//===--- FrontendActions.cpp ----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "clang/Frontend/FrontendActions.h" #include "clang/AST/ASTConsumer.h" #include "clang/Basic/FileManager.h" #include "clang/Frontend/ASTConsumers.h" #include "clang/Frontend/ASTUnit.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/MultiplexConsumer.h" #include "clang/Frontend/Utils.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/Pragma.h" #include "clang/Lex/Preprocessor.h" #include "clang/Parse/Parser.h" #include "clang/Serialization/ASTReader.h" #include "clang/Serialization/ASTWriter.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace clang; //===----------------------------------------------------------------------===// // Custom Actions //===----------------------------------------------------------------------===// std::unique_ptr InitOnlyAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return llvm::make_unique(); } void InitOnlyAction::ExecuteAction() { } //===----------------------------------------------------------------------===// // AST Consumer Actions //===----------------------------------------------------------------------===// std::unique_ptr ASTPrintAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { if (raw_ostream *OS = CI.createDefaultOutputFile(false, InFile)) return CreateASTPrinter(OS, CI.getFrontendOpts().ASTDumpFilter); return nullptr; } std::unique_ptr ASTDumpAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return CreateASTDumper(CI.getFrontendOpts().ASTDumpFilter, CI.getFrontendOpts().ASTDumpDecls, CI.getFrontendOpts().ASTDumpLookups); } std::unique_ptr ASTDeclListAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return CreateASTDeclNodeLister(); } std::unique_ptr ASTViewAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return CreateASTViewer(); } std::unique_ptr DeclContextPrintAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return CreateDeclContextPrinter(); } std::unique_ptr GeneratePCHAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { std::string Sysroot; std::string OutputFile; raw_pwrite_stream *OS = ComputeASTConsumerArguments(CI, InFile, Sysroot, OutputFile); if (!OS) return nullptr; if (!CI.getFrontendOpts().RelocatablePCH) Sysroot.clear(); auto Buffer = std::make_shared(); std::vector> Consumers; Consumers.push_back(llvm::make_unique( CI.getPreprocessor(), OutputFile, nullptr, Sysroot, Buffer, CI.getFrontendOpts().ModuleFileExtensions)); Consumers.push_back(CI.getPCHContainerWriter().CreatePCHContainerGenerator( CI, InFile, OutputFile, OS, Buffer)); return llvm::make_unique(std::move(Consumers)); } raw_pwrite_stream *GeneratePCHAction::ComputeASTConsumerArguments( CompilerInstance &CI, StringRef InFile, std::string &Sysroot, std::string &OutputFile) { Sysroot = CI.getHeaderSearchOpts().Sysroot; if (CI.getFrontendOpts().RelocatablePCH && Sysroot.empty()) { CI.getDiagnostics().Report(diag::err_relocatable_without_isysroot); return nullptr; } // We use createOutputFile here because this is exposed via libclang, and we // must disable the RemoveFileOnSignal behavior. // We use a temporary to avoid race conditions. raw_pwrite_stream *OS = CI.createOutputFile(CI.getFrontendOpts().OutputFile, /*Binary=*/true, /*RemoveFileOnSignal=*/false, InFile, /*Extension=*/"", /*useTemporary=*/true); if (!OS) return nullptr; OutputFile = CI.getFrontendOpts().OutputFile; return OS; } std::unique_ptr GenerateModuleAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { std::string Sysroot; std::string OutputFile; raw_pwrite_stream *OS = ComputeASTConsumerArguments(CI, InFile, Sysroot, OutputFile); if (!OS) return nullptr; auto Buffer = std::make_shared(); std::vector> Consumers; Consumers.push_back(llvm::make_unique( CI.getPreprocessor(), OutputFile, Module, Sysroot, Buffer, CI.getFrontendOpts().ModuleFileExtensions, /*AllowASTWithErrors=*/false, /*IncludeTimestamps=*/ +CI.getFrontendOpts().BuildingImplicitModule)); Consumers.push_back(CI.getPCHContainerWriter().CreatePCHContainerGenerator( CI, InFile, OutputFile, OS, Buffer)); return llvm::make_unique(std::move(Consumers)); } static SmallVectorImpl & operator+=(SmallVectorImpl &Includes, StringRef RHS) { Includes.append(RHS.begin(), RHS.end()); return Includes; } static std::error_code addHeaderInclude(StringRef HeaderName, SmallVectorImpl &Includes, const LangOptions &LangOpts, bool IsExternC) { if (IsExternC && LangOpts.CPlusPlus) Includes += "extern \"C\" {\n"; if (LangOpts.ObjC1) Includes += "#import \""; else Includes += "#include \""; Includes += HeaderName; Includes += "\"\n"; if (IsExternC && LangOpts.CPlusPlus) Includes += "}\n"; return std::error_code(); } /// \brief Collect the set of header includes needed to construct the given /// module and update the TopHeaders file set of the module. /// /// \param Module The module we're collecting includes from. /// /// \param Includes Will be augmented with the set of \#includes or \#imports /// needed to load all of the named headers. static std::error_code collectModuleHeaderIncludes(const LangOptions &LangOpts, FileManager &FileMgr, ModuleMap &ModMap, clang::Module *Module, SmallVectorImpl &Includes) { // Don't collect any headers for unavailable modules. if (!Module->isAvailable()) return std::error_code(); // Add includes for each of these headers. for (Module::Header &H : Module->Headers[Module::HK_Normal]) { Module->addTopHeader(H.Entry); // Use the path as specified in the module map file. We'll look for this // file relative to the module build directory (the directory containing // the module map file) so this will find the same file that we found // while parsing the module map. if (std::error_code Err = addHeaderInclude(H.NameAsWritten, Includes, LangOpts, Module->IsExternC)) return Err; } // Note that Module->PrivateHeaders will not be a TopHeader. if (Module::Header UmbrellaHeader = Module->getUmbrellaHeader()) { Module->addTopHeader(UmbrellaHeader.Entry); if (Module->Parent) { // Include the umbrella header for submodules. if (std::error_code Err = addHeaderInclude(UmbrellaHeader.NameAsWritten, Includes, LangOpts, Module->IsExternC)) return Err; } } else if (Module::DirectoryName UmbrellaDir = Module->getUmbrellaDir()) { // Add all of the headers we find in this subdirectory. std::error_code EC; SmallString<128> DirNative; llvm::sys::path::native(UmbrellaDir.Entry->getName(), DirNative); for (llvm::sys::fs::recursive_directory_iterator Dir(DirNative, EC), DirEnd; Dir != DirEnd && !EC; Dir.increment(EC)) { // Check whether this entry has an extension typically associated with // headers. if (!llvm::StringSwitch(llvm::sys::path::extension(Dir->path())) .Cases(".h", ".H", ".hh", ".hpp", true) .Default(false)) continue; const FileEntry *Header = FileMgr.getFile(Dir->path()); // FIXME: This shouldn't happen unless there is a file system race. Is // that worth diagnosing? if (!Header) continue; // If this header is marked 'unavailable' in this module, don't include // it. if (ModMap.isHeaderUnavailableInModule(Header, Module)) continue; // Compute the relative path from the directory to this file. SmallVector Components; auto PathIt = llvm::sys::path::rbegin(Dir->path()); for (int I = 0; I != Dir.level() + 1; ++I, ++PathIt) Components.push_back(*PathIt); SmallString<128> RelativeHeader(UmbrellaDir.NameAsWritten); for (auto It = Components.rbegin(), End = Components.rend(); It != End; ++It) llvm::sys::path::append(RelativeHeader, *It); // Include this header as part of the umbrella directory. Module->addTopHeader(Header); if (std::error_code Err = addHeaderInclude(RelativeHeader, Includes, LangOpts, Module->IsExternC)) return Err; } if (EC) return EC; } // Recurse into submodules. for (clang::Module::submodule_iterator Sub = Module->submodule_begin(), SubEnd = Module->submodule_end(); Sub != SubEnd; ++Sub) if (std::error_code Err = collectModuleHeaderIncludes( LangOpts, FileMgr, ModMap, *Sub, Includes)) return Err; return std::error_code(); } bool GenerateModuleAction::BeginSourceFileAction(CompilerInstance &CI, StringRef Filename) { // Find the module map file. const FileEntry *ModuleMap = CI.getFileManager().getFile(Filename, /*openFile*/true); if (!ModuleMap) { CI.getDiagnostics().Report(diag::err_module_map_not_found) << Filename; return false; } // Set up embedding for any specified files. Do this before we load any // source files, including the primary module map for the compilation. for (const auto &F : CI.getFrontendOpts().ModulesEmbedFiles) { if (const auto *FE = CI.getFileManager().getFile(F, /*openFile*/true)) CI.getSourceManager().setFileIsTransient(FE); else CI.getDiagnostics().Report(diag::err_modules_embed_file_not_found) << F; } if (CI.getFrontendOpts().ModulesEmbedAllFiles) CI.getSourceManager().setAllFilesAreTransient(true); // Parse the module map file. HeaderSearch &HS = CI.getPreprocessor().getHeaderSearchInfo(); if (HS.loadModuleMapFile(ModuleMap, IsSystem)) return false; if (CI.getLangOpts().CurrentModule.empty()) { CI.getDiagnostics().Report(diag::err_missing_module_name); // FIXME: Eventually, we could consider asking whether there was just // a single module described in the module map, and use that as a // default. Then it would be fairly trivial to just "compile" a module // map with a single module (the common case). return false; } // If we're being run from the command-line, the module build stack will not // have been filled in yet, so complete it now in order to allow us to detect // module cycles. SourceManager &SourceMgr = CI.getSourceManager(); if (SourceMgr.getModuleBuildStack().empty()) SourceMgr.pushModuleBuildStack(CI.getLangOpts().CurrentModule, FullSourceLoc(SourceLocation(), SourceMgr)); // Dig out the module definition. Module = HS.lookupModule(CI.getLangOpts().CurrentModule, /*AllowSearch=*/false); if (!Module) { CI.getDiagnostics().Report(diag::err_missing_module) << CI.getLangOpts().CurrentModule << Filename; return false; } // Check whether we can build this module at all. clang::Module::Requirement Requirement; clang::Module::UnresolvedHeaderDirective MissingHeader; if (!Module->isAvailable(CI.getLangOpts(), CI.getTarget(), Requirement, MissingHeader)) { if (MissingHeader.FileNameLoc.isValid()) { CI.getDiagnostics().Report(MissingHeader.FileNameLoc, diag::err_module_header_missing) << MissingHeader.IsUmbrella << MissingHeader.FileName; } else { CI.getDiagnostics().Report(diag::err_module_unavailable) << Module->getFullModuleName() << Requirement.second << Requirement.first; } return false; } if (ModuleMapForUniquing && ModuleMapForUniquing != ModuleMap) { Module->IsInferred = true; HS.getModuleMap().setInferredModuleAllowedBy(Module, ModuleMapForUniquing); } else { ModuleMapForUniquing = ModuleMap; } FileManager &FileMgr = CI.getFileManager(); // Collect the set of #includes we need to build the module. SmallString<256> HeaderContents; std::error_code Err = std::error_code(); if (Module::Header UmbrellaHeader = Module->getUmbrellaHeader()) Err = addHeaderInclude(UmbrellaHeader.NameAsWritten, HeaderContents, CI.getLangOpts(), Module->IsExternC); if (!Err) Err = collectModuleHeaderIncludes( CI.getLangOpts(), FileMgr, CI.getPreprocessor().getHeaderSearchInfo().getModuleMap(), Module, HeaderContents); if (Err) { CI.getDiagnostics().Report(diag::err_module_cannot_create_includes) << Module->getFullModuleName() << Err.message(); return false; } // Inform the preprocessor that includes from within the input buffer should // be resolved relative to the build directory of the module map file. CI.getPreprocessor().setMainFileDir(Module->Directory); std::unique_ptr InputBuffer = llvm::MemoryBuffer::getMemBufferCopy(HeaderContents, Module::getModuleInputBufferName()); // Ownership of InputBuffer will be transferred to the SourceManager. setCurrentInput(FrontendInputFile(InputBuffer.release(), getCurrentFileKind(), Module->IsSystem)); return true; } raw_pwrite_stream *GenerateModuleAction::ComputeASTConsumerArguments( CompilerInstance &CI, StringRef InFile, std::string &Sysroot, std::string &OutputFile) { // If no output file was provided, figure out where this module would go // in the module cache. if (CI.getFrontendOpts().OutputFile.empty()) { HeaderSearch &HS = CI.getPreprocessor().getHeaderSearchInfo(); CI.getFrontendOpts().OutputFile = HS.getModuleFileName(CI.getLangOpts().CurrentModule, ModuleMapForUniquing->getName()); } // We use createOutputFile here because this is exposed via libclang, and we // must disable the RemoveFileOnSignal behavior. // We use a temporary to avoid race conditions. raw_pwrite_stream *OS = CI.createOutputFile(CI.getFrontendOpts().OutputFile, /*Binary=*/true, /*RemoveFileOnSignal=*/false, InFile, /*Extension=*/"", /*useTemporary=*/true, /*CreateMissingDirectories=*/true); if (!OS) return nullptr; OutputFile = CI.getFrontendOpts().OutputFile; return OS; } std::unique_ptr SyntaxOnlyAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return llvm::make_unique(); } std::unique_ptr DumpModuleInfoAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return llvm::make_unique(); } std::unique_ptr VerifyPCHAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { return llvm::make_unique(); } void VerifyPCHAction::ExecuteAction() { CompilerInstance &CI = getCompilerInstance(); bool Preamble = CI.getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; const std::string &Sysroot = CI.getHeaderSearchOpts().Sysroot; std::unique_ptr Reader(new ASTReader( CI.getPreprocessor(), CI.getASTContext(), CI.getPCHContainerReader(), CI.getFrontendOpts().ModuleFileExtensions, Sysroot.empty() ? "" : Sysroot.c_str(), /*DisableValidation*/ false, /*AllowPCHWithCompilerErrors*/ false, /*AllowConfigurationMismatch*/ true, /*ValidateSystemInputs*/ true)); Reader->ReadAST(getCurrentFile(), Preamble ? serialization::MK_Preamble : serialization::MK_PCH, SourceLocation(), ASTReader::ARR_ConfigurationMismatch); } namespace { /// \brief AST reader listener that dumps module information for a module /// file. class DumpModuleInfoListener : public ASTReaderListener { llvm::raw_ostream &Out; public: DumpModuleInfoListener(llvm::raw_ostream &Out) : Out(Out) { } #define DUMP_BOOLEAN(Value, Text) \ Out.indent(4) << Text << ": " << (Value? "Yes" : "No") << "\n" bool ReadFullVersionInformation(StringRef FullVersion) override { Out.indent(2) << "Generated by " << (FullVersion == getClangFullRepositoryVersion()? "this" : "a different") << " Clang: " << FullVersion << "\n"; return ASTReaderListener::ReadFullVersionInformation(FullVersion); } void ReadModuleName(StringRef ModuleName) override { Out.indent(2) << "Module name: " << ModuleName << "\n"; } void ReadModuleMapFile(StringRef ModuleMapPath) override { Out.indent(2) << "Module map file: " << ModuleMapPath << "\n"; } bool ReadLanguageOptions(const LangOptions &LangOpts, bool Complain, bool AllowCompatibleDifferences) override { Out.indent(2) << "Language options:\n"; #define LANGOPT(Name, Bits, Default, Description) \ DUMP_BOOLEAN(LangOpts.Name, Description); #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \ Out.indent(4) << Description << ": " \ << static_cast(LangOpts.get##Name()) << "\n"; #define VALUE_LANGOPT(Name, Bits, Default, Description) \ Out.indent(4) << Description << ": " << LangOpts.Name << "\n"; #define BENIGN_LANGOPT(Name, Bits, Default, Description) #define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description) #include "clang/Basic/LangOptions.def" if (!LangOpts.ModuleFeatures.empty()) { Out.indent(4) << "Module features:\n"; for (StringRef Feature : LangOpts.ModuleFeatures) Out.indent(6) << Feature << "\n"; } return false; } bool ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain, bool AllowCompatibleDifferences) override { Out.indent(2) << "Target options:\n"; Out.indent(4) << " Triple: " << TargetOpts.Triple << "\n"; Out.indent(4) << " CPU: " << TargetOpts.CPU << "\n"; Out.indent(4) << " ABI: " << TargetOpts.ABI << "\n"; if (!TargetOpts.FeaturesAsWritten.empty()) { Out.indent(4) << "Target features:\n"; for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size(); I != N; ++I) { Out.indent(6) << TargetOpts.FeaturesAsWritten[I] << "\n"; } } return false; } bool ReadDiagnosticOptions(IntrusiveRefCntPtr DiagOpts, bool Complain) override { Out.indent(2) << "Diagnostic options:\n"; #define DIAGOPT(Name, Bits, Default) DUMP_BOOLEAN(DiagOpts->Name, #Name); #define ENUM_DIAGOPT(Name, Type, Bits, Default) \ Out.indent(4) << #Name << ": " << DiagOpts->get##Name() << "\n"; #define VALUE_DIAGOPT(Name, Bits, Default) \ Out.indent(4) << #Name << ": " << DiagOpts->Name << "\n"; #include "clang/Basic/DiagnosticOptions.def" Out.indent(4) << "Diagnostic flags:\n"; for (const std::string &Warning : DiagOpts->Warnings) Out.indent(6) << "-W" << Warning << "\n"; for (const std::string &Remark : DiagOpts->Remarks) Out.indent(6) << "-R" << Remark << "\n"; return false; } bool ReadHeaderSearchOptions(const HeaderSearchOptions &HSOpts, StringRef SpecificModuleCachePath, bool Complain) override { Out.indent(2) << "Header search options:\n"; Out.indent(4) << "System root [-isysroot=]: '" << HSOpts.Sysroot << "'\n"; Out.indent(4) << "Module Cache: '" << SpecificModuleCachePath << "'\n"; DUMP_BOOLEAN(HSOpts.UseBuiltinIncludes, "Use builtin include directories [-nobuiltininc]"); DUMP_BOOLEAN(HSOpts.UseStandardSystemIncludes, "Use standard system include directories [-nostdinc]"); DUMP_BOOLEAN(HSOpts.UseStandardCXXIncludes, "Use standard C++ include directories [-nostdinc++]"); DUMP_BOOLEAN(HSOpts.UseLibcxx, "Use libc++ (rather than libstdc++) [-stdlib=]"); return false; } bool ReadPreprocessorOptions(const PreprocessorOptions &PPOpts, bool Complain, std::string &SuggestedPredefines) override { Out.indent(2) << "Preprocessor options:\n"; DUMP_BOOLEAN(PPOpts.UsePredefines, "Uses compiler/target-specific predefines [-undef]"); DUMP_BOOLEAN(PPOpts.DetailedRecord, "Uses detailed preprocessing record (for indexing)"); if (!PPOpts.Macros.empty()) { Out.indent(4) << "Predefined macros:\n"; } for (std::vector >::const_iterator I = PPOpts.Macros.begin(), IEnd = PPOpts.Macros.end(); I != IEnd; ++I) { Out.indent(6); if (I->second) Out << "-U"; else Out << "-D"; Out << I->first << "\n"; } return false; } /// Indicates that a particular module file extension has been read. void readModuleFileExtension( const ModuleFileExtensionMetadata &Metadata) override { Out.indent(2) << "Module file extension '" << Metadata.BlockName << "' " << Metadata.MajorVersion << "." << Metadata.MinorVersion; if (!Metadata.UserInfo.empty()) { Out << ": "; Out.write_escaped(Metadata.UserInfo); } Out << "\n"; } #undef DUMP_BOOLEAN }; } void DumpModuleInfoAction::ExecuteAction() { // Set up the output file. std::unique_ptr OutFile; StringRef OutputFileName = getCompilerInstance().getFrontendOpts().OutputFile; if (!OutputFileName.empty() && OutputFileName != "-") { std::error_code EC; OutFile.reset(new llvm::raw_fd_ostream(OutputFileName.str(), EC, llvm::sys::fs::F_Text)); } llvm::raw_ostream &Out = OutFile.get()? *OutFile.get() : llvm::outs(); Out << "Information for module file '" << getCurrentFile() << "':\n"; DumpModuleInfoListener Listener(Out); ASTReader::readASTFileControlBlock( getCurrentFile(), getCompilerInstance().getFileManager(), getCompilerInstance().getPCHContainerReader(), /*FindModuleFileExtensions=*/true, Listener); } //===----------------------------------------------------------------------===// // Preprocessor Actions //===----------------------------------------------------------------------===// void DumpRawTokensAction::ExecuteAction() { Preprocessor &PP = getCompilerInstance().getPreprocessor(); SourceManager &SM = PP.getSourceManager(); // Start lexing the specified input file. const llvm::MemoryBuffer *FromFile = SM.getBuffer(SM.getMainFileID()); Lexer RawLex(SM.getMainFileID(), FromFile, SM, PP.getLangOpts()); RawLex.SetKeepWhitespaceMode(true); Token RawTok; RawLex.LexFromRawLexer(RawTok); while (RawTok.isNot(tok::eof)) { PP.DumpToken(RawTok, true); llvm::errs() << "\n"; RawLex.LexFromRawLexer(RawTok); } } void DumpTokensAction::ExecuteAction() { Preprocessor &PP = getCompilerInstance().getPreprocessor(); // Start preprocessing the specified input file. Token Tok; PP.EnterMainSourceFile(); do { PP.Lex(Tok); PP.DumpToken(Tok, true); llvm::errs() << "\n"; } while (Tok.isNot(tok::eof)); } void GeneratePTHAction::ExecuteAction() { CompilerInstance &CI = getCompilerInstance(); raw_pwrite_stream *OS = CI.createDefaultOutputFile(true, getCurrentFile()); if (!OS) return; CacheTokens(CI.getPreprocessor(), OS); } void PreprocessOnlyAction::ExecuteAction() { Preprocessor &PP = getCompilerInstance().getPreprocessor(); // Ignore unknown pragmas. PP.IgnorePragmas(); Token Tok; // Start parsing the specified input file. PP.EnterMainSourceFile(); do { PP.Lex(Tok); } while (Tok.isNot(tok::eof)); } void PrintPreprocessedAction::ExecuteAction() { CompilerInstance &CI = getCompilerInstance(); // Output file may need to be set to 'Binary', to avoid converting Unix style // line feeds () to Microsoft style line feeds (). // // Look to see what type of line endings the file uses. If there's a // CRLF, then we won't open the file up in binary mode. If there is // just an LF or CR, then we will open the file up in binary mode. // In this fashion, the output format should match the input format, unless // the input format has inconsistent line endings. // // This should be a relatively fast operation since most files won't have // all of their source code on a single line. However, that is still a // concern, so if we scan for too long, we'll just assume the file should // be opened in binary mode. bool BinaryMode = true; bool InvalidFile = false; const SourceManager& SM = CI.getSourceManager(); const llvm::MemoryBuffer *Buffer = SM.getBuffer(SM.getMainFileID(), &InvalidFile); if (!InvalidFile) { const char *cur = Buffer->getBufferStart(); const char *end = Buffer->getBufferEnd(); const char *next = (cur != end) ? cur + 1 : end; // Limit ourselves to only scanning 256 characters into the source // file. This is mostly a sanity check in case the file has no // newlines whatsoever. if (end - cur > 256) end = cur + 256; while (next < end) { if (*cur == 0x0D) { // CR if (*next == 0x0A) // CRLF BinaryMode = false; break; } else if (*cur == 0x0A) // LF break; ++cur, ++next; } } raw_ostream *OS = CI.createDefaultOutputFile(BinaryMode, getCurrentFile()); if (!OS) return; DoPrintPreprocessedInput(CI.getPreprocessor(), OS, CI.getPreprocessorOutputOpts()); } void PrintPreambleAction::ExecuteAction() { switch (getCurrentFileKind()) { case IK_C: case IK_CXX: case IK_ObjC: case IK_ObjCXX: case IK_OpenCL: case IK_CUDA: break; case IK_None: case IK_Asm: case IK_PreprocessedC: case IK_PreprocessedCuda: case IK_PreprocessedCXX: case IK_PreprocessedObjC: case IK_PreprocessedObjCXX: case IK_AST: case IK_LLVM_IR: // We can't do anything with these. return; } CompilerInstance &CI = getCompilerInstance(); auto Buffer = CI.getFileManager().getBufferForFile(getCurrentFile()); if (Buffer) { unsigned Preamble = Lexer::ComputePreamble((*Buffer)->getBuffer(), CI.getLangOpts()).first; llvm::outs().write((*Buffer)->getBufferStart(), Preamble); } }