//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements decl-related attribute processing. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "TargetAttributesSema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/Mangle.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/DelayedDiagnostic.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Scope.h" #include "llvm/ADT/StringExtras.h" using namespace clang; using namespace sema; /// These constants match the enumerated choices of /// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type. enum AttributeDeclKind { ExpectedFunction, ExpectedUnion, ExpectedVariableOrFunction, ExpectedFunctionOrMethod, ExpectedParameter, ExpectedFunctionMethodOrBlock, ExpectedFunctionMethodOrClass, ExpectedFunctionMethodOrParameter, ExpectedClass, ExpectedVariable, ExpectedMethod, ExpectedVariableFunctionOrLabel, ExpectedFieldOrGlobalVar, ExpectedStruct, ExpectedVariableFunctionOrTag, ExpectedTLSVar, ExpectedVariableOrField, ExpectedVariableFieldOrTag, ExpectedTypeOrNamespace, ExpectedObjectiveCInterface, ExpectedMethodOrProperty, ExpectedStructOrUnion, ExpectedStructOrUnionOrClass }; //===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===// static const FunctionType *getFunctionType(const Decl *D, bool blocksToo = true) { QualType Ty; if (const ValueDecl *decl = dyn_cast(D)) Ty = decl->getType(); else if (const FieldDecl *decl = dyn_cast(D)) Ty = decl->getType(); else if (const TypedefNameDecl* decl = dyn_cast(D)) Ty = decl->getUnderlyingType(); else return 0; if (Ty->isFunctionPointerType()) Ty = Ty->getAs()->getPointeeType(); else if (blocksToo && Ty->isBlockPointerType()) Ty = Ty->getAs()->getPointeeType(); return Ty->getAs(); } // FIXME: We should provide an abstraction around a method or function // to provide the following bits of information. /// isFunction - Return true if the given decl has function /// type (function or function-typed variable). static bool isFunction(const Decl *D) { return getFunctionType(D, false) != NULL; } /// isFunctionOrMethod - Return true if the given decl has function /// type (function or function-typed variable) or an Objective-C /// method. static bool isFunctionOrMethod(const Decl *D) { return isFunction(D) || isa(D); } /// isFunctionOrMethodOrBlock - Return true if the given decl has function /// type (function or function-typed variable) or an Objective-C /// method or a block. static bool isFunctionOrMethodOrBlock(const Decl *D) { if (isFunctionOrMethod(D)) return true; // check for block is more involved. if (const VarDecl *V = dyn_cast(D)) { QualType Ty = V->getType(); return Ty->isBlockPointerType(); } return isa(D); } /// Return true if the given decl has a declarator that should have /// been processed by Sema::GetTypeForDeclarator. static bool hasDeclarator(const Decl *D) { // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. return isa(D) || isa(D) || isa(D) || isa(D); } /// hasFunctionProto - Return true if the given decl has a argument /// information. This decl should have already passed /// isFunctionOrMethod or isFunctionOrMethodOrBlock. static bool hasFunctionProto(const Decl *D) { if (const FunctionType *FnTy = getFunctionType(D)) return isa(FnTy); else { assert(isa(D) || isa(D)); return true; } } /// getFunctionOrMethodNumArgs - Return number of function or method /// arguments. It is an error to call this on a K&R function (use /// hasFunctionProto first). static unsigned getFunctionOrMethodNumArgs(const Decl *D) { if (const FunctionType *FnTy = getFunctionType(D)) return cast(FnTy)->getNumArgs(); if (const BlockDecl *BD = dyn_cast(D)) return BD->getNumParams(); return cast(D)->param_size(); } static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) { if (const FunctionType *FnTy = getFunctionType(D)) return cast(FnTy)->getArgType(Idx); if (const BlockDecl *BD = dyn_cast(D)) return BD->getParamDecl(Idx)->getType(); return cast(D)->param_begin()[Idx]->getType(); } static QualType getFunctionOrMethodResultType(const Decl *D) { if (const FunctionType *FnTy = getFunctionType(D)) return cast(FnTy)->getResultType(); return cast(D)->getResultType(); } static bool isFunctionOrMethodVariadic(const Decl *D) { if (const FunctionType *FnTy = getFunctionType(D)) { const FunctionProtoType *proto = cast(FnTy); return proto->isVariadic(); } else if (const BlockDecl *BD = dyn_cast(D)) return BD->isVariadic(); else { return cast(D)->isVariadic(); } } static bool isInstanceMethod(const Decl *D) { if (const CXXMethodDecl *MethodDecl = dyn_cast(D)) return MethodDecl->isInstance(); return false; } static inline bool isNSStringType(QualType T, ASTContext &Ctx) { const ObjCObjectPointerType *PT = T->getAs(); if (!PT) return false; ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); if (!Cls) return false; IdentifierInfo* ClsName = Cls->getIdentifier(); // FIXME: Should we walk the chain of classes? return ClsName == &Ctx.Idents.get("NSString") || ClsName == &Ctx.Idents.get("NSMutableString"); } static inline bool isCFStringType(QualType T, ASTContext &Ctx) { const PointerType *PT = T->getAs(); if (!PT) return false; const RecordType *RT = PT->getPointeeType()->getAs(); if (!RT) return false; const RecordDecl *RD = RT->getDecl(); if (RD->getTagKind() != TTK_Struct) return false; return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); } static unsigned getNumAttributeArgs(const AttributeList &Attr) { // FIXME: Include the type in the argument list. return Attr.getNumArgs() + Attr.hasParsedType(); } /// \brief Check if the attribute has exactly as many args as Num. May /// output an error. static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr, unsigned Num) { if (getNumAttributeArgs(Attr) != Num) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr.getName() << Num; return false; } return true; } /// \brief Check if the attribute has at least as many args as Num. May /// output an error. static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr, unsigned Num) { if (getNumAttributeArgs(Attr) < Num) { S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num; return false; } return true; } /// \brief Check if IdxExpr is a valid argument index for a function or /// instance method D. May output an error. /// /// \returns true if IdxExpr is a valid index. static bool checkFunctionOrMethodArgumentIndex(Sema &S, const Decl *D, StringRef AttrName, SourceLocation AttrLoc, unsigned AttrArgNum, const Expr *IdxExpr, uint64_t &Idx) { assert(isFunctionOrMethod(D)); // In C++ the implicit 'this' function parameter also counts. // Parameters are counted from one. bool HP = hasFunctionProto(D); bool HasImplicitThisParam = isInstanceMethod(D); bool IV = HP && isFunctionOrMethodVariadic(D); unsigned NumArgs = (HP ? getFunctionOrMethodNumArgs(D) : 0) + HasImplicitThisParam; llvm::APSInt IdxInt; if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) { std::string Name = std::string("'") + AttrName.str() + std::string("'"); S.Diag(AttrLoc, diag::err_attribute_argument_n_type) << Name.c_str() << AttrArgNum << AANT_ArgumentIntegerConstant << IdxExpr->getSourceRange(); return false; } Idx = IdxInt.getLimitedValue(); if (Idx < 1 || (!IV && Idx > NumArgs)) { S.Diag(AttrLoc, diag::err_attribute_argument_out_of_bounds) << AttrName << AttrArgNum << IdxExpr->getSourceRange(); return false; } Idx--; // Convert to zero-based. if (HasImplicitThisParam) { if (Idx == 0) { S.Diag(AttrLoc, diag::err_attribute_invalid_implicit_this_argument) << AttrName << IdxExpr->getSourceRange(); return false; } --Idx; } return true; } /// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal. /// If not emit an error and return false. If the argument is an identifier it /// will emit an error with a fixit hint and treat it as if it was a string /// literal. bool Sema::checkStringLiteralArgumentAttr(const AttributeList &Attr, unsigned ArgNum, StringRef &Str, SourceLocation *ArgLocation) { // Look for identifiers. If we have one emit a hint to fix it to a literal. if (Attr.isArgIdent(ArgNum)) { IdentifierLoc *Loc = Attr.getArgAsIdent(ArgNum); Diag(Loc->Loc, diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentString << FixItHint::CreateInsertion(Loc->Loc, "\"") << FixItHint::CreateInsertion(PP.getLocForEndOfToken(Loc->Loc), "\""); Str = Loc->Ident->getName(); if (ArgLocation) *ArgLocation = Loc->Loc; return true; } // Now check for an actual string literal. Expr *ArgExpr = Attr.getArgAsExpr(ArgNum); StringLiteral *Literal = dyn_cast(ArgExpr->IgnoreParenCasts()); if (ArgLocation) *ArgLocation = ArgExpr->getLocStart(); if (!Literal || !Literal->isAscii()) { Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentString; return false; } Str = Literal->getString(); return true; } /// /// \brief Check if passed in Decl is a field or potentially shared global var /// \return true if the Decl is a field or potentially shared global variable /// static bool mayBeSharedVariable(const Decl *D) { if (isa(D)) return true; if (const VarDecl *vd = dyn_cast(D)) return vd->hasGlobalStorage() && !vd->getTLSKind(); return false; } /// \brief Check if the passed-in expression is of type int or bool. static bool isIntOrBool(Expr *Exp) { QualType QT = Exp->getType(); return QT->isBooleanType() || QT->isIntegerType(); } // Check to see if the type is a smart pointer of some kind. We assume // it's a smart pointer if it defines both operator-> and operator*. static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { DeclContextLookupConstResult Res1 = RT->getDecl()->lookup( S.Context.DeclarationNames.getCXXOperatorName(OO_Star)); if (Res1.empty()) return false; DeclContextLookupConstResult Res2 = RT->getDecl()->lookup( S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow)); if (Res2.empty()) return false; return true; } /// \brief Check if passed in Decl is a pointer type. /// Note that this function may produce an error message. /// \return true if the Decl is a pointer type; false otherwise static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, const AttributeList &Attr) { if (const ValueDecl *vd = dyn_cast(D)) { QualType QT = vd->getType(); if (QT->isAnyPointerType()) return true; if (const RecordType *RT = QT->getAs()) { // If it's an incomplete type, it could be a smart pointer; skip it. // (We don't want to force template instantiation if we can avoid it, // since that would alter the order in which templates are instantiated.) if (RT->isIncompleteType()) return true; if (threadSafetyCheckIsSmartPointer(S, RT)) return true; } S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << Attr.getName()->getName() << QT; } else { S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl) << Attr.getName(); } return false; } /// \brief Checks that the passed in QualType either is of RecordType or points /// to RecordType. Returns the relevant RecordType, null if it does not exit. static const RecordType *getRecordType(QualType QT) { if (const RecordType *RT = QT->getAs()) return RT; // Now check if we point to record type. if (const PointerType *PT = QT->getAs()) return PT->getPointeeType()->getAs(); return 0; } static bool checkBaseClassIsLockableCallback(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *Unused) { const RecordType *RT = Specifier->getType()->getAs(); if (RT->getDecl()->getAttr()) return true; return false; } /// \brief Thread Safety Analysis: Checks that the passed in RecordType /// resolves to a lockable object. static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr, QualType Ty) { const RecordType *RT = getRecordType(Ty); // Warn if could not get record type for this argument. if (!RT) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_class) << Attr.getName() << Ty.getAsString(); return; } // Don't check for lockable if the class hasn't been defined yet. if (RT->isIncompleteType()) return; // Allow smart pointers to be used as lockable objects. // FIXME -- Check the type that the smart pointer points to. if (threadSafetyCheckIsSmartPointer(S, RT)) return; // Check if the type is lockable. RecordDecl *RD = RT->getDecl(); if (RD->getAttr()) return; // Else check if any base classes are lockable. if (CXXRecordDecl *CRD = dyn_cast(RD)) { CXXBasePaths BPaths(false, false); if (CRD->lookupInBases(checkBaseClassIsLockableCallback, 0, BPaths)) return; } S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable) << Attr.getName() << Ty.getAsString(); } /// \brief Thread Safety Analysis: Checks that all attribute arguments, starting /// from Sidx, resolve to a lockable object. /// \param Sidx The attribute argument index to start checking with. /// \param ParamIdxOk Whether an argument can be indexing into a function /// parameter list. static void checkAttrArgsAreLockableObjs(Sema &S, Decl *D, const AttributeList &Attr, SmallVectorImpl &Args, int Sidx = 0, bool ParamIdxOk = false) { for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) { Expr *ArgExp = Attr.getArgAsExpr(Idx); if (ArgExp->isTypeDependent()) { // FIXME -- need to check this again on template instantiation Args.push_back(ArgExp); continue; } if (StringLiteral *StrLit = dyn_cast(ArgExp)) { if (StrLit->getLength() == 0 || (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) { // Pass empty strings to the analyzer without warnings. // Treat "*" as the universal lock. Args.push_back(ArgExp); continue; } // We allow constant strings to be used as a placeholder for expressions // that are not valid C++ syntax, but warn that they are ignored. S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) << Attr.getName(); Args.push_back(ArgExp); continue; } QualType ArgTy = ArgExp->getType(); // A pointer to member expression of the form &MyClass::mu is treated // specially -- we need to look at the type of the member. if (UnaryOperator *UOp = dyn_cast(ArgExp)) if (UOp->getOpcode() == UO_AddrOf) if (DeclRefExpr *DRE = dyn_cast(UOp->getSubExpr())) if (DRE->getDecl()->isCXXInstanceMember()) ArgTy = DRE->getDecl()->getType(); // First see if we can just cast to record type, or point to record type. const RecordType *RT = getRecordType(ArgTy); // Now check if we index into a record type function param. if(!RT && ParamIdxOk) { FunctionDecl *FD = dyn_cast(D); IntegerLiteral *IL = dyn_cast(ArgExp); if(FD && IL) { unsigned int NumParams = FD->getNumParams(); llvm::APInt ArgValue = IL->getValue(); uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range) << Attr.getName() << Idx + 1 << NumParams; continue; } ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); } } checkForLockableRecord(S, D, Attr, ArgTy); Args.push_back(ArgExp); } } //===----------------------------------------------------------------------===// // Attribute Implementations //===----------------------------------------------------------------------===// // FIXME: All this manual attribute parsing code is gross. At the // least add some helper functions to check most argument patterns (# // and types of args). enum ThreadAttributeDeclKind { ThreadExpectedFieldOrGlobalVar, ThreadExpectedFunctionOrMethod, ThreadExpectedClassOrStruct }; static bool checkGuardedVarAttrCommon(Sema &S, Decl *D, const AttributeList &Attr) { // D must be either a member field or global (potentially shared) variable. if (!mayBeSharedVariable(D)) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type) << Attr.getName() << ThreadExpectedFieldOrGlobalVar; return false; } return true; } static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkGuardedVarAttrCommon(S, D, Attr)) return; D->addAttr(::new (S.Context) GuardedVarAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handlePtGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkGuardedVarAttrCommon(S, D, Attr)) return; if (!threadSafetyCheckIsPointer(S, D, Attr)) return; D->addAttr(::new (S.Context) PtGuardedVarAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const AttributeList &Attr, Expr* &Arg) { // D must be either a member field or global (potentially shared) variable. if (!mayBeSharedVariable(D)) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type) << Attr.getName() << ThreadExpectedFieldOrGlobalVar; return false; } SmallVector Args; // check that all arguments are lockable objects checkAttrArgsAreLockableObjs(S, D, Attr, Args); unsigned Size = Args.size(); if (Size != 1) return false; Arg = Args[0]; return true; } static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) { Expr *Arg = 0; if (!checkGuardedByAttrCommon(S, D, Attr, Arg)) return; D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg)); } static void handlePtGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) { Expr *Arg = 0; if (!checkGuardedByAttrCommon(S, D, Attr, Arg)) return; if (!threadSafetyCheckIsPointer(S, D, Attr)) return; D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(), S.Context, Arg)); } static bool checkLockableAttrCommon(Sema &S, Decl *D, const AttributeList &Attr) { // FIXME: Lockable structs for C code. if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type) << Attr.getName() << ThreadExpectedClassOrStruct; return false; } return true; } static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkLockableAttrCommon(S, D, Attr)) return; D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context)); } static void handleScopedLockableAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkLockableAttrCommon(S, D, Attr)) return; D->addAttr(::new (S.Context) ScopedLockableAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleNoThreadSafetyAnalysis(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type) << Attr.getName() << ThreadExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(), S.Context)); } static void handleNoSanitizeAddressAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) NoSanitizeAddressAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleNoSanitizeMemory(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) NoSanitizeMemoryAttr(Attr.getRange(), S.Context)); } static void handleNoSanitizeThread(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) NoSanitizeThreadAttr(Attr.getRange(), S.Context)); } static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const AttributeList &Attr, SmallVectorImpl &Args) { if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) return false; // D must be either a member field or global (potentially shared) variable. ValueDecl *VD = dyn_cast(D); if (!VD || !mayBeSharedVariable(D)) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type) << Attr.getName() << ThreadExpectedFieldOrGlobalVar; return false; } // Check that this attribute only applies to lockable types. QualType QT = VD->getType(); if (!QT->isDependentType()) { const RecordType *RT = getRecordType(QT); if (!RT || !RT->getDecl()->getAttr()) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << Attr.getName(); return false; } } // Check that all arguments are lockable objects. checkAttrArgsAreLockableObjs(S, D, Attr, Args); if (Args.empty()) return false; return true; } static void handleAcquiredAfterAttr(Sema &S, Decl *D, const AttributeList &Attr) { SmallVector Args; if (!checkAcquireOrderAttrCommon(S, D, Attr, Args)) return; Expr **StartArg = &Args[0]; D->addAttr(::new (S.Context) AcquiredAfterAttr(Attr.getRange(), S.Context, StartArg, Args.size(), Attr.getAttributeSpellingListIndex())); } static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const AttributeList &Attr) { SmallVector Args; if (!checkAcquireOrderAttrCommon(S, D, Attr, Args)) return; Expr **StartArg = &Args[0]; D->addAttr(::new (S.Context) AcquiredBeforeAttr(Attr.getRange(), S.Context, StartArg, Args.size(), Attr.getAttributeSpellingListIndex())); } static bool checkLockFunAttrCommon(Sema &S, Decl *D, const AttributeList &Attr, SmallVectorImpl &Args) { // zero or more arguments ok // check that the attribute is applied to a function if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type) << Attr.getName() << ThreadExpectedFunctionOrMethod; return false; } // check that all arguments are lockable objects checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true); return true; } static void handleSharedLockFunctionAttr(Sema &S, Decl *D, const AttributeList &Attr) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, Attr, Args)) return; unsigned Size = Args.size(); Expr **StartArg = Size == 0 ? 0 : &Args[0]; D->addAttr(::new (S.Context) SharedLockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size, Attr.getAttributeSpellingListIndex())); } static void handleExclusiveLockFunctionAttr(Sema &S, Decl *D, const AttributeList &Attr) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, Attr, Args)) return; unsigned Size = Args.size(); Expr **StartArg = Size == 0 ? 0 : &Args[0]; D->addAttr(::new (S.Context) ExclusiveLockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size, Attr.getAttributeSpellingListIndex())); } static void handleAssertSharedLockAttr(Sema &S, Decl *D, const AttributeList &Attr) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, Attr, Args)) return; unsigned Size = Args.size(); Expr **StartArg = Size == 0 ? 0 : &Args[0]; D->addAttr(::new (S.Context) AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size, Attr.getAttributeSpellingListIndex())); } static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, const AttributeList &Attr) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, Attr, Args)) return; unsigned Size = Args.size(); Expr **StartArg = Size == 0 ? 0 : &Args[0]; D->addAttr(::new (S.Context) AssertExclusiveLockAttr(Attr.getRange(), S.Context, StartArg, Size, Attr.getAttributeSpellingListIndex())); } static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const AttributeList &Attr, SmallVectorImpl &Args) { if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) return false; if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type) << Attr.getName() << ThreadExpectedFunctionOrMethod; return false; } if (!isIntOrBool(Attr.getArgAsExpr(0))) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 1 << AANT_ArgumentIntOrBool; return false; } // check that all arguments are lockable objects checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1); return true; } static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, const AttributeList &Attr) { SmallVector Args; if (!checkTryLockFunAttrCommon(S, D, Attr, Args)) return; D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(Attr.getRange(), S.Context, Attr.getArgAsExpr(0), Args.data(), Args.size(), Attr.getAttributeSpellingListIndex())); } static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, const AttributeList &Attr) { SmallVector Args; if (!checkTryLockFunAttrCommon(S, D, Attr, Args)) return; D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(Attr.getRange(), S.Context, Attr.getArgAsExpr(0), Args.data(), Args.size(), Attr.getAttributeSpellingListIndex())); } static bool checkLocksRequiredCommon(Sema &S, Decl *D, const AttributeList &Attr, SmallVectorImpl &Args) { if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) return false; if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type) << Attr.getName() << ThreadExpectedFunctionOrMethod; return false; } // check that all arguments are lockable objects checkAttrArgsAreLockableObjs(S, D, Attr, Args); if (Args.empty()) return false; return true; } static void handleExclusiveLocksRequiredAttr(Sema &S, Decl *D, const AttributeList &Attr) { SmallVector Args; if (!checkLocksRequiredCommon(S, D, Attr, Args)) return; Expr **StartArg = &Args[0]; D->addAttr(::new (S.Context) ExclusiveLocksRequiredAttr(Attr.getRange(), S.Context, StartArg, Args.size(), Attr.getAttributeSpellingListIndex())); } static void handleSharedLocksRequiredAttr(Sema &S, Decl *D, const AttributeList &Attr) { SmallVector Args; if (!checkLocksRequiredCommon(S, D, Attr, Args)) return; Expr **StartArg = &Args[0]; D->addAttr(::new (S.Context) SharedLocksRequiredAttr(Attr.getRange(), S.Context, StartArg, Args.size(), Attr.getAttributeSpellingListIndex())); } static void handleUnlockFunAttr(Sema &S, Decl *D, const AttributeList &Attr) { // zero or more arguments ok if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type) << Attr.getName() << ThreadExpectedFunctionOrMethod; return; } // check that all arguments are lockable objects SmallVector Args; checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true); unsigned Size = Args.size(); Expr **StartArg = Size == 0 ? 0 : &Args[0]; D->addAttr(::new (S.Context) UnlockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size, Attr.getAttributeSpellingListIndex())); } static void handleLockReturnedAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type) << Attr.getName() << ThreadExpectedFunctionOrMethod; return; } // check that the argument is lockable object SmallVector Args; checkAttrArgsAreLockableObjs(S, D, Attr, Args); unsigned Size = Args.size(); if (Size == 0) return; D->addAttr(::new (S.Context) LockReturnedAttr(Attr.getRange(), S.Context, Args[0], Attr.getAttributeSpellingListIndex())); } static void handleLocksExcludedAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) return; if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type) << Attr.getName() << ThreadExpectedFunctionOrMethod; return; } // check that all arguments are lockable objects SmallVector Args; checkAttrArgsAreLockableObjs(S, D, Attr, Args); unsigned Size = Args.size(); if (Size == 0) return; Expr **StartArg = &Args[0]; D->addAttr(::new (S.Context) LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size, Attr.getAttributeSpellingListIndex())); } static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &Attr) { ConsumableAttr::ConsumedState DefaultState; if (Attr.isArgIdent(0)) { IdentifierLoc *IL = Attr.getArgAsIdent(0); if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), DefaultState)) { S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName() << IL->Ident; return; } } else { S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentIdentifier; return; } if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedClass; return; } D->addAttr(::new (S.Context) ConsumableAttr(Attr.getRange(), S.Context, DefaultState, Attr.getAttributeSpellingListIndex())); } static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, const AttributeList &Attr) { ASTContext &CurrContext = S.getASTContext(); QualType ThisType = MD->getThisType(CurrContext)->getPointeeType(); if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { if (!RD->hasAttr()) { S.Diag(Attr.getLoc(), diag::warn_attr_on_unconsumable_class) << RD->getNameAsString(); return false; } } return true; } static void handleCallableWhenAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) return; if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedMethod; return; } if (!checkForConsumableClass(S, cast(D), Attr)) return; SmallVector States; for (unsigned ArgIndex = 0; ArgIndex < Attr.getNumArgs(); ++ArgIndex) { CallableWhenAttr::ConsumedState CallableState; StringRef StateString; SourceLocation Loc; if (!S.checkStringLiteralArgumentAttr(Attr, ArgIndex, StateString, &Loc)) return; if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, CallableState)) { S.Diag(Loc, diag::warn_attribute_type_not_supported) << Attr.getName() << StateString; return; } States.push_back(CallableState); } D->addAttr(::new (S.Context) CallableWhenAttr(Attr.getRange(), S.Context, States.data(), States.size(), Attr.getAttributeSpellingListIndex())); } static void handleParamTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkAttributeNumArgs(S, Attr, 1)) return; if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedParameter; return; } ParamTypestateAttr::ConsumedState ParamState; if (Attr.isArgIdent(0)) { IdentifierLoc *Ident = Attr.getArgAsIdent(0); StringRef StateString = Ident->Ident->getName(); if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, ParamState)) { S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << Attr.getName() << StateString; return; } } else { S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentIdentifier; return; } // FIXME: This check is currently being done in the analysis. It can be // enabled here only after the parser propagates attributes at // template specialization definition, not declaration. //QualType ReturnType = cast(D)->getType(); //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); // //if (!RD || !RD->hasAttr()) { // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << // ReturnType.getAsString(); // return; //} D->addAttr(::new (S.Context) ParamTypestateAttr(Attr.getRange(), S.Context, ParamState, Attr.getAttributeSpellingListIndex())); } static void handleReturnTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkAttributeNumArgs(S, Attr, 1)) return; if (!(isa(D) || isa(D))) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionMethodOrParameter; return; } ReturnTypestateAttr::ConsumedState ReturnState; if (Attr.isArgIdent(0)) { IdentifierLoc *IL = Attr.getArgAsIdent(0); if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), ReturnState)) { S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName() << IL->Ident; return; } } else { S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentIdentifier; return; } // FIXME: This check is currently being done in the analysis. It can be // enabled here only after the parser propagates attributes at // template specialization definition, not declaration. //QualType ReturnType; // //if (const ParmVarDecl *Param = dyn_cast(D)) { // ReturnType = Param->getType(); // //} else if (const CXXConstructorDecl *Constructor = // dyn_cast(D)) { // ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType(); // //} else { // // ReturnType = cast(D)->getCallResultType(); //} // //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); // //if (!RD || !RD->hasAttr()) { // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << // ReturnType.getAsString(); // return; //} D->addAttr(::new (S.Context) ReturnTypestateAttr(Attr.getRange(), S.Context, ReturnState, Attr.getAttributeSpellingListIndex())); } static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkAttributeNumArgs(S, Attr, 1)) return; if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedMethod; return; } if (!checkForConsumableClass(S, cast(D), Attr)) return; SetTypestateAttr::ConsumedState NewState; if (Attr.isArgIdent(0)) { IdentifierLoc *Ident = Attr.getArgAsIdent(0); StringRef Param = Ident->Ident->getName(); if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << Attr.getName() << Param; return; } } else { S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentIdentifier; return; } D->addAttr(::new (S.Context) SetTypestateAttr(Attr.getRange(), S.Context, NewState, Attr.getAttributeSpellingListIndex())); } static void handleTestTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkAttributeNumArgs(S, Attr, 1)) return; if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedMethod; return; } if (!checkForConsumableClass(S, cast(D), Attr)) return; TestTypestateAttr::ConsumedState TestState; if (Attr.isArgIdent(0)) { IdentifierLoc *Ident = Attr.getArgAsIdent(0); StringRef Param = Ident->Ident->getName(); if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << Attr.getName() << Param; return; } } else { S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentIdentifier; return; } D->addAttr(::new (S.Context) TestTypestateAttr(Attr.getRange(), S.Context, TestState, Attr.getAttributeSpellingListIndex())); } static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D, const AttributeList &Attr) { TypedefNameDecl *TD = dyn_cast(D); if (TD == 0) { // __attribute__((ext_vector_type(N))) can only be applied to typedefs // and type-ids. S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef); return; } // Remember this typedef decl, we will need it later for diagnostics. S.ExtVectorDecls.push_back(TD); } static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (TagDecl *TD = dyn_cast(D)) TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context)); else if (FieldDecl *FD = dyn_cast(D)) { // If the alignment is less than or equal to 8 bits, the packed attribute // has no effect. if (!FD->getType()->isDependentType() && !FD->getType()->isIncompleteType() && S.Context.getTypeAlign(FD->getType()) <= 8) S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type) << Attr.getName() << FD->getType(); else FD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } else S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); } static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (RecordDecl *RD = dyn_cast(D)) RD->addAttr(::new (S.Context) MsStructAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); else S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); } static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) { // The IBAction attributes only apply to instance methods. if (ObjCMethodDecl *MD = dyn_cast(D)) if (MD->isInstanceMethod()) { D->addAttr(::new (S.Context) IBActionAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; } S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName(); } static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) { // The IBOutlet/IBOutletCollection attributes only apply to instance // variables or properties of Objective-C classes. The outlet must also // have an object reference type. if (const ObjCIvarDecl *VD = dyn_cast(D)) { if (!VD->getType()->getAs()) { S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type) << Attr.getName() << VD->getType() << 0; return false; } } else if (const ObjCPropertyDecl *PD = dyn_cast(D)) { if (!PD->getType()->getAs()) { S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type) << Attr.getName() << PD->getType() << 1; return false; } } else { S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName(); return false; } return true; } static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkIBOutletCommon(S, D, Attr)) return; D->addAttr(::new (S.Context) IBOutletAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleIBOutletCollection(Sema &S, Decl *D, const AttributeList &Attr) { // The iboutletcollection attribute can have zero or one arguments. if (Attr.getNumArgs() > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr.getName() << 1; return; } if (!checkIBOutletCommon(S, D, Attr)) return; ParsedType PT; if (Attr.hasParsedType()) PT = Attr.getTypeArg(); else { PT = S.getTypeName(S.Context.Idents.get("NSObject"), Attr.getLoc(), S.getScopeForContext(D->getDeclContext()->getParent())); if (!PT) { S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << "NSObject"; return; } } TypeSourceInfo *QTLoc = 0; QualType QT = S.GetTypeFromParser(PT, &QTLoc); if (!QTLoc) QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc()); // Diagnose use of non-object type in iboutletcollection attribute. // FIXME. Gnu attribute extension ignores use of builtin types in // attributes. So, __attribute__((iboutletcollection(char))) will be // treated as __attribute__((iboutletcollection())). if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { S.Diag(Attr.getLoc(), QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype : diag::err_iboutletcollection_type) << QT; return; } D->addAttr(::new (S.Context) IBOutletCollectionAttr(Attr.getRange(), S.Context, QTLoc, Attr.getAttributeSpellingListIndex())); } static void possibleTransparentUnionPointerType(QualType &T) { if (const RecordType *UT = T->getAsUnionType()) if (UT && UT->getDecl()->hasAttr()) { RecordDecl *UD = UT->getDecl(); for (RecordDecl::field_iterator it = UD->field_begin(), itend = UD->field_end(); it != itend; ++it) { QualType QT = it->getType(); if (QT->isAnyPointerType() || QT->isBlockPointerType()) { T = QT; return; } } } } static void handleAllocSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isFunctionOrMethod(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) return; SmallVector SizeArgs; for (unsigned i = 0; i < Attr.getNumArgs(); ++i) { Expr *Ex = Attr.getArgAsExpr(i); uint64_t Idx; if (!checkFunctionOrMethodArgumentIndex(S, D, Attr.getName()->getName(), Attr.getLoc(), i + 1, Ex, Idx)) return; // check if the function argument is of an integer type QualType T = getFunctionOrMethodArgType(D, Idx).getNonReferenceType(); if (!T->isIntegerType()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentIntegerConstant << Ex->getSourceRange(); return; } SizeArgs.push_back(Idx); } // check if the function returns a pointer if (!getFunctionType(D)->getResultType()->isAnyPointerType()) { S.Diag(Attr.getLoc(), diag::warn_ns_attribute_wrong_return_type) << Attr.getName() << 0 /*function*/<< 1 /*pointer*/ << D->getSourceRange(); } D->addAttr(::new (S.Context) AllocSizeAttr(Attr.getRange(), S.Context, SizeArgs.data(), SizeArgs.size(), Attr.getAttributeSpellingListIndex())); } static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) { // GCC ignores the nonnull attribute on K&R style function prototypes, so we // ignore it as well if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } SmallVector NonNullArgs; for (unsigned i = 0; i < Attr.getNumArgs(); ++i) { Expr *Ex = Attr.getArgAsExpr(i); uint64_t Idx; if (!checkFunctionOrMethodArgumentIndex(S, D, Attr.getName()->getName(), Attr.getLoc(), i + 1, Ex, Idx)) return; // Is the function argument a pointer type? QualType T = getFunctionOrMethodArgType(D, Idx).getNonReferenceType(); possibleTransparentUnionPointerType(T); if (!T->isAnyPointerType() && !T->isBlockPointerType()) { // FIXME: Should also highlight argument in decl. S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only) << "nonnull" << Ex->getSourceRange(); continue; } NonNullArgs.push_back(Idx); } // If no arguments were specified to __attribute__((nonnull)) then all pointer // arguments have a nonnull attribute. if (NonNullArgs.empty()) { for (unsigned i = 0, e = getFunctionOrMethodNumArgs(D); i != e; ++i) { QualType T = getFunctionOrMethodArgType(D, i).getNonReferenceType(); possibleTransparentUnionPointerType(T); if (T->isAnyPointerType() || T->isBlockPointerType()) NonNullArgs.push_back(i); } // No pointer arguments? if (NonNullArgs.empty()) { // Warn the trivial case only if attribute is not coming from a // macro instantiation. if (Attr.getLoc().isFileID()) S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers); return; } } unsigned *start = &NonNullArgs[0]; unsigned size = NonNullArgs.size(); llvm::array_pod_sort(start, start + size); D->addAttr(::new (S.Context) NonNullAttr(Attr.getRange(), S.Context, start, size, Attr.getAttributeSpellingListIndex())); } static const char *ownershipKindToDiagName(OwnershipAttr::OwnershipKind K) { switch (K) { case OwnershipAttr::Holds: return "'ownership_holds'"; case OwnershipAttr::Takes: return "'ownership_takes'"; case OwnershipAttr::Returns: return "'ownership_returns'"; } llvm_unreachable("unknown ownership"); } static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) { // This attribute must be applied to a function declaration. The first // argument to the attribute must be an identifier, the name of the resource, // for example: malloc. The following arguments must be argument indexes, the // arguments must be of integer type for Returns, otherwise of pointer type. // The difference between Holds and Takes is that a pointer may still be used // after being held. free() should be __attribute((ownership_takes)), whereas // a list append function may well be __attribute((ownership_holds)). if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL.getName() << 1 << AANT_ArgumentIdentifier; return; } // Figure out our Kind, and check arguments while we're at it. OwnershipAttr::OwnershipKind K; switch (AL.getKind()) { case AttributeList::AT_ownership_takes: K = OwnershipAttr::Takes; if (AL.getNumArgs() < 2) { S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << 2; return; } break; case AttributeList::AT_ownership_holds: K = OwnershipAttr::Holds; if (AL.getNumArgs() < 2) { S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << 2; return; } break; case AttributeList::AT_ownership_returns: K = OwnershipAttr::Returns; if (AL.getNumArgs() > 2) { S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << 1; return; } break; default: // This should never happen given how we are called. llvm_unreachable("Unknown ownership attribute"); } if (!isFunction(D) || !hasFunctionProto(D)) { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL.getName() << ExpectedFunction; return; } StringRef Module = AL.getArgAsIdent(0)->Ident->getName(); // Normalize the argument, __foo__ becomes foo. if (Module.startswith("__") && Module.endswith("__")) Module = Module.substr(2, Module.size() - 4); SmallVector OwnershipArgs; for (unsigned i = 1; i < AL.getNumArgs(); ++i) { Expr *Ex = AL.getArgAsExpr(i); uint64_t Idx; if (!checkFunctionOrMethodArgumentIndex(S, D, AL.getName()->getName(), AL.getLoc(), i, Ex, Idx)) return; // Is the function argument a pointer type? QualType T = getFunctionOrMethodArgType(D, Idx); int Err = -1; // No error switch (K) { case OwnershipAttr::Takes: case OwnershipAttr::Holds: if (!T->isAnyPointerType() && !T->isBlockPointerType()) Err = 0; break; case OwnershipAttr::Returns: if (!T->isIntegerType()) Err = 1; break; } if (-1 != Err) { S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err << Ex->getSourceRange(); return; } // Check we don't have a conflict with another ownership attribute. for (specific_attr_iterator i = D->specific_attr_begin(), e = D->specific_attr_end(); i != e; ++i) { if ((*i)->getOwnKind() != K && (*i)->args_end() != std::find((*i)->args_begin(), (*i)->args_end(), Idx)) { S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL.getName() << ownershipKindToDiagName((*i)->getOwnKind()); return; } } OwnershipArgs.push_back(Idx); } unsigned* start = OwnershipArgs.data(); unsigned size = OwnershipArgs.size(); llvm::array_pod_sort(start, start + size); D->addAttr(::new (S.Context) OwnershipAttr(AL.getLoc(), S.Context, K, Module, start, size, AL.getAttributeSpellingListIndex())); } static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) { // Check the attribute arguments. if (Attr.getNumArgs() > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr.getName() << 1; return; } if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableOrFunction; return; } NamedDecl *nd = cast(D); // gcc rejects // class c { // static int a __attribute__((weakref ("v2"))); // static int b() __attribute__((weakref ("f3"))); // }; // and ignores the attributes of // void f(void) { // static int a __attribute__((weakref ("v2"))); // } // we reject them const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); if (!Ctx->isFileContext()) { S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) << nd->getNameAsString(); return; } // The GCC manual says // // At present, a declaration to which `weakref' is attached can only // be `static'. // // It also says // // Without a TARGET, // given as an argument to `weakref' or to `alias', `weakref' is // equivalent to `weak'. // // gcc 4.4.1 will accept // int a7 __attribute__((weakref)); // as // int a7 __attribute__((weak)); // This looks like a bug in gcc. We reject that for now. We should revisit // it if this behaviour is actually used. // GCC rejects // static ((alias ("y"), weakref)). // Should we? How to check that weakref is before or after alias? // FIXME: it would be good for us to keep the WeakRefAttr as-written instead // of transforming it into an AliasAttr. The WeakRefAttr never uses the // StringRef parameter it was given anyway. StringRef Str; if (Attr.getNumArgs() && S.checkStringLiteralArgumentAttr(Attr, 0, Str)) // GCC will accept anything as the argument of weakref. Should we // check for an existing decl? D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str, Attr.getAttributeSpellingListIndex())); D->addAttr(::new (S.Context) WeakRefAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) { StringRef Str; if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str)) return; if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin); return; } // FIXME: check if target symbol exists in current file D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str, Attr.getAttributeSpellingListIndex())); } static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) MinSizeAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } if (D->hasAttr()) { S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) << Attr.getName() << "hot"; return; } D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } if (D->hasAttr()) { S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) << Attr.getName() << "cold"; return; } D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) NakedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleAlwaysInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) AlwaysInlineAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleTLSModelAttr(Sema &S, Decl *D, const AttributeList &Attr) { StringRef Model; SourceLocation LiteralLoc; // Check that it is a string. if (!S.checkStringLiteralArgumentAttr(Attr, 0, Model, &LiteralLoc)) return; if (!isa(D) || !cast(D)->getTLSKind()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedTLSVar; return; } // Check that the value. if (Model != "global-dynamic" && Model != "local-dynamic" && Model != "initial-exec" && Model != "local-exec") { S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); return; } D->addAttr(::new (S.Context) TLSModelAttr(Attr.getRange(), S.Context, Model, Attr.getAttributeSpellingListIndex())); } static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (const FunctionDecl *FD = dyn_cast(D)) { QualType RetTy = FD->getResultType(); if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) { D->addAttr(::new (S.Context) MallocAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; } } S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only); } static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) { D->addAttr(::new (S.Context) MayAliasAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (isa(D)) D->addAttr(::new (S.Context) NoCommonAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); else S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariable; } static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.CPlusPlus) { S.Diag(Attr.getLoc(), diag::err_common_not_supported_cplusplus); return; } if (isa(D)) D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); else S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariable; } static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) { if (hasDeclarator(D)) return; if (S.CheckNoReturnAttr(attr)) return; if (!isa(D)) { S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) << attr.getName() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) NoReturnAttr(attr.getRange(), S.Context, attr.getAttributeSpellingListIndex())); } bool Sema::CheckNoReturnAttr(const AttributeList &attr) { if (!checkAttributeNumArgs(*this, attr, 0)) { attr.setInvalid(); return true; } return false; } static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) { // The checking path for 'noreturn' and 'analyzer_noreturn' are different // because 'analyzer_noreturn' does not impact the type. if (!isFunctionOrMethod(D) && !isa(D)) { ValueDecl *VD = dyn_cast(D); if (VD == 0 || (!VD->getType()->isBlockPointerType() && !VD->getType()->isFunctionPointerType())) { S.Diag(Attr.getLoc(), Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type : diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionMethodOrBlock; return; } } D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleCXX11NoReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) { // C++11 [dcl.attr.noreturn]p1: // The attribute may be applied to the declarator-id in a function // declaration. FunctionDecl *FD = dyn_cast(D); if (!FD) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) CXX11NoReturnAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } // PS3 PPU-specific. static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) { /* Returning a Vector Class in Registers According to the PPU ABI specifications, a class with a single member of vector type is returned in memory when used as the return value of a function. This results in inefficient code when implementing vector classes. To return the value in a single vector register, add the vecreturn attribute to the class definition. This attribute is also applicable to struct types. Example: struct Vector { __vector float xyzw; } __attribute__((vecreturn)); Vector Add(Vector lhs, Vector rhs) { Vector result; result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); return result; // This will be returned in a register } */ if (!isa(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedClass; return; } if (D->getAttr()) { S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn"; return; } RecordDecl *record = cast(D); int count = 0; if (!isa(record)) { S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member); return; } if (!cast(record)->isPOD()) { S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record); return; } for (RecordDecl::field_iterator iter = record->field_begin(); iter != record->field_end(); iter++) { if ((count == 1) || !iter->getType()->isVectorType()) { S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member); return; } count++; } D->addAttr(::new (S.Context) VecReturnAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, const AttributeList &Attr) { if (isa(D)) { // [[carries_dependency]] can only be applied to a parameter if it is a // parameter of a function declaration or lambda. if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { S.Diag(Attr.getLoc(), diag::err_carries_dependency_param_not_function_decl); return; } } else if (!isa(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionMethodOrParameter; return; } D->addAttr(::new (S.Context) CarriesDependencyAttr( Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D) && !isa(D) && !isFunctionOrMethod(D) && !isa(D) && !isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableFunctionOrLabel; return; } D->addAttr(::new (S.Context) UnusedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleReturnsTwiceAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) ReturnsTwiceAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (const VarDecl *VD = dyn_cast(D)) { if (VD->hasLocalStorage()) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used"; return; } } else if (!isFunctionOrMethod(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableOrFunction; return; } D->addAttr(::new (S.Context) UsedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.getNumArgs() > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1; return; } int priority = 65535; // FIXME: Do not hardcode such constants. if (Attr.getNumArgs() > 0) { Expr *E = Attr.getArgAsExpr(0); llvm::APSInt Idx(32); if (E->isTypeDependent() || E->isValueDependent() || !E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } priority = Idx.getZExtValue(); } if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) ConstructorAttr(Attr.getRange(), S.Context, priority, Attr.getAttributeSpellingListIndex())); } static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.getNumArgs() > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1; return; } int priority = 65535; // FIXME: Do not hardcode such constants. if (Attr.getNumArgs() > 0) { Expr *E = Attr.getArgAsExpr(0); llvm::APSInt Idx(32); if (E->isTypeDependent() || E->isValueDependent() || !E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } priority = Idx.getZExtValue(); } if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) DestructorAttr(Attr.getRange(), S.Context, priority, Attr.getAttributeSpellingListIndex())); } template static void handleAttrWithMessage(Sema &S, Decl *D, const AttributeList &Attr) { unsigned NumArgs = Attr.getNumArgs(); if (NumArgs > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1; return; } // Handle the case where the attribute has a text message. StringRef Str; if (NumArgs == 1 && !S.checkStringLiteralArgumentAttr(Attr, 0, Str)) return; D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str, Attr.getAttributeSpellingListIndex())); } static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D, const AttributeList &Attr) { D->addAttr(::new (S.Context) ArcWeakrefUnavailableAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleObjCRootClassAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedObjectiveCInterface; return; } D->addAttr(::new (S.Context) ObjCRootClassAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleObjCRequiresPropertyDefsAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::err_suppress_autosynthesis); return; } D->addAttr(::new (S.Context) ObjCRequiresPropertyDefsAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static bool checkAvailabilityAttr(Sema &S, SourceRange Range, IdentifierInfo *Platform, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted) { StringRef PlatformName = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); if (PlatformName.empty()) PlatformName = Platform->getName(); // Ensure that Introduced <= Deprecated <= Obsoleted (although not all // of these steps are needed). if (!Introduced.empty() && !Deprecated.empty() && !(Introduced <= Deprecated)) { S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) << 1 << PlatformName << Deprecated.getAsString() << 0 << Introduced.getAsString(); return true; } if (!Introduced.empty() && !Obsoleted.empty() && !(Introduced <= Obsoleted)) { S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) << 2 << PlatformName << Obsoleted.getAsString() << 0 << Introduced.getAsString(); return true; } if (!Deprecated.empty() && !Obsoleted.empty() && !(Deprecated <= Obsoleted)) { S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) << 2 << PlatformName << Obsoleted.getAsString() << 1 << Deprecated.getAsString(); return true; } return false; } /// \brief Check whether the two versions match. /// /// If either version tuple is empty, then they are assumed to match. If /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, bool BeforeIsOkay) { if (X.empty() || Y.empty()) return true; if (X == Y) return true; if (BeforeIsOkay && X < Y) return true; return false; } AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range, IdentifierInfo *Platform, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, bool Override, unsigned AttrSpellingListIndex) { VersionTuple MergedIntroduced = Introduced; VersionTuple MergedDeprecated = Deprecated; VersionTuple MergedObsoleted = Obsoleted; bool FoundAny = false; if (D->hasAttrs()) { AttrVec &Attrs = D->getAttrs(); for (unsigned i = 0, e = Attrs.size(); i != e;) { const AvailabilityAttr *OldAA = dyn_cast(Attrs[i]); if (!OldAA) { ++i; continue; } IdentifierInfo *OldPlatform = OldAA->getPlatform(); if (OldPlatform != Platform) { ++i; continue; } FoundAny = true; VersionTuple OldIntroduced = OldAA->getIntroduced(); VersionTuple OldDeprecated = OldAA->getDeprecated(); VersionTuple OldObsoleted = OldAA->getObsoleted(); bool OldIsUnavailable = OldAA->getUnavailable(); if (!versionsMatch(OldIntroduced, Introduced, Override) || !versionsMatch(Deprecated, OldDeprecated, Override) || !versionsMatch(Obsoleted, OldObsoleted, Override) || !(OldIsUnavailable == IsUnavailable || (Override && !OldIsUnavailable && IsUnavailable))) { if (Override) { int Which = -1; VersionTuple FirstVersion; VersionTuple SecondVersion; if (!versionsMatch(OldIntroduced, Introduced, Override)) { Which = 0; FirstVersion = OldIntroduced; SecondVersion = Introduced; } else if (!versionsMatch(Deprecated, OldDeprecated, Override)) { Which = 1; FirstVersion = Deprecated; SecondVersion = OldDeprecated; } else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) { Which = 2; FirstVersion = Obsoleted; SecondVersion = OldObsoleted; } if (Which == -1) { Diag(OldAA->getLocation(), diag::warn_mismatched_availability_override_unavail) << AvailabilityAttr::getPrettyPlatformName(Platform->getName()); } else { Diag(OldAA->getLocation(), diag::warn_mismatched_availability_override) << Which << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) << FirstVersion.getAsString() << SecondVersion.getAsString(); } Diag(Range.getBegin(), diag::note_overridden_method); } else { Diag(OldAA->getLocation(), diag::warn_mismatched_availability); Diag(Range.getBegin(), diag::note_previous_attribute); } Attrs.erase(Attrs.begin() + i); --e; continue; } VersionTuple MergedIntroduced2 = MergedIntroduced; VersionTuple MergedDeprecated2 = MergedDeprecated; VersionTuple MergedObsoleted2 = MergedObsoleted; if (MergedIntroduced2.empty()) MergedIntroduced2 = OldIntroduced; if (MergedDeprecated2.empty()) MergedDeprecated2 = OldDeprecated; if (MergedObsoleted2.empty()) MergedObsoleted2 = OldObsoleted; if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, MergedIntroduced2, MergedDeprecated2, MergedObsoleted2)) { Attrs.erase(Attrs.begin() + i); --e; continue; } MergedIntroduced = MergedIntroduced2; MergedDeprecated = MergedDeprecated2; MergedObsoleted = MergedObsoleted2; ++i; } } if (FoundAny && MergedIntroduced == Introduced && MergedDeprecated == Deprecated && MergedObsoleted == Obsoleted) return NULL; // Only create a new attribute if !Override, but we want to do // the checking. if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced, MergedDeprecated, MergedObsoleted) && !Override) { return ::new (Context) AvailabilityAttr(Range, Context, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable, Message, AttrSpellingListIndex); } return NULL; } static void handleAvailabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkAttributeNumArgs(S, Attr, 1)) return; IdentifierLoc *Platform = Attr.getArgAsIdent(0); unsigned Index = Attr.getAttributeSpellingListIndex(); IdentifierInfo *II = Platform->Ident; if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) << Platform->Ident; NamedDecl *ND = dyn_cast(D); if (!ND) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); return; } AvailabilityChange Introduced = Attr.getAvailabilityIntroduced(); AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated(); AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted(); bool IsUnavailable = Attr.getUnavailableLoc().isValid(); StringRef Str; if (const StringLiteral *SE = dyn_cast_or_null(Attr.getMessageExpr())) Str = SE->getString(); AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(), II, Introduced.Version, Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, /*Override=*/false, Index); if (NewAttr) D->addAttr(NewAttr); } template static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range, typename T::VisibilityType value, unsigned attrSpellingListIndex) { T *existingAttr = D->getAttr(); if (existingAttr) { typename T::VisibilityType existingValue = existingAttr->getVisibility(); if (existingValue == value) return NULL; S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); S.Diag(range.getBegin(), diag::note_previous_attribute); D->dropAttr(); } return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex); } VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range, VisibilityAttr::VisibilityType Vis, unsigned AttrSpellingListIndex) { return ::mergeVisibilityAttr(*this, D, Range, Vis, AttrSpellingListIndex); } TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range, TypeVisibilityAttr::VisibilityType Vis, unsigned AttrSpellingListIndex) { return ::mergeVisibilityAttr(*this, D, Range, Vis, AttrSpellingListIndex); } static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr, bool isTypeVisibility) { // Visibility attributes don't mean anything on a typedef. if (isa(D)) { S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored) << Attr.getName(); return; } // 'type_visibility' can only go on a type or namespace. if (isTypeVisibility && !(isa(D) || isa(D) || isa(D))) { S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedTypeOrNamespace; return; } // Check that the argument is a string literal. StringRef TypeStr; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(Attr, 0, TypeStr, &LiteralLoc)) return; VisibilityAttr::VisibilityType type; if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << Attr.getName() << TypeStr; return; } // Complain about attempts to use protected visibility on targets // (like Darwin) that don't support it. if (type == VisibilityAttr::Protected && !S.Context.getTargetInfo().hasProtectedVisibility()) { S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility); type = VisibilityAttr::Default; } unsigned Index = Attr.getAttributeSpellingListIndex(); clang::Attr *newAttr; if (isTypeVisibility) { newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(), (TypeVisibilityAttr::VisibilityType) type, Index); } else { newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index); } if (newAttr) D->addAttr(newAttr); } static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl, const AttributeList &Attr) { ObjCMethodDecl *method = dyn_cast(decl); if (!method) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << ExpectedMethod; return; } if (!Attr.isArgIdent(0)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 1 << AANT_ArgumentIdentifier; return; } IdentifierLoc *IL = Attr.getArgAsIdent(0); ObjCMethodFamilyAttr::FamilyKind F; if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) { S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName() << IL->Ident; return; } if (F == ObjCMethodFamilyAttr::OMF_init && !method->getResultType()->isObjCObjectPointerType()) { S.Diag(method->getLocation(), diag::err_init_method_bad_return_type) << method->getResultType(); // Ignore the attribute. return; } method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(), S.Context, F)); } static void handleObjCExceptionAttr(Sema &S, Decl *D, const AttributeList &Attr) { ObjCInterfaceDecl *OCI = dyn_cast(D); if (OCI == 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedObjectiveCInterface; return; } D->addAttr(::new (S.Context) ObjCExceptionAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) { if (TypedefNameDecl *TD = dyn_cast(D)) { QualType T = TD->getUnderlyingType(); if (!T->isCARCBridgableType()) { S.Diag(TD->getLocation(), diag::err_nsobject_attribute); return; } } else if (ObjCPropertyDecl *PD = dyn_cast(D)) { QualType T = PD->getType(); if (!T->isCARCBridgableType()) { S.Diag(PD->getLocation(), diag::err_nsobject_attribute); return; } } else { // It is okay to include this attribute on properties, e.g.: // // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); // // In this case it follows tradition and suppresses an error in the above // case. S.Diag(D->getLocation(), diag::warn_nsobject_attribute); } D->addAttr(::new (S.Context) ObjCNSObjectAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function); return; } D->addAttr(::new (S.Context) OverloadableAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!Attr.isArgIdent(0)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 1 << AANT_ArgumentIdentifier; return; } IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident; BlocksAttr::BlockType type; if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) { S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) << Attr.getName() << II; return; } D->addAttr(::new (S.Context) BlocksAttr(Attr.getRange(), S.Context, type, Attr.getAttributeSpellingListIndex())); } static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.getNumArgs() > 2) { S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2; return; } unsigned sentinel = 0; if (Attr.getNumArgs() > 0) { Expr *E = Attr.getArgAsExpr(0); llvm::APSInt Idx(32); if (E->isTypeDependent() || E->isValueDependent() || !E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } if (Idx.isSigned() && Idx.isNegative()) { S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero) << E->getSourceRange(); return; } sentinel = Idx.getZExtValue(); } unsigned nullPos = 0; if (Attr.getNumArgs() > 1) { Expr *E = Attr.getArgAsExpr(1); llvm::APSInt Idx(32); if (E->isTypeDependent() || E->isValueDependent() || !E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } nullPos = Idx.getZExtValue(); if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) { // FIXME: This error message could be improved, it would be nice // to say what the bounds actually are. S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) << E->getSourceRange(); return; } } if (FunctionDecl *FD = dyn_cast(D)) { const FunctionType *FT = FD->getType()->castAs(); if (isa(FT)) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments); return; } if (!cast(FT)->isVariadic()) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; return; } } else if (ObjCMethodDecl *MD = dyn_cast(D)) { if (!MD->isVariadic()) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; return; } } else if (BlockDecl *BD = dyn_cast(D)) { if (!BD->isVariadic()) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; return; } } else if (const VarDecl *V = dyn_cast(D)) { QualType Ty = V->getType(); if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D) : Ty->getAs()->getPointeeType()->getAs(); if (!cast(FT)->isVariadic()) { int m = Ty->isFunctionPointerType() ? 0 : 1; S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; return; } } else { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionMethodOrBlock; return; } } else { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionMethodOrBlock; return; } D->addAttr(::new (S.Context) SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos, Attr.getAttributeSpellingListIndex())); } static void handleWarnUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (RecordDecl *RD = dyn_cast(D)) RD->addAttr(::new (S.Context) WarnUnusedAttr(Attr.getRange(), S.Context)); else S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); } static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) { if (!isFunction(D) && !isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionMethodOrClass; return; } if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) { S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method) << Attr.getName() << 0; return; } if (const ObjCMethodDecl *MD = dyn_cast(D)) if (MD->getResultType()->isVoidType()) { S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method) << Attr.getName() << 1; return; } D->addAttr(::new (S.Context) WarnUnusedResultAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D) && !isa(D)) { if (isa(D)) { D->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context)); return; } S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableOrFunction; return; } NamedDecl *nd = cast(D); nd->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) { // weak_import only applies to variable & function declarations. bool isDef = false; if (!D->canBeWeakImported(isDef)) { if (isDef) S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition) << "weak_import"; else if (isa(D) || isa(D) || (S.Context.getTargetInfo().getTriple().isOSDarwin() && (isa(D) || isa(D)))) { // Nothing to warn about here. } else S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableOrFunction; return; } D->addAttr(::new (S.Context) WeakImportAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } // Handles reqd_work_group_size and work_group_size_hint. static void handleWorkGroupSize(Sema &S, Decl *D, const AttributeList &Attr) { unsigned WGSize[3]; for (unsigned i = 0; i < 3; ++i) { Expr *E = Attr.getArgAsExpr(i); llvm::APSInt ArgNum(32); if (E->isTypeDependent() || E->isValueDependent() || !E->isIntegerConstantExpr(ArgNum, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } WGSize[i] = (unsigned) ArgNum.getZExtValue(); } if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize && D->hasAttr()) { ReqdWorkGroupSizeAttr *A = D->getAttr(); if (!(A->getXDim() == WGSize[0] && A->getYDim() == WGSize[1] && A->getZDim() == WGSize[2])) { S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName(); } } if (Attr.getKind() == AttributeList::AT_WorkGroupSizeHint && D->hasAttr()) { WorkGroupSizeHintAttr *A = D->getAttr(); if (!(A->getXDim() == WGSize[0] && A->getYDim() == WGSize[1] && A->getZDim() == WGSize[2])) { S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName(); } } if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize) D->addAttr(::new (S.Context) ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context, WGSize[0], WGSize[1], WGSize[2], Attr.getAttributeSpellingListIndex())); else D->addAttr(::new (S.Context) WorkGroupSizeHintAttr(Attr.getRange(), S.Context, WGSize[0], WGSize[1], WGSize[2], Attr.getAttributeSpellingListIndex())); } static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) { assert(Attr.getKind() == AttributeList::AT_VecTypeHint); if (!Attr.hasParsedType()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr.getName() << 1; return; } TypeSourceInfo *ParmTSI = 0; QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg(), &ParmTSI); assert(ParmTSI && "no type source info for attribute argument"); if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && (ParmType->isBooleanType() || !ParmType->isIntegralType(S.getASTContext()))) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint) << ParmType; return; } if (Attr.getKind() == AttributeList::AT_VecTypeHint && D->hasAttr()) { VecTypeHintAttr *A = D->getAttr(); if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName(); return; } } D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context, ParmTSI)); } SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range, StringRef Name, unsigned AttrSpellingListIndex) { if (SectionAttr *ExistingAttr = D->getAttr()) { if (ExistingAttr->getName() == Name) return NULL; Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section); Diag(Range.getBegin(), diag::note_previous_attribute); return NULL; } return ::new (Context) SectionAttr(Range, Context, Name, AttrSpellingListIndex); } static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) { // Make sure that there is a string literal as the sections's single // argument. StringRef Str; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc)) return; // If the target wants to validate the section specifier, make it happen. std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str); if (!Error.empty()) { S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error; return; } // This attribute cannot be applied to local variables. if (isa(D) && cast(D)->hasLocalStorage()) { S.Diag(LiteralLoc, diag::err_attribute_section_local_variable); return; } unsigned Index = Attr.getAttributeSpellingListIndex(); SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(), Str, Index); if (NewAttr) D->addAttr(NewAttr); } static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (NoThrowAttr *Existing = D->getAttr()) { if (Existing->getLocation().isInvalid()) Existing->setRange(Attr.getRange()); } else { D->addAttr(::new (S.Context) NoThrowAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } } static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (ConstAttr *Existing = D->getAttr()) { if (Existing->getLocation().isInvalid()) Existing->setRange(Attr.getRange()); } else { D->addAttr(::new (S.Context) ConstAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex() )); } } static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) { D->addAttr(::new (S.Context) PureAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) { VarDecl *VD = dyn_cast(D); if (!VD || !VD->hasLocalStorage()) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); return; } Expr *E = Attr.getArgAsExpr(0); SourceLocation Loc = E->getExprLoc(); FunctionDecl *FD = 0; DeclarationNameInfo NI; // gcc only allows for simple identifiers. Since we support more than gcc, we // will warn the user. if (DeclRefExpr *DRE = dyn_cast(E)) { if (DRE->hasQualifier()) S.Diag(Loc, diag::warn_cleanup_ext); FD = dyn_cast(DRE->getDecl()); NI = DRE->getNameInfo(); if (!FD) { S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 << NI.getName(); return; } } else if (UnresolvedLookupExpr *ULE = dyn_cast(E)) { if (ULE->hasExplicitTemplateArgs()) S.Diag(Loc, diag::warn_cleanup_ext); FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); NI = ULE->getNameInfo(); if (!FD) { S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 << NI.getName(); if (ULE->getType() == S.Context.OverloadTy) S.NoteAllOverloadCandidates(ULE); return; } } else { S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; return; } if (FD->getNumParams() != 1) { S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) << NI.getName(); return; } // We're currently more strict than GCC about what function types we accept. // If this ever proves to be a problem it should be easy to fix. QualType Ty = S.Context.getPointerType(VD->getType()); QualType ParamTy = FD->getParamDecl(0)->getType(); if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), ParamTy, Ty) != Sema::Compatible) { S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) << NI.getName() << ParamTy << Ty; return; } D->addAttr(::new (S.Context) CleanupAttr(Attr.getRange(), S.Context, FD, Attr.getAttributeSpellingListIndex())); } /// Handle __attribute__((format_arg((idx)))) attribute based on /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } Expr *IdxExpr = Attr.getArgAsExpr(0); uint64_t ArgIdx; if (!checkFunctionOrMethodArgumentIndex(S, D, Attr.getName()->getName(), Attr.getLoc(), 1, IdxExpr, ArgIdx)) return; // make sure the format string is really a string QualType Ty = getFunctionOrMethodArgType(D, ArgIdx); bool not_nsstring_type = !isNSStringType(Ty, S.Context); if (not_nsstring_type && !isCFStringType(Ty, S.Context) && (!Ty->isPointerType() || !Ty->getAs()->getPointeeType()->isCharType())) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << (not_nsstring_type ? "a string type" : "an NSString") << IdxExpr->getSourceRange(); return; } Ty = getFunctionOrMethodResultType(D); if (!isNSStringType(Ty, S.Context) && !isCFStringType(Ty, S.Context) && (!Ty->isPointerType() || !Ty->getAs()->getPointeeType()->isCharType())) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not) << (not_nsstring_type ? "string type" : "NSString") << IdxExpr->getSourceRange(); return; } // We cannot use the ArgIdx returned from checkFunctionOrMethodArgumentIndex // because that has corrected for the implicit this parameter, and is zero- // based. The attribute expects what the user wrote explicitly. llvm::APSInt Val; IdxExpr->EvaluateAsInt(Val, S.Context); D->addAttr(::new (S.Context) FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(), Attr.getAttributeSpellingListIndex())); } enum FormatAttrKind { CFStringFormat, NSStringFormat, StrftimeFormat, SupportedFormat, IgnoredFormat, InvalidFormat }; /// getFormatAttrKind - Map from format attribute names to supported format /// types. static FormatAttrKind getFormatAttrKind(StringRef Format) { return llvm::StringSwitch(Format) // Check for formats that get handled specially. .Case("NSString", NSStringFormat) .Case("CFString", CFStringFormat) .Case("strftime", StrftimeFormat) // Otherwise, check for supported formats. .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat) .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat) .Case("kprintf", SupportedFormat) // OpenBSD. .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat) .Default(InvalidFormat); } /// Handle __attribute__((init_priority(priority))) attributes based on /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html static void handleInitPriorityAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!S.getLangOpts().CPlusPlus) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); return; } if (!isa(D) || S.getCurFunctionOrMethodDecl()) { S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr); Attr.setInvalid(); return; } QualType T = dyn_cast(D)->getType(); if (S.Context.getAsArrayType(T)) T = S.Context.getBaseElementType(T); if (!T->getAs()) { S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr); Attr.setInvalid(); return; } Expr *priorityExpr = Attr.getArgAsExpr(0); llvm::APSInt priority(32); if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() || !priorityExpr->isIntegerConstantExpr(priority, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentIntegerConstant << priorityExpr->getSourceRange(); Attr.setInvalid(); return; } unsigned prioritynum = priority.getZExtValue(); if (prioritynum < 101 || prioritynum > 65535) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range) << priorityExpr->getSourceRange(); Attr.setInvalid(); return; } D->addAttr(::new (S.Context) InitPriorityAttr(Attr.getRange(), S.Context, prioritynum, Attr.getAttributeSpellingListIndex())); } FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range, IdentifierInfo *Format, int FormatIdx, int FirstArg, unsigned AttrSpellingListIndex) { // Check whether we already have an equivalent format attribute. for (specific_attr_iterator i = D->specific_attr_begin(), e = D->specific_attr_end(); i != e ; ++i) { FormatAttr *f = *i; if (f->getType() == Format && f->getFormatIdx() == FormatIdx && f->getFirstArg() == FirstArg) { // If we don't have a valid location for this attribute, adopt the // location. if (f->getLocation().isInvalid()) f->setRange(Range); return NULL; } } return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx, FirstArg, AttrSpellingListIndex); } /// Handle __attribute__((format(type,idx,firstarg))) attributes based on /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!Attr.isArgIdent(0)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 1 << AANT_ArgumentIdentifier; return; } if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } // In C++ the implicit 'this' function parameter also counts, and they are // counted from one. bool HasImplicitThisParam = isInstanceMethod(D); unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam; unsigned FirstIdx = 1; IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident; StringRef Format = II->getName(); // Normalize the argument, __foo__ becomes foo. if (Format.startswith("__") && Format.endswith("__")) { Format = Format.substr(2, Format.size() - 4); // If we've modified the string name, we need a new identifier for it. II = &S.Context.Idents.get(Format); } // Check for supported formats. FormatAttrKind Kind = getFormatAttrKind(Format); if (Kind == IgnoredFormat) return; if (Kind == InvalidFormat) { S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) << "format" << II->getName(); return; } // checks for the 2nd argument Expr *IdxExpr = Attr.getArgAsExpr(1); llvm::APSInt Idx(32); if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 2 << AANT_ArgumentIntegerConstant << IdxExpr->getSourceRange(); return; } if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "format" << 2 << IdxExpr->getSourceRange(); return; } // FIXME: Do we need to bounds check? unsigned ArgIdx = Idx.getZExtValue() - 1; if (HasImplicitThisParam) { if (ArgIdx == 0) { S.Diag(Attr.getLoc(), diag::err_format_attribute_implicit_this_format_string) << IdxExpr->getSourceRange(); return; } ArgIdx--; } // make sure the format string is really a string QualType Ty = getFunctionOrMethodArgType(D, ArgIdx); if (Kind == CFStringFormat) { if (!isCFStringType(Ty, S.Context)) { S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "a CFString" << IdxExpr->getSourceRange(); return; } } else if (Kind == NSStringFormat) { // FIXME: do we need to check if the type is NSString*? What are the // semantics? if (!isNSStringType(Ty, S.Context)) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "an NSString" << IdxExpr->getSourceRange(); return; } } else if (!Ty->isPointerType() || !Ty->getAs()->getPointeeType()->isCharType()) { // FIXME: Should highlight the actual expression that has the wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "a string type" << IdxExpr->getSourceRange(); return; } // check the 3rd argument Expr *FirstArgExpr = Attr.getArgAsExpr(2); llvm::APSInt FirstArg(32); if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() || !FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 3 << AANT_ArgumentIntegerConstant << FirstArgExpr->getSourceRange(); return; } // check if the function is variadic if the 3rd argument non-zero if (FirstArg != 0) { if (isFunctionOrMethodVariadic(D)) { ++NumArgs; // +1 for ... } else { S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic); return; } } // strftime requires FirstArg to be 0 because it doesn't read from any // variable the input is just the current time + the format string. if (Kind == StrftimeFormat) { if (FirstArg != 0) { S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter) << FirstArgExpr->getSourceRange(); return; } // if 0 it disables parameter checking (to use with e.g. va_list) } else if (FirstArg != 0 && FirstArg != NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "format" << 3 << FirstArgExpr->getSourceRange(); return; } FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), II, Idx.getZExtValue(), FirstArg.getZExtValue(), Attr.getAttributeSpellingListIndex()); if (NewAttr) D->addAttr(NewAttr); } static void handleTransparentUnionAttr(Sema &S, Decl *D, const AttributeList &Attr) { // Try to find the underlying union declaration. RecordDecl *RD = 0; TypedefNameDecl *TD = dyn_cast(D); if (TD && TD->getUnderlyingType()->isUnionType()) RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); else RD = dyn_cast(D); if (!RD || !RD->isUnion()) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedUnion; return; } if (!RD->isCompleteDefinition()) { S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_not_definition); return; } RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); if (Field == FieldEnd) { S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields); return; } FieldDecl *FirstField = *Field; QualType FirstType = FirstField->getType(); if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { S.Diag(FirstField->getLocation(), diag::warn_transparent_union_attribute_floating) << FirstType->isVectorType() << FirstType; return; } uint64_t FirstSize = S.Context.getTypeSize(FirstType); uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); for (; Field != FieldEnd; ++Field) { QualType FieldType = Field->getType(); if (S.Context.getTypeSize(FieldType) != FirstSize || S.Context.getTypeAlign(FieldType) != FirstAlign) { // Warn if we drop the attribute. bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType) : S.Context.getTypeAlign(FieldType); S.Diag(Field->getLocation(), diag::warn_transparent_union_attribute_field_size_align) << isSize << Field->getDeclName() << FieldBits; unsigned FirstBits = isSize? FirstSize : FirstAlign; S.Diag(FirstField->getLocation(), diag::note_transparent_union_first_field_size_align) << isSize << FirstBits; return; } } RD->addAttr(::new (S.Context) TransparentUnionAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) { // Make sure that there is a string literal as the annotation's single // argument. StringRef Str; if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str)) return; // Don't duplicate annotations that are already set. for (specific_attr_iterator i = D->specific_attr_begin(), e = D->specific_attr_end(); i != e; ++i) { if ((*i)->getAnnotation() == Str) return; } D->addAttr(::new (S.Context) AnnotateAttr(Attr.getRange(), S.Context, Str, Attr.getAttributeSpellingListIndex())); } static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) { // check the attribute arguments. if (Attr.getNumArgs() > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr.getName() << 1; return; } if (Attr.getNumArgs() == 0) { D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context, true, 0, Attr.getAttributeSpellingListIndex())); return; } Expr *E = Attr.getArgAsExpr(0); if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) { S.Diag(Attr.getEllipsisLoc(), diag::err_pack_expansion_without_parameter_packs); return; } if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) return; S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(), Attr.isPackExpansion()); } void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E, unsigned SpellingListIndex, bool IsPackExpansion) { AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex); SourceLocation AttrLoc = AttrRange.getBegin(); // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. if (TmpAttr.isAlignas()) { // C++11 [dcl.align]p1: // An alignment-specifier may be applied to a variable or to a class // data member, but it shall not be applied to a bit-field, a function // parameter, the formal parameter of a catch clause, or a variable // declared with the register storage class specifier. An // alignment-specifier may also be applied to the declaration of a class // or enumeration type. // C11 6.7.5/2: // An alignment attribute shall not be specified in a declaration of // a typedef, or a bit-field, or a function, or a parameter, or an // object declared with the register storage-class specifier. int DiagKind = -1; if (isa(D)) { DiagKind = 0; } else if (VarDecl *VD = dyn_cast(D)) { if (VD->getStorageClass() == SC_Register) DiagKind = 1; if (VD->isExceptionVariable()) DiagKind = 2; } else if (FieldDecl *FD = dyn_cast(D)) { if (FD->isBitField()) DiagKind = 3; } else if (!isa(D)) { Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << (TmpAttr.isC11() ? "'_Alignas'" : "'alignas'") << (TmpAttr.isC11() ? ExpectedVariableOrField : ExpectedVariableFieldOrTag); return; } if (DiagKind != -1) { Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) << TmpAttr.isC11() << DiagKind; return; } } if (E->isTypeDependent() || E->isValueDependent()) { // Save dependent expressions in the AST to be instantiated. AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr); AA->setPackExpansion(IsPackExpansion); D->addAttr(AA); return; } // FIXME: Cache the number on the Attr object? llvm::APSInt Alignment(32); ExprResult ICE = VerifyIntegerConstantExpression(E, &Alignment, diag::err_aligned_attribute_argument_not_int, /*AllowFold*/ false); if (ICE.isInvalid()) return; // C++11 [dcl.align]p2: // -- if the constant expression evaluates to zero, the alignment // specifier shall have no effect // C11 6.7.5p6: // An alignment specification of zero has no effect. if (!(TmpAttr.isAlignas() && !Alignment) && !llvm::isPowerOf2_64(Alignment.getZExtValue())) { Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two) << E->getSourceRange(); return; } if (TmpAttr.isDeclspec()) { // We've already verified it's a power of 2, now let's make sure it's // 8192 or less. if (Alignment.getZExtValue() > 8192) { Diag(AttrLoc, diag::err_attribute_aligned_greater_than_8192) << E->getSourceRange(); return; } } AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true, ICE.take(), SpellingListIndex); AA->setPackExpansion(IsPackExpansion); D->addAttr(AA); } void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS, unsigned SpellingListIndex, bool IsPackExpansion) { // FIXME: Cache the number on the Attr object if non-dependent? // FIXME: Perform checking of type validity AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS, SpellingListIndex); AA->setPackExpansion(IsPackExpansion); D->addAttr(AA); } void Sema::CheckAlignasUnderalignment(Decl *D) { assert(D->hasAttrs() && "no attributes on decl"); QualType Ty; if (ValueDecl *VD = dyn_cast(D)) Ty = VD->getType(); else Ty = Context.getTagDeclType(cast(D)); if (Ty->isDependentType() || Ty->isIncompleteType()) return; // C++11 [dcl.align]p5, C11 6.7.5/4: // The combined effect of all alignment attributes in a declaration shall // not specify an alignment that is less strict than the alignment that // would otherwise be required for the entity being declared. AlignedAttr *AlignasAttr = 0; unsigned Align = 0; for (specific_attr_iterator I = D->specific_attr_begin(), E = D->specific_attr_end(); I != E; ++I) { if (I->isAlignmentDependent()) return; if (I->isAlignas()) AlignasAttr = *I; Align = std::max(Align, I->getAlignment(Context)); } if (AlignasAttr && Align) { CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align); CharUnits NaturalAlign = Context.getTypeAlignInChars(Ty); if (NaturalAlign > RequestedAlign) Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) << Ty << (unsigned)NaturalAlign.getQuantity(); } } /// handleModeAttr - This attribute modifies the width of a decl with primitive /// type. /// /// Despite what would be logical, the mode attribute is a decl attribute, not a /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be /// HImode, not an intermediate pointer. static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) { // This attribute isn't documented, but glibc uses it. It changes // the width of an int or unsigned int to the specified size. if (!Attr.isArgIdent(0)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentIdentifier; return; } IdentifierInfo *Name = Attr.getArgAsIdent(0)->Ident; StringRef Str = Name->getName(); // Normalize the attribute name, __foo__ becomes foo. if (Str.startswith("__") && Str.endswith("__")) Str = Str.substr(2, Str.size() - 4); unsigned DestWidth = 0; bool IntegerMode = true; bool ComplexMode = false; switch (Str.size()) { case 2: switch (Str[0]) { case 'Q': DestWidth = 8; break; case 'H': DestWidth = 16; break; case 'S': DestWidth = 32; break; case 'D': DestWidth = 64; break; case 'X': DestWidth = 96; break; case 'T': DestWidth = 128; break; } if (Str[1] == 'F') { IntegerMode = false; } else if (Str[1] == 'C') { IntegerMode = false; ComplexMode = true; } else if (Str[1] != 'I') { DestWidth = 0; } break; case 4: // FIXME: glibc uses 'word' to define register_t; this is narrower than a // pointer on PIC16 and other embedded platforms. if (Str == "word") DestWidth = S.Context.getTargetInfo().getPointerWidth(0); else if (Str == "byte") DestWidth = S.Context.getTargetInfo().getCharWidth(); break; case 7: if (Str == "pointer") DestWidth = S.Context.getTargetInfo().getPointerWidth(0); break; case 11: if (Str == "unwind_word") DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); break; } QualType OldTy; if (TypedefNameDecl *TD = dyn_cast(D)) OldTy = TD->getUnderlyingType(); else if (ValueDecl *VD = dyn_cast(D)) OldTy = VD->getType(); else { S.Diag(D->getLocation(), diag::err_attr_wrong_decl) << "mode" << Attr.getRange(); return; } if (!OldTy->getAs() && !OldTy->isComplexType()) S.Diag(Attr.getLoc(), diag::err_mode_not_primitive); else if (IntegerMode) { if (!OldTy->isIntegralOrEnumerationType()) S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); } else if (ComplexMode) { if (!OldTy->isComplexType()) S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); } else { if (!OldTy->isFloatingType()) S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); } // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t // and friends, at least with glibc. // FIXME: Make sure floating-point mappings are accurate // FIXME: Support XF and TF types if (!DestWidth) { S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name; return; } QualType NewTy; if (IntegerMode) NewTy = S.Context.getIntTypeForBitwidth(DestWidth, OldTy->isSignedIntegerType()); else NewTy = S.Context.getRealTypeForBitwidth(DestWidth); if (NewTy.isNull()) { S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; return; } if (ComplexMode) { NewTy = S.Context.getComplexType(NewTy); } // Install the new type. if (TypedefNameDecl *TD = dyn_cast(D)) TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy); else cast(D)->setType(NewTy); D->addAttr(::new (S.Context) ModeAttr(Attr.getRange(), S.Context, Name, Attr.getAttributeSpellingListIndex())); } static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (const VarDecl *VD = dyn_cast(D)) { if (!VD->hasGlobalStorage()) S.Diag(Attr.getLoc(), diag::warn_attribute_requires_functions_or_static_globals) << Attr.getName(); } else if (!isFunctionOrMethod(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_requires_functions_or_static_globals) << Attr.getName(); return; } D->addAttr(::new (S.Context) NoDebugAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) NoInlineAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) NoInstrumentFunctionAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.CUDA) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariable; return; } D->addAttr(::new (S.Context) CUDAConstantAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant"; } } static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.CUDA) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr.getName() << 0; return; } if (!isa(D) && !isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariableOrFunction; return; } D->addAttr(::new (S.Context) CUDADeviceAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device"; } } static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.CUDA) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } FunctionDecl *FD = cast(D); if (!FD->getResultType()->isVoidType()) { TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens(); if (FunctionTypeLoc FTL = TL.getAs()) { S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) << FD->getType() << FixItHint::CreateReplacement(FTL.getResultLoc().getSourceRange(), "void"); } else { S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) << FD->getType(); } return; } D->addAttr(::new (S.Context) CUDAGlobalAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global"; } } static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.CUDA) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } D->addAttr(::new (S.Context) CUDAHostAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host"; } } static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (S.LangOpts.CUDA) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedVariable; return; } D->addAttr(::new (S.Context) CUDASharedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared"; } } static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) { FunctionDecl *Fn = dyn_cast(D); if (Fn == 0) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunction; return; } if (!Fn->isInlineSpecified()) { S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); return; } D->addAttr(::new (S.Context) GNUInlineAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (hasDeclarator(D)) return; const FunctionDecl *FD = dyn_cast(D); // Diagnostic is emitted elsewhere: here we store the (valid) Attr // in the Decl node for syntactic reasoning, e.g., pretty-printing. CallingConv CC; if (S.CheckCallingConvAttr(Attr, CC, FD)) return; if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } switch (Attr.getKind()) { case AttributeList::AT_FastCall: D->addAttr(::new (S.Context) FastCallAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_StdCall: D->addAttr(::new (S.Context) StdCallAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_ThisCall: D->addAttr(::new (S.Context) ThisCallAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_CDecl: D->addAttr(::new (S.Context) CDeclAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_Pascal: D->addAttr(::new (S.Context) PascalAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_MSABI: D->addAttr(::new (S.Context) MSABIAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_SysVABI: D->addAttr(::new (S.Context) SysVABIAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_Pcs: { PcsAttr::PCSType PCS; switch (CC) { case CC_AAPCS: PCS = PcsAttr::AAPCS; break; case CC_AAPCS_VFP: PCS = PcsAttr::AAPCS_VFP; break; default: llvm_unreachable("unexpected calling convention in pcs attribute"); } D->addAttr(::new (S.Context) PcsAttr(Attr.getRange(), S.Context, PCS, Attr.getAttributeSpellingListIndex())); return; } case AttributeList::AT_PnaclCall: D->addAttr(::new (S.Context) PnaclCallAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_IntelOclBicc: D->addAttr(::new (S.Context) IntelOclBiccAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; default: llvm_unreachable("unexpected attribute kind"); } } static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){ D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context)); } static void handleOpenCLImageAccessAttr(Sema &S, Decl *D, const AttributeList &Attr){ Expr *E = Attr.getArgAsExpr(0); llvm::APSInt ArgNum(32); if (E->isTypeDependent() || E->isValueDependent() || !E->isIntegerConstantExpr(ArgNum, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } D->addAttr(::new (S.Context) OpenCLImageAccessAttr( Attr.getRange(), S.Context, ArgNum.getZExtValue())); } bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC, const FunctionDecl *FD) { if (attr.isInvalid()) return true; unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0; if (!checkAttributeNumArgs(*this, attr, ReqArgs)) { attr.setInvalid(); return true; } // TODO: diagnose uses of these conventions on the wrong target. Or, better // move to TargetAttributesSema one day. switch (attr.getKind()) { case AttributeList::AT_CDecl: CC = CC_C; break; case AttributeList::AT_FastCall: CC = CC_X86FastCall; break; case AttributeList::AT_StdCall: CC = CC_X86StdCall; break; case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break; case AttributeList::AT_Pascal: CC = CC_X86Pascal; break; case AttributeList::AT_MSABI: CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : CC_X86_64Win64; break; case AttributeList::AT_SysVABI: CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : CC_C; break; case AttributeList::AT_Pcs: { StringRef StrRef; if (!checkStringLiteralArgumentAttr(attr, 0, StrRef)) { attr.setInvalid(); return true; } if (StrRef == "aapcs") { CC = CC_AAPCS; break; } else if (StrRef == "aapcs-vfp") { CC = CC_AAPCS_VFP; break; } attr.setInvalid(); Diag(attr.getLoc(), diag::err_invalid_pcs); return true; } case AttributeList::AT_PnaclCall: CC = CC_PnaclCall; break; case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break; default: llvm_unreachable("unexpected attribute kind"); } const TargetInfo &TI = Context.getTargetInfo(); TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC); if (A == TargetInfo::CCCR_Warning) { Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName(); TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown; if (FD) MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member : TargetInfo::CCMT_NonMember; CC = TI.getDefaultCallingConv(MT); } return false; } static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (hasDeclarator(D)) return; unsigned numParams; if (S.CheckRegparmAttr(Attr, numParams)) return; if (!isa(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) RegparmAttr(Attr.getRange(), S.Context, numParams, Attr.getAttributeSpellingListIndex())); } /// Checks a regparm attribute, returning true if it is ill-formed and /// otherwise setting numParams to the appropriate value. bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) { if (Attr.isInvalid()) return true; if (!checkAttributeNumArgs(*this, Attr, 1)) { Attr.setInvalid(); return true; } Expr *NumParamsExpr = Attr.getArgAsExpr(0); llvm::APSInt NumParams(32); if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() || !NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) { Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName() << AANT_ArgumentIntegerConstant << NumParamsExpr->getSourceRange(); Attr.setInvalid(); return true; } if (Context.getTargetInfo().getRegParmMax() == 0) { Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform) << NumParamsExpr->getSourceRange(); Attr.setInvalid(); return true; } numParams = NumParams.getZExtValue(); if (numParams > Context.getTargetInfo().getRegParmMax()) { Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number) << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); Attr.setInvalid(); return true; } return false; } static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){ if (S.LangOpts.CUDA) { // check the attribute arguments. if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) { // FIXME: 0 is not okay. S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2; return; } if (!isFunctionOrMethod(D)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } Expr *MaxThreadsExpr = Attr.getArgAsExpr(0); llvm::APSInt MaxThreads(32); if (MaxThreadsExpr->isTypeDependent() || MaxThreadsExpr->isValueDependent() || !MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 1 << AANT_ArgumentIntegerConstant << MaxThreadsExpr->getSourceRange(); return; } llvm::APSInt MinBlocks(32); if (Attr.getNumArgs() > 1) { Expr *MinBlocksExpr = Attr.getArgAsExpr(1); if (MinBlocksExpr->isTypeDependent() || MinBlocksExpr->isValueDependent() || !MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 2 << AANT_ArgumentIntegerConstant << MinBlocksExpr->getSourceRange(); return; } } D->addAttr(::new (S.Context) CUDALaunchBoundsAttr(Attr.getRange(), S.Context, MaxThreads.getZExtValue(), MinBlocks.getZExtValue(), Attr.getAttributeSpellingListIndex())); } else { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds"; } } static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!Attr.isArgIdent(0)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier; return; } if (!checkAttributeNumArgs(S, Attr, 3)) return; StringRef AttrName = Attr.getName()->getName(); IdentifierInfo *ArgumentKind = Attr.getArgAsIdent(0)->Ident; if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << ExpectedFunctionOrMethod; return; } uint64_t ArgumentIdx; if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName, Attr.getLoc(), 2, Attr.getArgAsExpr(1), ArgumentIdx)) return; uint64_t TypeTagIdx; if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName, Attr.getLoc(), 3, Attr.getArgAsExpr(2), TypeTagIdx)) return; bool IsPointer = (AttrName == "pointer_with_type_tag"); if (IsPointer) { // Ensure that buffer has a pointer type. QualType BufferTy = getFunctionOrMethodArgType(D, ArgumentIdx); if (!BufferTy->isPointerType()) { S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only) << Attr.getName(); } } D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind, ArgumentIdx, TypeTagIdx, IsPointer, Attr.getAttributeSpellingListIndex())); } static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!Attr.isArgIdent(0)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type) << Attr.getName() << 1 << AANT_ArgumentIdentifier; return; } if (!checkAttributeNumArgs(S, Attr, 1)) return; IdentifierInfo *PointerKind = Attr.getArgAsIdent(0)->Ident; TypeSourceInfo *MatchingCTypeLoc = 0; S.GetTypeFromParser(Attr.getMatchingCType(), &MatchingCTypeLoc); assert(MatchingCTypeLoc && "no type source info for attribute argument"); D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind, MatchingCTypeLoc, Attr.getLayoutCompatible(), Attr.getMustBeNull(), Attr.getAttributeSpellingListIndex())); } //===----------------------------------------------------------------------===// // Checker-specific attribute handlers. //===----------------------------------------------------------------------===// static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) { return type->isDependentType() || type->isObjCObjectPointerType() || S.Context.isObjCNSObjectType(type); } static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) { return type->isDependentType() || type->isPointerType() || isValidSubjectOfNSAttribute(S, type); } static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) { ParmVarDecl *param = dyn_cast(D); if (!param) { S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedParameter; return; } bool typeOK, cf; if (Attr.getKind() == AttributeList::AT_NSConsumed) { typeOK = isValidSubjectOfNSAttribute(S, param->getType()); cf = false; } else { typeOK = isValidSubjectOfCFAttribute(S, param->getType()); cf = true; } if (!typeOK) { S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type) << Attr.getRange() << Attr.getName() << cf; return; } if (cf) param->addAttr(::new (S.Context) CFConsumedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); else param->addAttr(::new (S.Context) NSConsumedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleNSConsumesSelfAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedMethod; return; } D->addAttr(::new (S.Context) NSConsumesSelfAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleNSReturnsRetainedAttr(Sema &S, Decl *D, const AttributeList &Attr) { QualType returnType; if (ObjCMethodDecl *MD = dyn_cast(D)) returnType = MD->getResultType(); else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && (Attr.getKind() == AttributeList::AT_NSReturnsRetained)) return; // ignore: was handled as a type attribute else if (ObjCPropertyDecl *PD = dyn_cast(D)) returnType = PD->getType(); else if (FunctionDecl *FD = dyn_cast(D)) returnType = FD->getResultType(); else { S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedFunctionOrMethod; return; } bool typeOK; bool cf; switch (Attr.getKind()) { default: llvm_unreachable("invalid ownership attribute"); case AttributeList::AT_NSReturnsAutoreleased: case AttributeList::AT_NSReturnsRetained: case AttributeList::AT_NSReturnsNotRetained: typeOK = isValidSubjectOfNSAttribute(S, returnType); cf = false; break; case AttributeList::AT_CFReturnsRetained: case AttributeList::AT_CFReturnsNotRetained: typeOK = isValidSubjectOfCFAttribute(S, returnType); cf = true; break; } if (!typeOK) { S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type) << Attr.getRange() << Attr.getName() << isa(D) << cf; return; } switch (Attr.getKind()) { default: llvm_unreachable("invalid ownership attribute"); case AttributeList::AT_NSReturnsAutoreleased: D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_CFReturnsNotRetained: D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_NSReturnsNotRetained: D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_CFReturnsRetained: D->addAttr(::new (S.Context) CFReturnsRetainedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; case AttributeList::AT_NSReturnsRetained: D->addAttr(::new (S.Context) NSReturnsRetainedAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); return; }; } static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, const AttributeList &attr) { const int EP_ObjCMethod = 1; const int EP_ObjCProperty = 2; SourceLocation loc = attr.getLoc(); QualType resultType; ObjCMethodDecl *method = dyn_cast(D); if (!method) { ObjCPropertyDecl *property = dyn_cast(D); if (!property) { S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) << SourceRange(loc, loc) << attr.getName() << ExpectedMethodOrProperty; return; } resultType = property->getType(); } else // Check that the method returns a normal pointer. resultType = method->getResultType(); if (!resultType->isReferenceType() && (!resultType->isPointerType() || resultType->isObjCRetainableType())) { S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type) << SourceRange(loc) << attr.getName() << (method ? EP_ObjCMethod : EP_ObjCProperty) << /*non-retainable pointer*/ 2; // Drop the attribute. return; } D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context, attr.getAttributeSpellingListIndex())); } static void handleObjCRequiresSuperAttr(Sema &S, Decl *D, const AttributeList &attr) { SourceLocation loc = attr.getLoc(); ObjCMethodDecl *method = dyn_cast(D); if (!method) { S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) << SourceRange(loc, loc) << attr.getName() << ExpectedMethod; return; } DeclContext *DC = method->getDeclContext(); if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null(DC)) { S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol) << attr.getName() << 0; S.Diag(PDecl->getLocation(), diag::note_protocol_decl); return; } if (method->getMethodFamily() == OMF_dealloc) { S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol) << attr.getName() << 1; return; } method->addAttr(::new (S.Context) ObjCRequiresSuperAttr(attr.getRange(), S.Context, attr.getAttributeSpellingListIndex())); } /// Handle cf_audited_transfer and cf_unknown_transfer. static void handleCFTransferAttr(Sema &S, Decl *D, const AttributeList &A) { if (!isa(D)) { S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) << A.getRange() << A.getName() << ExpectedFunction; return; } bool IsAudited = (A.getKind() == AttributeList::AT_CFAuditedTransfer); // Check whether there's a conflicting attribute already present. Attr *Existing; if (IsAudited) { Existing = D->getAttr(); } else { Existing = D->getAttr(); } if (Existing) { S.Diag(D->getLocStart(), diag::err_attributes_are_not_compatible) << A.getName() << (IsAudited ? "cf_unknown_transfer" : "cf_audited_transfer") << A.getRange() << Existing->getRange(); return; } // All clear; add the attribute. if (IsAudited) { D->addAttr(::new (S.Context) CFAuditedTransferAttr(A.getRange(), S.Context, A.getAttributeSpellingListIndex())); } else { D->addAttr(::new (S.Context) CFUnknownTransferAttr(A.getRange(), S.Context, A.getAttributeSpellingListIndex())); } } static void handleNSBridgedAttr(Sema &S, Scope *Sc, Decl *D, const AttributeList &Attr) { RecordDecl *RD = dyn_cast(D); if (!RD || RD->isUnion()) { S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedStruct; } IdentifierLoc *Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : 0; // In Objective-C, verify that the type names an Objective-C type. // We don't want to check this outside of ObjC because people sometimes // do crazy C declarations of Objective-C types. if (Parm && S.getLangOpts().ObjC1) { // Check for an existing type with this name. LookupResult R(S, DeclarationName(Parm->Ident), Parm->Loc, Sema::LookupOrdinaryName); if (S.LookupName(R, Sc)) { NamedDecl *Target = R.getFoundDecl(); if (Target && !isa(Target)) { S.Diag(D->getLocStart(), diag::err_ns_bridged_not_interface); S.Diag(Target->getLocStart(), diag::note_declared_at); } } } D->addAttr(::new (S.Context) NSBridgedAttr(Attr.getRange(), S.Context, Parm ? Parm->Ident : 0, Attr.getAttributeSpellingListIndex())); } static void handleObjCBridgeAttr(Sema &S, Scope *Sc, Decl *D, const AttributeList &Attr) { if (!isa(D)) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) << Attr.getName() << (S.getLangOpts().CPlusPlus ? ExpectedStructOrUnionOrClass : ExpectedStructOrUnion); return; } if (Attr.getNumArgs() != 1) { S.Diag(D->getLocStart(), diag::err_objc_bridge_not_id); return; } IdentifierLoc *Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : 0; if (!Parm) { S.Diag(D->getLocStart(), diag::err_objc_bridge_not_id); return; } D->addAttr(::new (S.Context) ObjCBridgeAttr(Attr.getRange(), S.Context, Parm ? Parm->Ident : 0, Attr.getAttributeSpellingListIndex())); } static void handleObjCOwnershipAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (hasDeclarator(D)) return; S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedVariable; } static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!isa(D) && !isa(D)) { S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) << Attr.getRange() << Attr.getName() << ExpectedVariable; return; } ValueDecl *vd = cast(D); QualType type = vd->getType(); if (!type->isDependentType() && !type->isObjCLifetimeType()) { S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type) << type; return; } Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); // If we have no lifetime yet, check the lifetime we're presumably // going to infer. if (lifetime == Qualifiers::OCL_None && !type->isDependentType()) lifetime = type->getObjCARCImplicitLifetime(); switch (lifetime) { case Qualifiers::OCL_None: assert(type->isDependentType() && "didn't infer lifetime for non-dependent type?"); break; case Qualifiers::OCL_Weak: // meaningful case Qualifiers::OCL_Strong: // meaningful break; case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless) << (lifetime == Qualifiers::OCL_Autoreleasing); break; } D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } //===----------------------------------------------------------------------===// // Microsoft specific attribute handlers. //===----------------------------------------------------------------------===// // Check if MS extensions or some other language extensions are enabled. If // not, issue a diagnostic that the given attribute is unused. static bool checkMicrosoftExt(Sema &S, const AttributeList &Attr, bool OtherExtension = false) { if (S.LangOpts.MicrosoftExt || OtherExtension) return true; S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); return false; } static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkMicrosoftExt(S, Attr, S.LangOpts.Borland)) return; StringRef StrRef; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(Attr, 0, StrRef, &LiteralLoc)) return; // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') StrRef = StrRef.drop_front().drop_back(); // Validate GUID length. if (StrRef.size() != 36) { S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); return; } for (unsigned i = 0; i < 36; ++i) { if (i == 8 || i == 13 || i == 18 || i == 23) { if (StrRef[i] != '-') { S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); return; } } else if (!isHexDigit(StrRef[i])) { S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); return; } } D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, StrRef, Attr.getAttributeSpellingListIndex())); } static void handleInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkMicrosoftExt(S, Attr)) return; AttributeList::Kind Kind = Attr.getKind(); if (Kind == AttributeList::AT_SingleInheritance) D->addAttr( ::new (S.Context) SingleInheritanceAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); else if (Kind == AttributeList::AT_MultipleInheritance) D->addAttr( ::new (S.Context) MultipleInheritanceAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); else if (Kind == AttributeList::AT_VirtualInheritance) D->addAttr( ::new (S.Context) VirtualInheritanceAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handlePortabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkMicrosoftExt(S, Attr)) return; AttributeList::Kind Kind = Attr.getKind(); if (Kind == AttributeList::AT_Win64) D->addAttr( ::new (S.Context) Win64Attr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleForceInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkMicrosoftExt(S, Attr)) return; D->addAttr(::new (S.Context) ForceInlineAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } static void handleSelectAnyAttr(Sema &S, Decl *D, const AttributeList &Attr) { if (!checkMicrosoftExt(S, Attr)) return; // Check linkage after possibly merging declaratinos. See // checkAttributesAfterMerging(). D->addAttr(::new (S.Context) SelectAnyAttr(Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex())); } /// Handles semantic checking for features that are common to all attributes, /// such as checking whether a parameter was properly specified, or the correct /// number of arguments were passed, etc. static bool handleCommonAttributeFeatures(Sema &S, Scope *scope, Decl *D, const AttributeList &Attr) { // Several attributes carry different semantics than the parsing requires, so // those are opted out of the common handling. // // We also bail on unknown and ignored attributes because those are handled // as part of the target-specific handling logic. if (Attr.hasCustomParsing() || Attr.getKind() == AttributeList::UnknownAttribute || Attr.getKind() == AttributeList::IgnoredAttribute) return false; // If there are no optional arguments, then checking for the argument count // is trivial. if (Attr.getMinArgs() == Attr.getMaxArgs() && !checkAttributeNumArgs(S, Attr, Attr.getMinArgs())) return true; return false; } //===----------------------------------------------------------------------===// // Top Level Sema Entry Points //===----------------------------------------------------------------------===// /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if /// the attribute applies to decls. If the attribute is a type attribute, just /// silently ignore it if a GNU attribute. static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const AttributeList &Attr, bool IncludeCXX11Attributes) { if (Attr.isInvalid()) return; // Ignore C++11 attributes on declarator chunks: they appertain to the type // instead. if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes) return; if (handleCommonAttributeFeatures(S, scope, D, Attr)) return; switch (Attr.getKind()) { case AttributeList::AT_IBAction: handleIBAction(S, D, Attr); break; case AttributeList::AT_IBOutlet: handleIBOutlet(S, D, Attr); break; case AttributeList::AT_IBOutletCollection: handleIBOutletCollection(S, D, Attr); break; case AttributeList::AT_AddressSpace: case AttributeList::AT_ObjCGC: case AttributeList::AT_VectorSize: case AttributeList::AT_NeonVectorType: case AttributeList::AT_NeonPolyVectorType: case AttributeList::AT_Ptr32: case AttributeList::AT_Ptr64: case AttributeList::AT_SPtr: case AttributeList::AT_UPtr: // Ignore these, these are type attributes, handled by // ProcessTypeAttributes. break; case AttributeList::AT_Alias: handleAliasAttr (S, D, Attr); break; case AttributeList::AT_Aligned: handleAlignedAttr (S, D, Attr); break; case AttributeList::AT_AllocSize: handleAllocSizeAttr (S, D, Attr); break; case AttributeList::AT_AlwaysInline: handleAlwaysInlineAttr (S, D, Attr); break; case AttributeList::AT_AnalyzerNoReturn: handleAnalyzerNoReturnAttr (S, D, Attr); break; case AttributeList::AT_TLSModel: handleTLSModelAttr (S, D, Attr); break; case AttributeList::AT_Annotate: handleAnnotateAttr (S, D, Attr); break; case AttributeList::AT_Availability:handleAvailabilityAttr(S, D, Attr); break; case AttributeList::AT_CarriesDependency: handleDependencyAttr(S, scope, D, Attr); break; case AttributeList::AT_Common: handleCommonAttr (S, D, Attr); break; case AttributeList::AT_CUDAConstant:handleConstantAttr (S, D, Attr); break; case AttributeList::AT_Constructor: handleConstructorAttr (S, D, Attr); break; case AttributeList::AT_CXX11NoReturn: handleCXX11NoReturnAttr(S, D, Attr); break; case AttributeList::AT_Deprecated: handleAttrWithMessage(S, D, Attr); break; case AttributeList::AT_Destructor: handleDestructorAttr (S, D, Attr); break; case AttributeList::AT_ExtVectorType: handleExtVectorTypeAttr(S, scope, D, Attr); break; case AttributeList::AT_MinSize: handleMinSizeAttr(S, D, Attr); break; case AttributeList::AT_Format: handleFormatAttr (S, D, Attr); break; case AttributeList::AT_FormatArg: handleFormatArgAttr (S, D, Attr); break; case AttributeList::AT_CUDAGlobal: handleGlobalAttr (S, D, Attr); break; case AttributeList::AT_CUDADevice: handleDeviceAttr (S, D, Attr); break; case AttributeList::AT_CUDAHost: handleHostAttr (S, D, Attr); break; case AttributeList::AT_GNUInline: handleGNUInlineAttr (S, D, Attr); break; case AttributeList::AT_CUDALaunchBounds: handleLaunchBoundsAttr(S, D, Attr); break; case AttributeList::AT_Malloc: handleMallocAttr (S, D, Attr); break; case AttributeList::AT_MayAlias: handleMayAliasAttr (S, D, Attr); break; case AttributeList::AT_Mode: handleModeAttr (S, D, Attr); break; case AttributeList::AT_NoCommon: handleNoCommonAttr (S, D, Attr); break; case AttributeList::AT_NonNull: handleNonNullAttr (S, D, Attr); break; case AttributeList::AT_Overloadable:handleOverloadableAttr(S, D, Attr); break; case AttributeList::AT_ownership_returns: case AttributeList::AT_ownership_takes: case AttributeList::AT_ownership_holds: handleOwnershipAttr (S, D, Attr); break; case AttributeList::AT_Cold: handleColdAttr (S, D, Attr); break; case AttributeList::AT_Hot: handleHotAttr (S, D, Attr); break; case AttributeList::AT_Naked: handleNakedAttr (S, D, Attr); break; case AttributeList::AT_NoReturn: handleNoReturnAttr (S, D, Attr); break; case AttributeList::AT_NoThrow: handleNothrowAttr (S, D, Attr); break; case AttributeList::AT_CUDAShared: handleSharedAttr (S, D, Attr); break; case AttributeList::AT_VecReturn: handleVecReturnAttr (S, D, Attr); break; case AttributeList::AT_ObjCOwnership: handleObjCOwnershipAttr(S, D, Attr); break; case AttributeList::AT_ObjCPreciseLifetime: handleObjCPreciseLifetimeAttr(S, D, Attr); break; case AttributeList::AT_ObjCReturnsInnerPointer: handleObjCReturnsInnerPointerAttr(S, D, Attr); break; case AttributeList::AT_ObjCRequiresSuper: handleObjCRequiresSuperAttr(S, D, Attr); break; case AttributeList::AT_NSBridged: handleNSBridgedAttr(S, scope, D, Attr); break; case AttributeList::AT_ObjCBridge: handleObjCBridgeAttr(S, scope, D, Attr); break; case AttributeList::AT_CFAuditedTransfer: case AttributeList::AT_CFUnknownTransfer: handleCFTransferAttr(S, D, Attr); break; // Checker-specific. case AttributeList::AT_CFConsumed: case AttributeList::AT_NSConsumed: handleNSConsumedAttr (S, D, Attr); break; case AttributeList::AT_NSConsumesSelf: handleNSConsumesSelfAttr(S, D, Attr); break; case AttributeList::AT_NSReturnsAutoreleased: case AttributeList::AT_NSReturnsNotRetained: case AttributeList::AT_CFReturnsNotRetained: case AttributeList::AT_NSReturnsRetained: case AttributeList::AT_CFReturnsRetained: handleNSReturnsRetainedAttr(S, D, Attr); break; case AttributeList::AT_WorkGroupSizeHint: case AttributeList::AT_ReqdWorkGroupSize: handleWorkGroupSize(S, D, Attr); break; case AttributeList::AT_VecTypeHint: handleVecTypeHint(S, D, Attr); break; case AttributeList::AT_InitPriority: handleInitPriorityAttr(S, D, Attr); break; case AttributeList::AT_Packed: handlePackedAttr (S, D, Attr); break; case AttributeList::AT_Section: handleSectionAttr (S, D, Attr); break; case AttributeList::AT_Unavailable: handleAttrWithMessage(S, D, Attr); break; case AttributeList::AT_ArcWeakrefUnavailable: handleArcWeakrefUnavailableAttr (S, D, Attr); break; case AttributeList::AT_ObjCRootClass: handleObjCRootClassAttr(S, D, Attr); break; case AttributeList::AT_ObjCRequiresPropertyDefs: handleObjCRequiresPropertyDefsAttr (S, D, Attr); break; case AttributeList::AT_Unused: handleUnusedAttr (S, D, Attr); break; case AttributeList::AT_ReturnsTwice: handleReturnsTwiceAttr(S, D, Attr); break; case AttributeList::AT_Used: handleUsedAttr (S, D, Attr); break; case AttributeList::AT_Visibility: handleVisibilityAttr(S, D, Attr, false); break; case AttributeList::AT_TypeVisibility: handleVisibilityAttr(S, D, Attr, true); break; case AttributeList::AT_WarnUnused: handleWarnUnusedAttr(S, D, Attr); break; case AttributeList::AT_WarnUnusedResult: handleWarnUnusedResult(S, D, Attr); break; case AttributeList::AT_Weak: handleWeakAttr (S, D, Attr); break; case AttributeList::AT_WeakRef: handleWeakRefAttr (S, D, Attr); break; case AttributeList::AT_WeakImport: handleWeakImportAttr (S, D, Attr); break; case AttributeList::AT_TransparentUnion: handleTransparentUnionAttr(S, D, Attr); break; case AttributeList::AT_ObjCException: handleObjCExceptionAttr(S, D, Attr); break; case AttributeList::AT_ObjCMethodFamily: handleObjCMethodFamilyAttr(S, D, Attr); break; case AttributeList::AT_ObjCNSObject:handleObjCNSObject (S, D, Attr); break; case AttributeList::AT_Blocks: handleBlocksAttr (S, D, Attr); break; case AttributeList::AT_Sentinel: handleSentinelAttr (S, D, Attr); break; case AttributeList::AT_Const: handleConstAttr (S, D, Attr); break; case AttributeList::AT_Pure: handlePureAttr (S, D, Attr); break; case AttributeList::AT_Cleanup: handleCleanupAttr (S, D, Attr); break; case AttributeList::AT_NoDebug: handleNoDebugAttr (S, D, Attr); break; case AttributeList::AT_NoInline: handleNoInlineAttr (S, D, Attr); break; case AttributeList::AT_Regparm: handleRegparmAttr (S, D, Attr); break; case AttributeList::IgnoredAttribute: // Just ignore break; case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg. handleNoInstrumentFunctionAttr(S, D, Attr); break; case AttributeList::AT_StdCall: case AttributeList::AT_CDecl: case AttributeList::AT_FastCall: case AttributeList::AT_ThisCall: case AttributeList::AT_Pascal: case AttributeList::AT_MSABI: case AttributeList::AT_SysVABI: case AttributeList::AT_Pcs: case AttributeList::AT_PnaclCall: case AttributeList::AT_IntelOclBicc: handleCallConvAttr(S, D, Attr); break; case AttributeList::AT_OpenCLKernel: handleOpenCLKernelAttr(S, D, Attr); break; case AttributeList::AT_OpenCLImageAccess: handleOpenCLImageAccessAttr(S, D, Attr); break; // Microsoft attributes: case AttributeList::AT_MsStruct: handleMsStructAttr(S, D, Attr); break; case AttributeList::AT_Uuid: handleUuidAttr(S, D, Attr); break; case AttributeList::AT_SingleInheritance: case AttributeList::AT_MultipleInheritance: case AttributeList::AT_VirtualInheritance: handleInheritanceAttr(S, D, Attr); break; case AttributeList::AT_Win64: handlePortabilityAttr(S, D, Attr); break; case AttributeList::AT_ForceInline: handleForceInlineAttr(S, D, Attr); break; case AttributeList::AT_SelectAny: handleSelectAnyAttr(S, D, Attr); break; // Thread safety attributes: case AttributeList::AT_AssertExclusiveLock: handleAssertExclusiveLockAttr(S, D, Attr); break; case AttributeList::AT_AssertSharedLock: handleAssertSharedLockAttr(S, D, Attr); break; case AttributeList::AT_GuardedVar: handleGuardedVarAttr(S, D, Attr); break; case AttributeList::AT_PtGuardedVar: handlePtGuardedVarAttr(S, D, Attr); break; case AttributeList::AT_ScopedLockable: handleScopedLockableAttr(S, D, Attr); break; case AttributeList::AT_NoSanitizeAddress: handleNoSanitizeAddressAttr(S, D, Attr); break; case AttributeList::AT_NoThreadSafetyAnalysis: handleNoThreadSafetyAnalysis(S, D, Attr); break; case AttributeList::AT_NoSanitizeThread: handleNoSanitizeThread(S, D, Attr); break; case AttributeList::AT_NoSanitizeMemory: handleNoSanitizeMemory(S, D, Attr); break; case AttributeList::AT_Lockable: handleLockableAttr(S, D, Attr); break; case AttributeList::AT_GuardedBy: handleGuardedByAttr(S, D, Attr); break; case AttributeList::AT_PtGuardedBy: handlePtGuardedByAttr(S, D, Attr); break; case AttributeList::AT_ExclusiveLockFunction: handleExclusiveLockFunctionAttr(S, D, Attr); break; case AttributeList::AT_ExclusiveLocksRequired: handleExclusiveLocksRequiredAttr(S, D, Attr); break; case AttributeList::AT_ExclusiveTrylockFunction: handleExclusiveTrylockFunctionAttr(S, D, Attr); break; case AttributeList::AT_LockReturned: handleLockReturnedAttr(S, D, Attr); break; case AttributeList::AT_LocksExcluded: handleLocksExcludedAttr(S, D, Attr); break; case AttributeList::AT_SharedLockFunction: handleSharedLockFunctionAttr(S, D, Attr); break; case AttributeList::AT_SharedLocksRequired: handleSharedLocksRequiredAttr(S, D, Attr); break; case AttributeList::AT_SharedTrylockFunction: handleSharedTrylockFunctionAttr(S, D, Attr); break; case AttributeList::AT_UnlockFunction: handleUnlockFunAttr(S, D, Attr); break; case AttributeList::AT_AcquiredBefore: handleAcquiredBeforeAttr(S, D, Attr); break; case AttributeList::AT_AcquiredAfter: handleAcquiredAfterAttr(S, D, Attr); break; // Consumed analysis attributes. case AttributeList::AT_Consumable: handleConsumableAttr(S, D, Attr); break; case AttributeList::AT_CallableWhen: handleCallableWhenAttr(S, D, Attr); break; case AttributeList::AT_ParamTypestate: handleParamTypestateAttr(S, D, Attr); break; case AttributeList::AT_ReturnTypestate: handleReturnTypestateAttr(S, D, Attr); break; case AttributeList::AT_SetTypestate: handleSetTypestateAttr(S, D, Attr); break; case AttributeList::AT_TestTypestate: handleTestTypestateAttr(S, D, Attr); break; // Type safety attributes. case AttributeList::AT_ArgumentWithTypeTag: handleArgumentWithTypeTagAttr(S, D, Attr); break; case AttributeList::AT_TypeTagForDatatype: handleTypeTagForDatatypeAttr(S, D, Attr); break; default: // Ask target about the attribute. const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema(); if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S)) S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute() ? diag::warn_unhandled_ms_attribute_ignored : diag::warn_unknown_attribute_ignored) << Attr.getName(); break; } } /// ProcessDeclAttributeList - Apply all the decl attributes in the specified /// attribute list to the specified decl, ignoring any type attributes. void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, const AttributeList *AttrList, bool IncludeCXX11Attributes) { for (const AttributeList* l = AttrList; l; l = l->getNext()) ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes); // GCC accepts // static int a9 __attribute__((weakref)); // but that looks really pointless. We reject it. if (D->hasAttr() && !D->hasAttr()) { Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) << cast(D)->getNameAsString(); D->dropAttr(); return; } } // Annotation attributes are the only attributes allowed after an access // specifier. bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, const AttributeList *AttrList) { for (const AttributeList* l = AttrList; l; l = l->getNext()) { if (l->getKind() == AttributeList::AT_Annotate) { handleAnnotateAttr(*this, ASDecl, *l); } else { Diag(l->getLoc(), diag::err_only_annotate_after_access_spec); return true; } } return false; } /// checkUnusedDeclAttributes - Check a list of attributes to see if it /// contains any decl attributes that we should warn about. static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) { for ( ; A; A = A->getNext()) { // Only warn if the attribute is an unignored, non-type attribute. if (A->isUsedAsTypeAttr() || A->isInvalid()) continue; if (A->getKind() == AttributeList::IgnoredAttribute) continue; if (A->getKind() == AttributeList::UnknownAttribute) { S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored) << A->getName() << A->getRange(); } else { S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl) << A->getName() << A->getRange(); } } } /// checkUnusedDeclAttributes - Given a declarator which is not being /// used to build a declaration, complain about any decl attributes /// which might be lying around on it. void Sema::checkUnusedDeclAttributes(Declarator &D) { ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList()); ::checkUnusedDeclAttributes(*this, D.getAttributes()); for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); } /// DeclClonePragmaWeak - clone existing decl (maybe definition), /// \#pragma weak needs a non-definition decl and source may not have one. NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, SourceLocation Loc) { assert(isa(ND) || isa(ND)); NamedDecl *NewD = 0; if (FunctionDecl *FD = dyn_cast(ND)) { FunctionDecl *NewFD; // FIXME: Missing call to CheckFunctionDeclaration(). // FIXME: Mangling? // FIXME: Is the qualifier info correct? // FIXME: Is the DeclContext correct? NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(), Loc, Loc, DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None, false/*isInlineSpecified*/, FD->hasPrototype(), false/*isConstexprSpecified*/); NewD = NewFD; if (FD->getQualifier()) NewFD->setQualifierInfo(FD->getQualifierLoc()); // Fake up parameter variables; they are declared as if this were // a typedef. QualType FDTy = FD->getType(); if (const FunctionProtoType *FT = FDTy->getAs()) { SmallVector Params; for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(), AE = FT->arg_type_end(); AI != AE; ++AI) { ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI); Param->setScopeInfo(0, Params.size()); Params.push_back(Param); } NewFD->setParams(Params); } } else if (VarDecl *VD = dyn_cast(ND)) { NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), VD->getInnerLocStart(), VD->getLocation(), II, VD->getType(), VD->getTypeSourceInfo(), VD->getStorageClass()); if (VD->getQualifier()) { VarDecl *NewVD = cast(NewD); NewVD->setQualifierInfo(VD->getQualifierLoc()); } } return NewD; } /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak /// applied to it, possibly with an alias. void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) { if (W.getUsed()) return; // only do this once W.setUsed(true); if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) IdentifierInfo *NDId = ND->getIdentifier(); NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context, NDId->getName())); NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context)); WeakTopLevelDecl.push_back(NewD); // FIXME: "hideous" code from Sema::LazilyCreateBuiltin // to insert Decl at TU scope, sorry. DeclContext *SavedContext = CurContext; CurContext = Context.getTranslationUnitDecl(); PushOnScopeChains(NewD, S); CurContext = SavedContext; } else { // just add weak to existing ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context)); } } void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { // It's valid to "forward-declare" #pragma weak, in which case we // have to do this. LoadExternalWeakUndeclaredIdentifiers(); if (!WeakUndeclaredIdentifiers.empty()) { NamedDecl *ND = NULL; if (VarDecl *VD = dyn_cast(D)) if (VD->isExternC()) ND = VD; if (FunctionDecl *FD = dyn_cast(D)) if (FD->isExternC()) ND = FD; if (ND) { if (IdentifierInfo *Id = ND->getIdentifier()) { llvm::DenseMap::iterator I = WeakUndeclaredIdentifiers.find(Id); if (I != WeakUndeclaredIdentifiers.end()) { WeakInfo W = I->second; DeclApplyPragmaWeak(S, ND, W); WeakUndeclaredIdentifiers[Id] = W; } } } } } /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in /// it, apply them to D. This is a bit tricky because PD can have attributes /// specified in many different places, and we need to find and apply them all. void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { // Apply decl attributes from the DeclSpec if present. if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList()) ProcessDeclAttributeList(S, D, Attrs); // Walk the declarator structure, applying decl attributes that were in a type // position to the decl itself. This handles cases like: // int *__attr__(x)** D; // when X is a decl attribute. for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs()) ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false); // Finally, apply any attributes on the decl itself. if (const AttributeList *Attrs = PD.getAttributes()) ProcessDeclAttributeList(S, D, Attrs); } /// Is the given declaration allowed to use a forbidden type? static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) { // Private ivars are always okay. Unfortunately, people don't // always properly make their ivars private, even in system headers. // Plus we need to make fields okay, too. // Function declarations in sys headers will be marked unavailable. if (!isa(decl) && !isa(decl) && !isa(decl)) return false; // Require it to be declared in a system header. return S.Context.getSourceManager().isInSystemHeader(decl->getLocation()); } /// Handle a delayed forbidden-type diagnostic. static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag, Decl *decl) { if (decl && isForbiddenTypeAllowed(S, decl)) { decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context, "this system declaration uses an unsupported type")); return; } if (S.getLangOpts().ObjCAutoRefCount) if (const FunctionDecl *FD = dyn_cast(decl)) { // FIXME: we may want to suppress diagnostics for all // kind of forbidden type messages on unavailable functions. if (FD->hasAttr() && diag.getForbiddenTypeDiagnostic() == diag::err_arc_array_param_no_ownership) { diag.Triggered = true; return; } } S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic()) << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument(); diag.Triggered = true; } void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { assert(DelayedDiagnostics.getCurrentPool()); DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); DelayedDiagnostics.popWithoutEmitting(state); // When delaying diagnostics to run in the context of a parsed // declaration, we only want to actually emit anything if parsing // succeeds. if (!decl) return; // We emit all the active diagnostics in this pool or any of its // parents. In general, we'll get one pool for the decl spec // and a child pool for each declarator; in a decl group like: // deprecated_typedef foo, *bar, baz(); // only the declarator pops will be passed decls. This is correct; // we really do need to consider delayed diagnostics from the decl spec // for each of the different declarations. const DelayedDiagnosticPool *pool = &poppedPool; do { for (DelayedDiagnosticPool::pool_iterator i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { // This const_cast is a bit lame. Really, Triggered should be mutable. DelayedDiagnostic &diag = const_cast(*i); if (diag.Triggered) continue; switch (diag.Kind) { case DelayedDiagnostic::Deprecation: // Don't bother giving deprecation diagnostics if the decl is invalid. if (!decl->isInvalidDecl()) HandleDelayedDeprecationCheck(diag, decl); break; case DelayedDiagnostic::Access: HandleDelayedAccessCheck(diag, decl); break; case DelayedDiagnostic::ForbiddenType: handleDelayedForbiddenType(*this, diag, decl); break; } } } while ((pool = pool->getParent())); } /// Given a set of delayed diagnostics, re-emit them as if they had /// been delayed in the current context instead of in the given pool. /// Essentially, this just moves them to the current pool. void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); assert(curPool && "re-emitting in undelayed context not supported"); curPool->steal(pool); } static bool isDeclDeprecated(Decl *D) { do { if (D->isDeprecated()) return true; // A category implicitly has the availability of the interface. if (const ObjCCategoryDecl *CatD = dyn_cast(D)) return CatD->getClassInterface()->isDeprecated(); } while ((D = cast_or_null(D->getDeclContext()))); return false; } static void DoEmitDeprecationWarning(Sema &S, const NamedDecl *D, StringRef Message, SourceLocation Loc, const ObjCInterfaceDecl *UnknownObjCClass, const ObjCPropertyDecl *ObjCPropery) { DeclarationName Name = D->getDeclName(); if (!Message.empty()) { S.Diag(Loc, diag::warn_deprecated_message) << Name << Message; S.Diag(D->getLocation(), isa(D) ? diag::note_method_declared_at : diag::note_previous_decl) << Name; if (ObjCPropery) S.Diag(ObjCPropery->getLocation(), diag::note_property_attribute) << ObjCPropery->getDeclName() << 0; } else if (!UnknownObjCClass) { S.Diag(Loc, diag::warn_deprecated) << D->getDeclName(); S.Diag(D->getLocation(), isa(D) ? diag::note_method_declared_at : diag::note_previous_decl) << Name; if (ObjCPropery) S.Diag(ObjCPropery->getLocation(), diag::note_property_attribute) << ObjCPropery->getDeclName() << 0; } else { S.Diag(Loc, diag::warn_deprecated_fwdclass_message) << Name; S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class); } } void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD, Decl *Ctx) { if (isDeclDeprecated(Ctx)) return; DD.Triggered = true; DoEmitDeprecationWarning(*this, DD.getDeprecationDecl(), DD.getDeprecationMessage(), DD.Loc, DD.getUnknownObjCClass(), DD.getObjCProperty()); } void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message, SourceLocation Loc, const ObjCInterfaceDecl *UnknownObjCClass, const ObjCPropertyDecl *ObjCProperty) { // Delay if we're currently parsing a declaration. if (DelayedDiagnostics.shouldDelayDiagnostics()) { DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D, UnknownObjCClass, ObjCProperty, Message)); return; } // Otherwise, don't warn if our current context is deprecated. if (isDeclDeprecated(cast(getCurLexicalContext()))) return; DoEmitDeprecationWarning(*this, D, Message, Loc, UnknownObjCClass, ObjCProperty); }