overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, CGF.Int64Ty); llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL); overflow_arg_area = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), overflow_arg_area->getType(), "overflow_arg_area.align"); } // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); llvm::Value *Res = CGF.Builder.CreateBitCast(overflow_arg_area, llvm::PointerType::getUnqual(LTy)); // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: // l->overflow_arg_area + sizeof(type). // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to // an 8 byte boundary. uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, "overflow_arg_area.next"); CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. return Res; } llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { llvm::LLVMContext &VMContext = CGF.getLLVMContext(); // Assume that va_list type is correct; should be pointer to LLVM type: // struct { // i32 gp_offset; // i32 fp_offset; // i8* overflow_arg_area; // i8* reg_save_area; // }; unsigned neededInt, neededSSE; Ty = CGF.getContext().getCanonicalType(Ty); ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE); // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed // in the registers. If not go to step 7. if (!neededInt && !neededSSE) return EmitVAArgFromMemory(VAListAddr, Ty, CGF); // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of // general purpose registers needed to pass type and num_fp to hold // the number of floating point registers needed. // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into // registers. In the case: l->gp_offset > 48 - num_gp * 8 or // l->fp_offset > 304 - num_fp * 16 go to step 7. // // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of // register save space). llvm::Value *InRegs = 0; llvm::Value *gp_offset_p = 0, *gp_offset = 0; llvm::Value *fp_offset_p = 0, *fp_offset = 0; if (neededInt) { gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); } if (neededSSE) { fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); llvm::Value *FitsInFP = llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; } llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); // Emit code to load the value if it was passed in registers. CGF.EmitBlock(InRegBlock); // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with // an offset of l->gp_offset and/or l->fp_offset. This may require // copying to a temporary location in case the parameter is passed // in different register classes or requires an alignment greater // than 8 for general purpose registers and 16 for XMM registers. // // FIXME: This really results in shameful code when we end up needing to // collect arguments from different places; often what should result in a // simple assembling of a structure from scattered addresses has many more // loads than necessary. Can we clean this up? const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); llvm::Value *RegAddr = CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); if (neededInt && neededSSE) { // FIXME: Cleanup. assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); const llvm::StructType *ST = cast(AI.getCoerceToType()); llvm::Value *Tmp = CGF.CreateTempAlloca(ST); assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); const llvm::Type *TyLo = ST->getElementType(0); const llvm::Type *TyHi = ST->getElementType(1); assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && "Unexpected ABI info for mixed regs"); const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; llvm::Value *V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy)); } else if (neededInt) { RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); RegAddr = CGF.Builder.CreateBitCast(RegAddr, llvm::PointerType::getUnqual(LTy)); } else if (neededSSE == 1) { RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); RegAddr = CGF.Builder.CreateBitCast(RegAddr, llvm::PointerType::getUnqual(LTy)); } else { assert(neededSSE == 2 && "Invalid number of needed registers!"); // SSE registers are spaced 16 bytes apart in the register save // area, we need to collect the two eightbytes together. llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext); const llvm::Type *DblPtrTy = llvm::PointerType::getUnqual(DoubleTy); const llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, DblPtrTy)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, DblPtrTy)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy)); } // AMD64-ABI 3.5.7p5: Step 5. Set: // l->gp_offset = l->gp_offset + num_gp * 8 // l->fp_offset = l->fp_offset + num_fp * 16. if (neededInt) { llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), gp_offset_p); } if (neededSSE) { llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), fp_offset_p); } CGF.EmitBranch(ContBlock); // Emit code to load the value if it was passed in memory. CGF.EmitBlock(InMemBlock); llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); // Return the appropriate result. CGF.EmitBlock(ContBlock); llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, "vaarg.addr"); ResAddr->addIncoming(RegAddr, InRegBlock); ResAddr->addIncoming(MemAddr, InMemBlock); return ResAddr; } ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const { if (Ty->isVoidType()) return ABIArgInfo::getIgnore(); if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); uint64_t Size = getContext().getTypeSize(Ty); if (const RecordType *RT = Ty->getAs()) { if (hasNonTrivialDestructorOrCopyConstructor(RT) || RT->getDecl()->hasFlexibleArrayMember()) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // FIXME: mingw-w64-gcc emits 128-bit struct as i128 if (Size == 128 && getContext().Target.getTriple().getOS() == llvm::Triple::MinGW32) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is // not 1, 2, 4, or 8 bytes, must be passed by reference." if (Size <= 64 && (Size & (Size - 1)) == 0) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); return ABIArgInfo::getIndirect(0, /*ByVal=*/false); } if (Ty->isPromotableIntegerType()) return ABIArgInfo::getExtend(); return ABIArgInfo::getDirect(); } void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { QualType RetTy = FI.getReturnType(); FI.getReturnInfo() = classify(RetTy); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classify(it->type); } llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); uint64_t Offset = llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } // PowerPC-32 namespace { class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { public: PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { // This is recovered from gcc output. return 1; // r1 is the dedicated stack pointer } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const; }; } bool PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { // This is calculated from the LLVM and GCC tables and verified // against gcc output. AFAIK all ABIs use the same encoding. CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::LLVMContext &Context = CGF.getLLVMContext(); const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); // 0-31: r0-31, the 4-byte general-purpose registers AssignToArrayRange(Builder, Address, Four8, 0, 31); // 32-63: fp0-31, the 8-byte floating-point registers AssignToArrayRange(Builder, Address, Eight8, 32, 63); // 64-76 are various 4-byte special-purpose registers: // 64: mq // 65: lr // 66: ctr // 67: ap // 68-75 cr0-7 // 76: xer AssignToArrayRange(Builder, Address, Four8, 64, 76); // 77-108: v0-31, the 16-byte vector registers AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); // 109: vrsave // 110: vscr // 111: spe_acc // 112: spefscr // 113: sfp AssignToArrayRange(Builder, Address, Four8, 109, 113); return false; } //===----------------------------------------------------------------------===// // ARM ABI Implementation //===----------------------------------------------------------------------===// namespace { class ARMABIInfo : public ABIInfo { public: enum ABIKind { APCS = 0, AAPCS = 1, AAPCS_VFP }; private: ABIKind Kind; public: ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {} private: ABIKind getABIKind() const { return Kind; } ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class ARMTargetCodeGenInfo : public TargetCodeGenInfo { public: ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 13; } llvm::StringRef getARCRetainAutoreleasedReturnValueMarker() const { return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::LLVMContext &Context = CGF.getLLVMContext(); const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); // 0-15 are the 16 integer registers. AssignToArrayRange(Builder, Address, Four8, 0, 15); return false; } }; } void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); // Always honor user-specified calling convention. if (FI.getCallingConvention() != llvm::CallingConv::C) return; // Calling convention as default by an ABI. llvm::CallingConv::ID DefaultCC; llvm::StringRef Env = getContext().Target.getTriple().getEnvironmentName(); if (Env == "gnueabi" || Env == "eabi") DefaultCC = llvm::CallingConv::ARM_AAPCS; else DefaultCC = llvm::CallingConv::ARM_APCS; // If user did not ask for specific calling convention explicitly (e.g. via // pcs attribute), set effective calling convention if it's different than ABI // default. switch (getABIKind()) { case APCS: if (DefaultCC != llvm::CallingConv::ARM_APCS) FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS); break; case AAPCS: if (DefaultCC != llvm::CallingConv::ARM_AAPCS) FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS); break; case AAPCS_VFP: if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP) FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP); break; } } ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const { if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } // Ignore empty records. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always indirect. if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // Otherwise, pass by coercing to a structure of the appropriate size. // // FIXME: This doesn't handle alignment > 64 bits. const llvm::Type* ElemTy; unsigned SizeRegs; if (getContext().getTypeSizeInChars(Ty) <= CharUnits::fromQuantity(64)) { ElemTy = llvm::Type::getInt32Ty(getVMContext()); SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; } else if (getABIKind() == ARMABIInfo::APCS) { // Initial ARM ByVal support is APCS-only. return ABIArgInfo::getIndirect(0, /*ByVal=*/true); } else { // FIXME: This is kind of nasty... but there isn't much choice // because most of the ARM calling conventions don't yet support // byval. ElemTy = llvm::Type::getInt64Ty(getVMContext()); SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; } llvm::Type *STy = llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); return ABIArgInfo::getDirect(STy); } static bool isIntegerLikeType(QualType Ty, ASTContext &Context, llvm::LLVMContext &VMContext) { // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure // is called integer-like if its size is less than or equal to one word, and // the offset of each of its addressable sub-fields is zero. uint64_t Size = Context.getTypeSize(Ty); // Check that the type fits in a word. if (Size > 32) return false; // FIXME: Handle vector types! if (Ty->isVectorType()) return false; // Float types are never treated as "integer like". if (Ty->isRealFloatingType()) return false; // If this is a builtin or pointer type then it is ok. if (Ty->getAs() || Ty->isPointerType()) return true; // Small complex integer types are "integer like". if (const ComplexType *CT = Ty->getAs()) return isIntegerLikeType(CT->getElementType(), Context, VMContext); // Single element and zero sized arrays should be allowed, by the definition // above, but they are not. // Otherwise, it must be a record type. const RecordType *RT = Ty->getAs(); if (!RT) return false; // Ignore records with flexible arrays. const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; // Check that all sub-fields are at offset 0, and are themselves "integer // like". const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); bool HadField = false; unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { const FieldDecl *FD = *i; // Bit-fields are not addressable, we only need to verify they are "integer // like". We still have to disallow a subsequent non-bitfield, for example: // struct { int : 0; int x } // is non-integer like according to gcc. if (FD->isBitField()) { if (!RD->isUnion()) HadField = true; if (!isIntegerLikeType(FD->getType(), Context, VMContext)) return false; continue; } // Check if this field is at offset 0. if (Layout.getFieldOffset(idx) != 0) return false; if (!isIntegerLikeType(FD->getType(), Context, VMContext)) return false; // Only allow at most one field in a structure. This doesn't match the // wording above, but follows gcc in situations with a field following an // empty structure. if (!RD->isUnion()) { if (HadField) return false; HadField = true; } } return true; } ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // Large vector types should be returned via memory. if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) return ABIArgInfo::getIndirect(0); if (!isAggregateTypeForABI(RetTy)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always indirect. if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy)) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // Are we following APCS? if (getABIKind() == APCS) { if (isEmptyRecord(getContext(), RetTy, false)) return ABIArgInfo::getIgnore(); // Complex types are all returned as packed integers. // // FIXME: Consider using 2 x vector types if the back end handles them // correctly. if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), getContext().getTypeSize(RetTy))); // Integer like structures are returned in r0. if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { // Return in the smallest viable integer type. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 8) return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); } // Otherwise return in memory. return ABIArgInfo::getIndirect(0); } // Otherwise this is an AAPCS variant. if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); // Aggregates <= 4 bytes are returned in r0; other aggregates // are returned indirectly. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 32) { // Return in the smallest viable integer type. if (Size <= 8) return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); } return ABIArgInfo::getIndirect(0); } llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // FIXME: Need to handle alignment const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); uint64_t Offset = llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } //===----------------------------------------------------------------------===// // PTX ABI Implementation //===----------------------------------------------------------------------===// namespace { class PTXABIInfo : public ABIInfo { public: PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty) const; virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CFG) const; }; class PTXTargetCodeGenInfo : public TargetCodeGenInfo { public: PTXTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PTXABIInfo(CGT)) {} }; ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy)) return ABIArgInfo::getIndirect(0); return ABIArgInfo::getDirect(); } ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const { if (isAggregateTypeForABI(Ty)) return ABIArgInfo::getIndirect(0); return ABIArgInfo::getDirect(); } void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); // Always honor user-specified calling convention. if (FI.getCallingConvention() != llvm::CallingConv::C) return; // Calling convention as default by an ABI. llvm::CallingConv::ID DefaultCC; llvm::StringRef Env = getContext().Target.getTriple().getEnvironmentName(); if (Env == "device") DefaultCC = llvm::CallingConv::PTX_Device; else DefaultCC = llvm::CallingConv::PTX_Kernel; FI.setEffectiveCallingConvention(DefaultCC); } llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CFG) const { llvm_unreachable("PTX does not support varargs"); return 0; } } //===----------------------------------------------------------------------===// // SystemZ ABI Implementation //===----------------------------------------------------------------------===// namespace { class SystemZABIInfo : public ABIInfo { public: SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} bool isPromotableIntegerType(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; virtual void computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); } virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { public: SystemZTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} }; } bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended. if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Bool: case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::SChar: case BuiltinType::UChar: case BuiltinType::Short: case BuiltinType::UShort: case BuiltinType::Int: case BuiltinType::UInt: return true; default: return false; } return false; } llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // FIXME: Implement return 0; } ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy)) return ABIArgInfo::getIndirect(0); return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { if (isAggregateTypeForABI(Ty)) return ABIArgInfo::getIndirect(0); return (isPromotableIntegerType(Ty) ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } //===----------------------------------------------------------------------===// // MBlaze ABI Implementation //===----------------------------------------------------------------------===// namespace { class MBlazeABIInfo : public ABIInfo { public: MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} bool isPromotableIntegerType(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; virtual void computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); } virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo { public: MBlazeTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {} void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const; }; } bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const { // MBlaze ABI requires all 8 and 16 bit quantities to be extended. if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Bool: case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::SChar: case BuiltinType::UChar: case BuiltinType::Short: case BuiltinType::UShort: return true; default: return false; } return false; } llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // FIXME: Implement return 0; } ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy)) return ABIArgInfo::getIndirect(0); return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const { if (isAggregateTypeForABI(Ty)) return ABIArgInfo::getIndirect(0); return (isPromotableIntegerType(Ty) ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { const FunctionDecl *FD = dyn_cast(D); if (!FD) return; llvm::CallingConv::ID CC = llvm::CallingConv::C; if (FD->hasAttr()) CC = llvm::CallingConv::MBLAZE_INTR; else if (FD->hasAttr()) CC = llvm::CallingConv::MBLAZE_SVOL; if (CC != llvm::CallingConv::C) { // Handle 'interrupt_handler' attribute: llvm::Function *F = cast(GV); // Step 1: Set ISR calling convention. F->setCallingConv(CC); // Step 2: Add attributes goodness. F->addFnAttr(llvm::Attribute::NoInline); } // Step 3: Emit _interrupt_handler alias. if (CC == llvm::CallingConv::MBLAZE_INTR) new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, "_interrupt_handler", GV, &M.getModule()); } //===----------------------------------------------------------------------===// // MSP430 ABI Implementation //===----------------------------------------------------------------------===// namespace { class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { public: MSP430TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const; }; } void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { if (const FunctionDecl *FD = dyn_cast(D)) { if (const MSP430InterruptAttr *attr = FD->getAttr()) { // Handle 'interrupt' attribute: llvm::Function *F = cast(GV); // Step 1: Set ISR calling convention. F->setCallingConv(llvm::CallingConv::MSP430_INTR); // Step 2: Add attributes goodness. F->addFnAttr(llvm::Attribute::NoInline); // Step 3: Emit ISR vector alias. unsigned Num = attr->getNumber() + 0xffe0; new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, "vector_" + llvm::Twine::utohexstr(Num), GV, &M.getModule()); } } } //===----------------------------------------------------------------------===// // MIPS ABI Implementation. This works for both little-endian and // big-endian variants. //===----------------------------------------------------------------------===// namespace { class MipsABIInfo : public ABIInfo { public: MipsABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { public: MIPSTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new MipsABIInfo(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { return 29; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const; }; } ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty) const { if (isAggregateTypeForABI(Ty)) { // Ignore empty aggregates. if (getContext().getTypeSize(Ty) == 0) return ABIArgInfo::getIgnore(); return ABIArgInfo::getIndirect(0); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy)) { if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(); return ABIArgInfo::getIndirect(0); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); } llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { return 0; } bool MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { // This information comes from gcc's implementation, which seems to // as canonical as it gets. CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::LLVMContext &Context = CGF.getLLVMContext(); // Everything on MIPS is 4 bytes. Double-precision FP registers // are aliased to pairs of single-precision FP registers. const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); // 0-31 are the general purpose registers, $0 - $31. // 32-63 are the floating-point registers, $f0 - $f31. // 64 and 65 are the multiply/divide registers, $hi and $lo. // 66 is the (notional, I think) register for signal-handler return. AssignToArrayRange(Builder, Address, Four8, 0, 65); // 67-74 are the floating-point status registers, $fcc0 - $fcc7. // They are one bit wide and ignored here. // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. // (coprocessor 1 is the FP unit) // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. // 176-181 are the DSP accumulator registers. AssignToArrayRange(Builder, Address, Four8, 80, 181); return false; } const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { if (TheTargetCodeGenInfo) return *TheTargetCodeGenInfo; // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't // free it. const llvm::Triple &Triple = getContext().Target.getTriple(); switch (Triple.getArch()) { default: return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); case llvm::Triple::mips: case llvm::Triple::mipsel: return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types)); case llvm::Triple::arm: case llvm::Triple::thumb: { ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0) Kind = ARMABIInfo::APCS; else if (CodeGenOpts.FloatABI == "hard") Kind = ARMABIInfo::AAPCS_VFP; return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); } case llvm::Triple::ppc: return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); case llvm::Triple::ptx32: case llvm::Triple::ptx64: return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types)); case llvm::Triple::systemz: return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); case llvm::Triple::mblaze: return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types)); case llvm::Triple::msp430: return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); case llvm::Triple::x86: { bool DisableMMX = strcmp(getContext().Target.getABI(), "no-mmx") == 0; if (Triple.isOSDarwin()) return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX)); switch (Triple.getOS()) { case llvm::Triple::Cygwin: case llvm::Triple::MinGW32: case llvm::Triple::AuroraUX: case llvm::Triple::DragonFly: case llvm::Triple::FreeBSD: case llvm::Triple::OpenBSD: case llvm::Triple::NetBSD: return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX)); default: return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX)); } } case llvm::Triple::x86_64: switch (Triple.getOS()) { case llvm::Triple::Win32: case llvm::Triple::MinGW32: case llvm::Triple::Cygwin: return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); default: return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types)); } } }