//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides Sema routines for C++ overloading. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Template.h" #include "clang/Sema/TemplateDeduction.h" #include "clang/Basic/Diagnostic.h" #include "clang/Lex/Preprocessor.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/TypeOrdering.h" #include "clang/Basic/PartialDiagnostic.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/STLExtras.h" #include namespace clang { using namespace sema; static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, bool InOverloadResolution, StandardConversionSequence &SCS); static OverloadingResult IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, UserDefinedConversionSequence& User, OverloadCandidateSet& Conversions, bool AllowExplicit); static ImplicitConversionSequence::CompareKind CompareStandardConversionSequences(Sema &S, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); static ImplicitConversionSequence::CompareKind CompareQualificationConversions(Sema &S, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); static ImplicitConversionSequence::CompareKind CompareDerivedToBaseConversions(Sema &S, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); /// GetConversionCategory - Retrieve the implicit conversion /// category corresponding to the given implicit conversion kind. ImplicitConversionCategory GetConversionCategory(ImplicitConversionKind Kind) { static const ImplicitConversionCategory Category[(int)ICK_Num_Conversion_Kinds] = { ICC_Identity, ICC_Lvalue_Transformation, ICC_Lvalue_Transformation, ICC_Lvalue_Transformation, ICC_Identity, ICC_Qualification_Adjustment, ICC_Promotion, ICC_Promotion, ICC_Promotion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion, ICC_Conversion }; return Category[(int)Kind]; } /// GetConversionRank - Retrieve the implicit conversion rank /// corresponding to the given implicit conversion kind. ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { static const ImplicitConversionRank Rank[(int)ICK_Num_Conversion_Kinds] = { ICR_Exact_Match, ICR_Exact_Match, ICR_Exact_Match, ICR_Exact_Match, ICR_Exact_Match, ICR_Exact_Match, ICR_Promotion, ICR_Promotion, ICR_Promotion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Complex_Real_Conversion }; return Rank[(int)Kind]; } /// GetImplicitConversionName - Return the name of this kind of /// implicit conversion. const char* GetImplicitConversionName(ImplicitConversionKind Kind) { static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { "No conversion", "Lvalue-to-rvalue", "Array-to-pointer", "Function-to-pointer", "Noreturn adjustment", "Qualification", "Integral promotion", "Floating point promotion", "Complex promotion", "Integral conversion", "Floating conversion", "Complex conversion", "Floating-integral conversion", "Pointer conversion", "Pointer-to-member conversion", "Boolean conversion", "Compatible-types conversion", "Derived-to-base conversion", "Vector conversion", "Vector splat", "Complex-real conversion" }; return Name[Kind]; } /// StandardConversionSequence - Set the standard conversion /// sequence to the identity conversion. void StandardConversionSequence::setAsIdentityConversion() { First = ICK_Identity; Second = ICK_Identity; Third = ICK_Identity; DeprecatedStringLiteralToCharPtr = false; ReferenceBinding = false; DirectBinding = false; RRefBinding = false; CopyConstructor = 0; } /// getRank - Retrieve the rank of this standard conversion sequence /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the /// implicit conversions. ImplicitConversionRank StandardConversionSequence::getRank() const { ImplicitConversionRank Rank = ICR_Exact_Match; if (GetConversionRank(First) > Rank) Rank = GetConversionRank(First); if (GetConversionRank(Second) > Rank) Rank = GetConversionRank(Second); if (GetConversionRank(Third) > Rank) Rank = GetConversionRank(Third); return Rank; } /// isPointerConversionToBool - Determines whether this conversion is /// a conversion of a pointer or pointer-to-member to bool. This is /// used as part of the ranking of standard conversion sequences /// (C++ 13.3.3.2p4). bool StandardConversionSequence::isPointerConversionToBool() const { // Note that FromType has not necessarily been transformed by the // array-to-pointer or function-to-pointer implicit conversions, so // check for their presence as well as checking whether FromType is // a pointer. if (getToType(1)->isBooleanType() && (getFromType()->isPointerType() || getFromType()->isObjCObjectPointerType() || getFromType()->isBlockPointerType() || First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) return true; return false; } /// isPointerConversionToVoidPointer - Determines whether this /// conversion is a conversion of a pointer to a void pointer. This is /// used as part of the ranking of standard conversion sequences (C++ /// 13.3.3.2p4). bool StandardConversionSequence:: isPointerConversionToVoidPointer(ASTContext& Context) const { QualType FromType = getFromType(); QualType ToType = getToType(1); // Note that FromType has not necessarily been transformed by the // array-to-pointer implicit conversion, so check for its presence // and redo the conversion to get a pointer. if (First == ICK_Array_To_Pointer) FromType = Context.getArrayDecayedType(FromType); if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) if (const PointerType* ToPtrType = ToType->getAs()) return ToPtrType->getPointeeType()->isVoidType(); return false; } /// DebugPrint - Print this standard conversion sequence to standard /// error. Useful for debugging overloading issues. void StandardConversionSequence::DebugPrint() const { llvm::raw_ostream &OS = llvm::errs(); bool PrintedSomething = false; if (First != ICK_Identity) { OS << GetImplicitConversionName(First); PrintedSomething = true; } if (Second != ICK_Identity) { if (PrintedSomething) { OS << " -> "; } OS << GetImplicitConversionName(Second); if (CopyConstructor) { OS << " (by copy constructor)"; } else if (DirectBinding) { OS << " (direct reference binding)"; } else if (ReferenceBinding) { OS << " (reference binding)"; } PrintedSomething = true; } if (Third != ICK_Identity) { if (PrintedSomething) { OS << " -> "; } OS << GetImplicitConversionName(Third); PrintedSomething = true; } if (!PrintedSomething) { OS << "No conversions required"; } } /// DebugPrint - Print this user-defined conversion sequence to standard /// error. Useful for debugging overloading issues. void UserDefinedConversionSequence::DebugPrint() const { llvm::raw_ostream &OS = llvm::errs(); if (Before.First || Before.Second || Before.Third) { Before.DebugPrint(); OS << " -> "; } OS << '\'' << ConversionFunction << '\''; if (After.First || After.Second || After.Third) { OS << " -> "; After.DebugPrint(); } } /// DebugPrint - Print this implicit conversion sequence to standard /// error. Useful for debugging overloading issues. void ImplicitConversionSequence::DebugPrint() const { llvm::raw_ostream &OS = llvm::errs(); switch (ConversionKind) { case StandardConversion: OS << "Standard conversion: "; Standard.DebugPrint(); break; case UserDefinedConversion: OS << "User-defined conversion: "; UserDefined.DebugPrint(); break; case EllipsisConversion: OS << "Ellipsis conversion"; break; case AmbiguousConversion: OS << "Ambiguous conversion"; break; case BadConversion: OS << "Bad conversion"; break; } OS << "\n"; } void AmbiguousConversionSequence::construct() { new (&conversions()) ConversionSet(); } void AmbiguousConversionSequence::destruct() { conversions().~ConversionSet(); } void AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { FromTypePtr = O.FromTypePtr; ToTypePtr = O.ToTypePtr; new (&conversions()) ConversionSet(O.conversions()); } namespace { // Structure used by OverloadCandidate::DeductionFailureInfo to store // template parameter and template argument information. struct DFIParamWithArguments { TemplateParameter Param; TemplateArgument FirstArg; TemplateArgument SecondArg; }; } /// \brief Convert from Sema's representation of template deduction information /// to the form used in overload-candidate information. OverloadCandidate::DeductionFailureInfo static MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK, TemplateDeductionInfo &Info) { OverloadCandidate::DeductionFailureInfo Result; Result.Result = static_cast(TDK); Result.Data = 0; switch (TDK) { case Sema::TDK_Success: case Sema::TDK_InstantiationDepth: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: break; case Sema::TDK_Incomplete: case Sema::TDK_InvalidExplicitArguments: Result.Data = Info.Param.getOpaqueValue(); break; case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: { // FIXME: Should allocate from normal heap so that we can free this later. DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; Saved->Param = Info.Param; Saved->FirstArg = Info.FirstArg; Saved->SecondArg = Info.SecondArg; Result.Data = Saved; break; } case Sema::TDK_SubstitutionFailure: Result.Data = Info.take(); break; case Sema::TDK_NonDeducedMismatch: case Sema::TDK_FailedOverloadResolution: break; } return Result; } void OverloadCandidate::DeductionFailureInfo::Destroy() { switch (static_cast(Result)) { case Sema::TDK_Success: case Sema::TDK_InstantiationDepth: case Sema::TDK_Incomplete: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: case Sema::TDK_InvalidExplicitArguments: break; case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: // FIXME: Destroy the data? Data = 0; break; case Sema::TDK_SubstitutionFailure: // FIXME: Destroy the template arugment list? Data = 0; break; // Unhandled case Sema::TDK_NonDeducedMismatch: case Sema::TDK_FailedOverloadResolution: break; } } TemplateParameter OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { switch (static_cast(Result)) { case Sema::TDK_Success: case Sema::TDK_InstantiationDepth: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: case Sema::TDK_SubstitutionFailure: return TemplateParameter(); case Sema::TDK_Incomplete: case Sema::TDK_InvalidExplicitArguments: return TemplateParameter::getFromOpaqueValue(Data); case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: return static_cast(Data)->Param; // Unhandled case Sema::TDK_NonDeducedMismatch: case Sema::TDK_FailedOverloadResolution: break; } return TemplateParameter(); } TemplateArgumentList * OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { switch (static_cast(Result)) { case Sema::TDK_Success: case Sema::TDK_InstantiationDepth: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: case Sema::TDK_Incomplete: case Sema::TDK_InvalidExplicitArguments: case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: return 0; case Sema::TDK_SubstitutionFailure: return static_cast(Data); // Unhandled case Sema::TDK_NonDeducedMismatch: case Sema::TDK_FailedOverloadResolution: break; } return 0; } const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { switch (static_cast(Result)) { case Sema::TDK_Success: case Sema::TDK_InstantiationDepth: case Sema::TDK_Incomplete: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: case Sema::TDK_InvalidExplicitArguments: case Sema::TDK_SubstitutionFailure: return 0; case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: return &static_cast(Data)->FirstArg; // Unhandled case Sema::TDK_NonDeducedMismatch: case Sema::TDK_FailedOverloadResolution: break; } return 0; } const TemplateArgument * OverloadCandidate::DeductionFailureInfo::getSecondArg() { switch (static_cast(Result)) { case Sema::TDK_Success: case Sema::TDK_InstantiationDepth: case Sema::TDK_Incomplete: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: case Sema::TDK_InvalidExplicitArguments: case Sema::TDK_SubstitutionFailure: return 0; case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: return &static_cast(Data)->SecondArg; // Unhandled case Sema::TDK_NonDeducedMismatch: case Sema::TDK_FailedOverloadResolution: break; } return 0; } void OverloadCandidateSet::clear() { inherited::clear(); Functions.clear(); } // IsOverload - Determine whether the given New declaration is an // overload of the declarations in Old. This routine returns false if // New and Old cannot be overloaded, e.g., if New has the same // signature as some function in Old (C++ 1.3.10) or if the Old // declarations aren't functions (or function templates) at all. When // it does return false, MatchedDecl will point to the decl that New // cannot be overloaded with. This decl may be a UsingShadowDecl on // top of the underlying declaration. // // Example: Given the following input: // // void f(int, float); // #1 // void f(int, int); // #2 // int f(int, int); // #3 // // When we process #1, there is no previous declaration of "f", // so IsOverload will not be used. // // When we process #2, Old contains only the FunctionDecl for #1. By // comparing the parameter types, we see that #1 and #2 are overloaded // (since they have different signatures), so this routine returns // false; MatchedDecl is unchanged. // // When we process #3, Old is an overload set containing #1 and #2. We // compare the signatures of #3 to #1 (they're overloaded, so we do // nothing) and then #3 to #2. Since the signatures of #3 and #2 are // identical (return types of functions are not part of the // signature), IsOverload returns false and MatchedDecl will be set to // point to the FunctionDecl for #2. // // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced // into a class by a using declaration. The rules for whether to hide // shadow declarations ignore some properties which otherwise figure // into a function template's signature. Sema::OverloadKind Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, NamedDecl *&Match, bool NewIsUsingDecl) { for (LookupResult::iterator I = Old.begin(), E = Old.end(); I != E; ++I) { NamedDecl *OldD = *I; bool OldIsUsingDecl = false; if (isa(OldD)) { OldIsUsingDecl = true; // We can always introduce two using declarations into the same // context, even if they have identical signatures. if (NewIsUsingDecl) continue; OldD = cast(OldD)->getTargetDecl(); } // If either declaration was introduced by a using declaration, // we'll need to use slightly different rules for matching. // Essentially, these rules are the normal rules, except that // function templates hide function templates with different // return types or template parameter lists. bool UseMemberUsingDeclRules = (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); if (FunctionTemplateDecl *OldT = dyn_cast(OldD)) { if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { if (UseMemberUsingDeclRules && OldIsUsingDecl) { HideUsingShadowDecl(S, cast(*I)); continue; } Match = *I; return Ovl_Match; } } else if (FunctionDecl *OldF = dyn_cast(OldD)) { if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { if (UseMemberUsingDeclRules && OldIsUsingDecl) { HideUsingShadowDecl(S, cast(*I)); continue; } Match = *I; return Ovl_Match; } } else if (isa(OldD) || isa(OldD)) { // We can overload with these, which can show up when doing // redeclaration checks for UsingDecls. assert(Old.getLookupKind() == LookupUsingDeclName); } else if (isa(OldD)) { // Optimistically assume that an unresolved using decl will // overload; if it doesn't, we'll have to diagnose during // template instantiation. } else { // (C++ 13p1): // Only function declarations can be overloaded; object and type // declarations cannot be overloaded. Match = *I; return Ovl_NonFunction; } } return Ovl_Overload; } bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, bool UseUsingDeclRules) { // If both of the functions are extern "C", then they are not // overloads. if (Old->isExternC() && New->isExternC()) return false; FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); // C++ [temp.fct]p2: // A function template can be overloaded with other function templates // and with normal (non-template) functions. if ((OldTemplate == 0) != (NewTemplate == 0)) return true; // Is the function New an overload of the function Old? QualType OldQType = Context.getCanonicalType(Old->getType()); QualType NewQType = Context.getCanonicalType(New->getType()); // Compare the signatures (C++ 1.3.10) of the two functions to // determine whether they are overloads. If we find any mismatch // in the signature, they are overloads. // If either of these functions is a K&R-style function (no // prototype), then we consider them to have matching signatures. if (isa(OldQType.getTypePtr()) || isa(NewQType.getTypePtr())) return false; FunctionProtoType* OldType = cast(OldQType); FunctionProtoType* NewType = cast(NewQType); // The signature of a function includes the types of its // parameters (C++ 1.3.10), which includes the presence or absence // of the ellipsis; see C++ DR 357). if (OldQType != NewQType && (OldType->getNumArgs() != NewType->getNumArgs() || OldType->isVariadic() != NewType->isVariadic() || !FunctionArgTypesAreEqual(OldType, NewType))) return true; // C++ [temp.over.link]p4: // The signature of a function template consists of its function // signature, its return type and its template parameter list. The names // of the template parameters are significant only for establishing the // relationship between the template parameters and the rest of the // signature. // // We check the return type and template parameter lists for function // templates first; the remaining checks follow. // // However, we don't consider either of these when deciding whether // a member introduced by a shadow declaration is hidden. if (!UseUsingDeclRules && NewTemplate && (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), OldTemplate->getTemplateParameters(), false, TPL_TemplateMatch) || OldType->getResultType() != NewType->getResultType())) return true; // If the function is a class member, its signature includes the // cv-qualifiers (if any) on the function itself. // // As part of this, also check whether one of the member functions // is static, in which case they are not overloads (C++ // 13.1p2). While not part of the definition of the signature, // this check is important to determine whether these functions // can be overloaded. CXXMethodDecl* OldMethod = dyn_cast(Old); CXXMethodDecl* NewMethod = dyn_cast(New); if (OldMethod && NewMethod && !OldMethod->isStatic() && !NewMethod->isStatic() && OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) return true; // The signatures match; this is not an overload. return false; } /// TryImplicitConversion - Attempt to perform an implicit conversion /// from the given expression (Expr) to the given type (ToType). This /// function returns an implicit conversion sequence that can be used /// to perform the initialization. Given /// /// void f(float f); /// void g(int i) { f(i); } /// /// this routine would produce an implicit conversion sequence to /// describe the initialization of f from i, which will be a standard /// conversion sequence containing an lvalue-to-rvalue conversion (C++ /// 4.1) followed by a floating-integral conversion (C++ 4.9). // /// Note that this routine only determines how the conversion can be /// performed; it does not actually perform the conversion. As such, /// it will not produce any diagnostics if no conversion is available, /// but will instead return an implicit conversion sequence of kind /// "BadConversion". /// /// If @p SuppressUserConversions, then user-defined conversions are /// not permitted. /// If @p AllowExplicit, then explicit user-defined conversions are /// permitted. static ImplicitConversionSequence TryImplicitConversion(Sema &S, Expr *From, QualType ToType, bool SuppressUserConversions, bool AllowExplicit, bool InOverloadResolution) { ImplicitConversionSequence ICS; if (IsStandardConversion(S, From, ToType, InOverloadResolution, ICS.Standard)) { ICS.setStandard(); return ICS; } if (!S.getLangOptions().CPlusPlus) { ICS.setBad(BadConversionSequence::no_conversion, From, ToType); return ICS; } // C++ [over.ics.user]p4: // A conversion of an expression of class type to the same class // type is given Exact Match rank, and a conversion of an // expression of class type to a base class of that type is // given Conversion rank, in spite of the fact that a copy/move // constructor (i.e., a user-defined conversion function) is // called for those cases. QualType FromType = From->getType(); if (ToType->getAs() && FromType->getAs() && (S.Context.hasSameUnqualifiedType(FromType, ToType) || S.IsDerivedFrom(FromType, ToType))) { ICS.setStandard(); ICS.Standard.setAsIdentityConversion(); ICS.Standard.setFromType(FromType); ICS.Standard.setAllToTypes(ToType); // We don't actually check at this point whether there is a valid // copy/move constructor, since overloading just assumes that it // exists. When we actually perform initialization, we'll find the // appropriate constructor to copy the returned object, if needed. ICS.Standard.CopyConstructor = 0; // Determine whether this is considered a derived-to-base conversion. if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) ICS.Standard.Second = ICK_Derived_To_Base; return ICS; } if (SuppressUserConversions) { // We're not in the case above, so there is no conversion that // we can perform. ICS.setBad(BadConversionSequence::no_conversion, From, ToType); return ICS; } // Attempt user-defined conversion. OverloadCandidateSet Conversions(From->getExprLoc()); OverloadingResult UserDefResult = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, AllowExplicit); if (UserDefResult == OR_Success) { ICS.setUserDefined(); // C++ [over.ics.user]p4: // A conversion of an expression of class type to the same class // type is given Exact Match rank, and a conversion of an // expression of class type to a base class of that type is // given Conversion rank, in spite of the fact that a copy // constructor (i.e., a user-defined conversion function) is // called for those cases. if (CXXConstructorDecl *Constructor = dyn_cast(ICS.UserDefined.ConversionFunction)) { QualType FromCanon = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); QualType ToCanon = S.Context.getCanonicalType(ToType).getUnqualifiedType(); if (Constructor->isCopyConstructor() && (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { // Turn this into a "standard" conversion sequence, so that it // gets ranked with standard conversion sequences. ICS.setStandard(); ICS.Standard.setAsIdentityConversion(); ICS.Standard.setFromType(From->getType()); ICS.Standard.setAllToTypes(ToType); ICS.Standard.CopyConstructor = Constructor; if (ToCanon != FromCanon) ICS.Standard.Second = ICK_Derived_To_Base; } } // C++ [over.best.ics]p4: // However, when considering the argument of a user-defined // conversion function that is a candidate by 13.3.1.3 when // invoked for the copying of the temporary in the second step // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or // 13.3.1.6 in all cases, only standard conversion sequences and // ellipsis conversion sequences are allowed. if (SuppressUserConversions && ICS.isUserDefined()) { ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); } } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { ICS.setAmbiguous(); ICS.Ambiguous.setFromType(From->getType()); ICS.Ambiguous.setToType(ToType); for (OverloadCandidateSet::iterator Cand = Conversions.begin(); Cand != Conversions.end(); ++Cand) if (Cand->Viable) ICS.Ambiguous.addConversion(Cand->Function); } else { ICS.setBad(BadConversionSequence::no_conversion, From, ToType); } return ICS; } bool Sema::TryImplicitConversion(InitializationSequence &Sequence, const InitializedEntity &Entity, Expr *Initializer, bool SuppressUserConversions, bool AllowExplicitConversions, bool InOverloadResolution) { ImplicitConversionSequence ICS = clang::TryImplicitConversion(*this, Initializer, Entity.getType(), SuppressUserConversions, AllowExplicitConversions, InOverloadResolution); if (ICS.isBad()) return true; // Perform the actual conversion. Sequence.AddConversionSequenceStep(ICS, Entity.getType()); return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType. Returns true if there was an /// error, false otherwise. The expression From is replaced with the /// converted expression. Flavor is the kind of conversion we're /// performing, used in the error message. If @p AllowExplicit, /// explicit user-defined conversions are permitted. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, AssignmentAction Action, bool AllowExplicit) { ImplicitConversionSequence ICS; return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); } bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, AssignmentAction Action, bool AllowExplicit, ImplicitConversionSequence& ICS) { ICS = clang::TryImplicitConversion(*this, From, ToType, /*SuppressUserConversions=*/false, AllowExplicit, /*InOverloadResolution=*/false); return PerformImplicitConversion(From, ToType, ICS, Action); } /// \brief Determine whether the conversion from FromType to ToType is a valid /// conversion that strips "noreturn" off the nested function type. static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, QualType ToType, QualType &ResultTy) { if (Context.hasSameUnqualifiedType(FromType, ToType)) return false; // Strip the noreturn off the type we're converting from; noreturn can // safely be removed. FromType = Context.getNoReturnType(FromType, false); if (!Context.hasSameUnqualifiedType(FromType, ToType)) return false; ResultTy = FromType; return true; } /// \brief Determine whether the conversion from FromType to ToType is a valid /// vector conversion. /// /// \param ICK Will be set to the vector conversion kind, if this is a vector /// conversion. static bool IsVectorConversion(ASTContext &Context, QualType FromType, QualType ToType, ImplicitConversionKind &ICK) { // We need at least one of these types to be a vector type to have a vector // conversion. if (!ToType->isVectorType() && !FromType->isVectorType()) return false; // Identical types require no conversions. if (Context.hasSameUnqualifiedType(FromType, ToType)) return false; // There are no conversions between extended vector types, only identity. if (ToType->isExtVectorType()) { // There are no conversions between extended vector types other than the // identity conversion. if (FromType->isExtVectorType()) return false; // Vector splat from any arithmetic type to a vector. if (FromType->isArithmeticType()) { ICK = ICK_Vector_Splat; return true; } } // We can perform the conversion between vector types in the following cases: // 1)vector types are equivalent AltiVec and GCC vector types // 2)lax vector conversions are permitted and the vector types are of the // same size if (ToType->isVectorType() && FromType->isVectorType()) { if (Context.areCompatibleVectorTypes(FromType, ToType) || (Context.getLangOptions().LaxVectorConversions && (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { ICK = ICK_Vector_Conversion; return true; } } return false; } /// IsStandardConversion - Determines whether there is a standard /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the /// expression From to the type ToType. Standard conversion sequences /// only consider non-class types; for conversions that involve class /// types, use TryImplicitConversion. If a conversion exists, SCS will /// contain the standard conversion sequence required to perform this /// conversion and this routine will return true. Otherwise, this /// routine will return false and the value of SCS is unspecified. static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, bool InOverloadResolution, StandardConversionSequence &SCS) { QualType FromType = From->getType(); // Standard conversions (C++ [conv]) SCS.setAsIdentityConversion(); SCS.DeprecatedStringLiteralToCharPtr = false; SCS.IncompatibleObjC = false; SCS.setFromType(FromType); SCS.CopyConstructor = 0; // There are no standard conversions for class types in C++, so // abort early. When overloading in C, however, we do permit if (FromType->isRecordType() || ToType->isRecordType()) { if (S.getLangOptions().CPlusPlus) return false; // When we're overloading in C, we allow, as standard conversions, } // The first conversion can be an lvalue-to-rvalue conversion, // array-to-pointer conversion, or function-to-pointer conversion // (C++ 4p1). if (FromType == S.Context.OverloadTy) { DeclAccessPair AccessPair; if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(From, ToType, false, AccessPair)) { // We were able to resolve the address of the overloaded function, // so we can convert to the type of that function. FromType = Fn->getType(); if (CXXMethodDecl *Method = dyn_cast(Fn)) { if (!Method->isStatic()) { Type *ClassType = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); FromType = S.Context.getMemberPointerType(FromType, ClassType); } } // If the "from" expression takes the address of the overloaded // function, update the type of the resulting expression accordingly. if (FromType->getAs()) if (UnaryOperator *UnOp = dyn_cast(From->IgnoreParens())) if (UnOp->getOpcode() == UO_AddrOf) FromType = S.Context.getPointerType(FromType); // Check that we've computed the proper type after overload resolution. assert(S.Context.hasSameType(FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); } else { return false; } } // Lvalue-to-rvalue conversion (C++ 4.1): // An lvalue (3.10) of a non-function, non-array type T can be // converted to an rvalue. Expr::isLvalueResult argIsLvalue = From->isLvalue(S.Context); if (argIsLvalue == Expr::LV_Valid && !FromType->isFunctionType() && !FromType->isArrayType() && S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { SCS.First = ICK_Lvalue_To_Rvalue; // If T is a non-class type, the type of the rvalue is the // cv-unqualified version of T. Otherwise, the type of the rvalue // is T (C++ 4.1p1). C++ can't get here with class types; in C, we // just strip the qualifiers because they don't matter. FromType = FromType.getUnqualifiedType(); } else if (FromType->isArrayType()) { // Array-to-pointer conversion (C++ 4.2) SCS.First = ICK_Array_To_Pointer; // An lvalue or rvalue of type "array of N T" or "array of unknown // bound of T" can be converted to an rvalue of type "pointer to // T" (C++ 4.2p1). FromType = S.Context.getArrayDecayedType(FromType); if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { // This conversion is deprecated. (C++ D.4). SCS.DeprecatedStringLiteralToCharPtr = true; // For the purpose of ranking in overload resolution // (13.3.3.1.1), this conversion is considered an // array-to-pointer conversion followed by a qualification // conversion (4.4). (C++ 4.2p2) SCS.Second = ICK_Identity; SCS.Third = ICK_Qualification; SCS.setAllToTypes(FromType); return true; } } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { // Function-to-pointer conversion (C++ 4.3). SCS.First = ICK_Function_To_Pointer; // An lvalue of function type T can be converted to an rvalue of // type "pointer to T." The result is a pointer to the // function. (C++ 4.3p1). FromType = S.Context.getPointerType(FromType); } else { // We don't require any conversions for the first step. SCS.First = ICK_Identity; } SCS.setToType(0, FromType); // The second conversion can be an integral promotion, floating // point promotion, integral conversion, floating point conversion, // floating-integral conversion, pointer conversion, // pointer-to-member conversion, or boolean conversion (C++ 4p1). // For overloading in C, this can also be a "compatible-type" // conversion. bool IncompatibleObjC = false; ImplicitConversionKind SecondICK = ICK_Identity; if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { // The unqualified versions of the types are the same: there's no // conversion to do. SCS.Second = ICK_Identity; } else if (S.IsIntegralPromotion(From, FromType, ToType)) { // Integral promotion (C++ 4.5). SCS.Second = ICK_Integral_Promotion; FromType = ToType.getUnqualifiedType(); } else if (S.IsFloatingPointPromotion(FromType, ToType)) { // Floating point promotion (C++ 4.6). SCS.Second = ICK_Floating_Promotion; FromType = ToType.getUnqualifiedType(); } else if (S.IsComplexPromotion(FromType, ToType)) { // Complex promotion (Clang extension) SCS.Second = ICK_Complex_Promotion; FromType = ToType.getUnqualifiedType(); } else if (FromType->isIntegralOrEnumerationType() && ToType->isIntegralType(S.Context)) { // Integral conversions (C++ 4.7). SCS.Second = ICK_Integral_Conversion; FromType = ToType.getUnqualifiedType(); } else if (FromType->isComplexType() && ToType->isComplexType()) { // Complex conversions (C99 6.3.1.6) SCS.Second = ICK_Complex_Conversion; FromType = ToType.getUnqualifiedType(); } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || (ToType->isComplexType() && FromType->isArithmeticType())) { // Complex-real conversions (C99 6.3.1.7) SCS.Second = ICK_Complex_Real; FromType = ToType.getUnqualifiedType(); } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { // Floating point conversions (C++ 4.8). SCS.Second = ICK_Floating_Conversion; FromType = ToType.getUnqualifiedType(); } else if ((FromType->isRealFloatingType() && ToType->isIntegralType(S.Context) && !ToType->isBooleanType()) || (FromType->isIntegralOrEnumerationType() && ToType->isRealFloatingType())) { // Floating-integral conversions (C++ 4.9). SCS.Second = ICK_Floating_Integral; FromType = ToType.getUnqualifiedType(); } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, FromType, IncompatibleObjC)) { // Pointer conversions (C++ 4.10). SCS.Second = ICK_Pointer_Conversion; SCS.IncompatibleObjC = IncompatibleObjC; } else if (S.IsMemberPointerConversion(From, FromType, ToType, InOverloadResolution, FromType)) { // Pointer to member conversions (4.11). SCS.Second = ICK_Pointer_Member; } else if (ToType->isBooleanType() && (FromType->isArithmeticType() || FromType->isEnumeralType() || FromType->isAnyPointerType() || FromType->isBlockPointerType() || FromType->isMemberPointerType() || FromType->isNullPtrType())) { // Boolean conversions (C++ 4.12). SCS.Second = ICK_Boolean_Conversion; FromType = S.Context.BoolTy; } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { SCS.Second = SecondICK; FromType = ToType.getUnqualifiedType(); } else if (!S.getLangOptions().CPlusPlus && S.Context.typesAreCompatible(ToType, FromType)) { // Compatible conversions (Clang extension for C function overloading) SCS.Second = ICK_Compatible_Conversion; FromType = ToType.getUnqualifiedType(); } else if (IsNoReturnConversion(S.Context, FromType, ToType, FromType)) { // Treat a conversion that strips "noreturn" as an identity conversion. SCS.Second = ICK_NoReturn_Adjustment; } else { // No second conversion required. SCS.Second = ICK_Identity; } SCS.setToType(1, FromType); QualType CanonFrom; QualType CanonTo; // The third conversion can be a qualification conversion (C++ 4p1). if (S.IsQualificationConversion(FromType, ToType)) { SCS.Third = ICK_Qualification; FromType = ToType; CanonFrom = S.Context.getCanonicalType(FromType); CanonTo = S.Context.getCanonicalType(ToType); } else { // No conversion required SCS.Third = ICK_Identity; // C++ [over.best.ics]p6: // [...] Any difference in top-level cv-qualification is // subsumed by the initialization itself and does not constitute // a conversion. [...] CanonFrom = S.Context.getCanonicalType(FromType); CanonTo = S.Context.getCanonicalType(ToType); if (CanonFrom.getLocalUnqualifiedType() == CanonTo.getLocalUnqualifiedType() && (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) { FromType = ToType; CanonFrom = CanonTo; } } SCS.setToType(2, FromType); // If we have not converted the argument type to the parameter type, // this is a bad conversion sequence. if (CanonFrom != CanonTo) return false; return true; } /// IsIntegralPromotion - Determines whether the conversion from the /// expression From (whose potentially-adjusted type is FromType) to /// ToType is an integral promotion (C++ 4.5). If so, returns true and /// sets PromotedType to the promoted type. bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { const BuiltinType *To = ToType->getAs(); // All integers are built-in. if (!To) { return false; } // An rvalue of type char, signed char, unsigned char, short int, or // unsigned short int can be converted to an rvalue of type int if // int can represent all the values of the source type; otherwise, // the source rvalue can be converted to an rvalue of type unsigned // int (C++ 4.5p1). if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && !FromType->isEnumeralType()) { if (// We can promote any signed, promotable integer type to an int (FromType->isSignedIntegerType() || // We can promote any unsigned integer type whose size is // less than int to an int. (!FromType->isSignedIntegerType() && Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { return To->getKind() == BuiltinType::Int; } return To->getKind() == BuiltinType::UInt; } // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) // can be converted to an rvalue of the first of the following types // that can represent all the values of its underlying type: int, // unsigned int, long, or unsigned long (C++ 4.5p2). // We pre-calculate the promotion type for enum types. if (const EnumType *FromEnumType = FromType->getAs()) if (ToType->isIntegerType()) return Context.hasSameUnqualifiedType(ToType, FromEnumType->getDecl()->getPromotionType()); if (FromType->isWideCharType() && ToType->isIntegerType()) { // Determine whether the type we're converting from is signed or // unsigned. bool FromIsSigned; uint64_t FromSize = Context.getTypeSize(FromType); // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. FromIsSigned = true; // The types we'll try to promote to, in the appropriate // order. Try each of these types. QualType PromoteTypes[6] = { Context.IntTy, Context.UnsignedIntTy, Context.LongTy, Context.UnsignedLongTy , Context.LongLongTy, Context.UnsignedLongLongTy }; for (int Idx = 0; Idx < 6; ++Idx) { uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); if (FromSize < ToSize || (FromSize == ToSize && FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { // We found the type that we can promote to. If this is the // type we wanted, we have a promotion. Otherwise, no // promotion. return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); } } } // An rvalue for an integral bit-field (9.6) can be converted to an // rvalue of type int if int can represent all the values of the // bit-field; otherwise, it can be converted to unsigned int if // unsigned int can represent all the values of the bit-field. If // the bit-field is larger yet, no integral promotion applies to // it. If the bit-field has an enumerated type, it is treated as any // other value of that type for promotion purposes (C++ 4.5p3). // FIXME: We should delay checking of bit-fields until we actually perform the // conversion. using llvm::APSInt; if (From) if (FieldDecl *MemberDecl = From->getBitField()) { APSInt BitWidth; if (FromType->isIntegralType(Context) && MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); ToSize = Context.getTypeSize(ToType); // Are we promoting to an int from a bitfield that fits in an int? if (BitWidth < ToSize || (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { return To->getKind() == BuiltinType::Int; } // Are we promoting to an unsigned int from an unsigned bitfield // that fits into an unsigned int? if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { return To->getKind() == BuiltinType::UInt; } return false; } } // An rvalue of type bool can be converted to an rvalue of type int, // with false becoming zero and true becoming one (C++ 4.5p4). if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { return true; } return false; } /// IsFloatingPointPromotion - Determines whether the conversion from /// FromType to ToType is a floating point promotion (C++ 4.6). If so, /// returns true and sets PromotedType to the promoted type. bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { /// An rvalue of type float can be converted to an rvalue of type /// double. (C++ 4.6p1). if (const BuiltinType *FromBuiltin = FromType->getAs()) if (const BuiltinType *ToBuiltin = ToType->getAs()) { if (FromBuiltin->getKind() == BuiltinType::Float && ToBuiltin->getKind() == BuiltinType::Double) return true; // C99 6.3.1.5p1: // When a float is promoted to double or long double, or a // double is promoted to long double [...]. if (!getLangOptions().CPlusPlus && (FromBuiltin->getKind() == BuiltinType::Float || FromBuiltin->getKind() == BuiltinType::Double) && (ToBuiltin->getKind() == BuiltinType::LongDouble)) return true; } return false; } /// \brief Determine if a conversion is a complex promotion. /// /// A complex promotion is defined as a complex -> complex conversion /// where the conversion between the underlying real types is a /// floating-point or integral promotion. bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { const ComplexType *FromComplex = FromType->getAs(); if (!FromComplex) return false; const ComplexType *ToComplex = ToType->getAs(); if (!ToComplex) return false; return IsFloatingPointPromotion(FromComplex->getElementType(), ToComplex->getElementType()) || IsIntegralPromotion(0, FromComplex->getElementType(), ToComplex->getElementType()); } /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from /// the pointer type FromPtr to a pointer to type ToPointee, with the /// same type qualifiers as FromPtr has on its pointee type. ToType, /// if non-empty, will be a pointer to ToType that may or may not have /// the right set of qualifiers on its pointee. static QualType BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, QualType ToPointee, QualType ToType, ASTContext &Context) { QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); QualType CanonToPointee = Context.getCanonicalType(ToPointee); Qualifiers Quals = CanonFromPointee.getQualifiers(); // Exact qualifier match -> return the pointer type we're converting to. if (CanonToPointee.getLocalQualifiers() == Quals) { // ToType is exactly what we need. Return it. if (!ToType.isNull()) return ToType.getUnqualifiedType(); // Build a pointer to ToPointee. It has the right qualifiers // already. return Context.getPointerType(ToPointee); } // Just build a canonical type that has the right qualifiers. return Context.getPointerType( Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals)); } /// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from /// the FromType, which is an objective-c pointer, to ToType, which may or may /// not have the right set of qualifiers. static QualType BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, QualType ToType, ASTContext &Context) { QualType CanonFromType = Context.getCanonicalType(FromType); QualType CanonToType = Context.getCanonicalType(ToType); Qualifiers Quals = CanonFromType.getQualifiers(); // Exact qualifier match -> return the pointer type we're converting to. if (CanonToType.getLocalQualifiers() == Quals) return ToType; // Just build a canonical type that has the right qualifiers. return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); } static bool isNullPointerConstantForConversion(Expr *Expr, bool InOverloadResolution, ASTContext &Context) { // Handle value-dependent integral null pointer constants correctly. // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 if (Expr->isValueDependent() && !Expr->isTypeDependent() && Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) return !InOverloadResolution; return Expr->isNullPointerConstant(Context, InOverloadResolution? Expr::NPC_ValueDependentIsNotNull : Expr::NPC_ValueDependentIsNull); } /// IsPointerConversion - Determines whether the conversion of the /// expression From, which has the (possibly adjusted) type FromType, /// can be converted to the type ToType via a pointer conversion (C++ /// 4.10). If so, returns true and places the converted type (that /// might differ from ToType in its cv-qualifiers at some level) into /// ConvertedType. /// /// This routine also supports conversions to and from block pointers /// and conversions with Objective-C's 'id', 'id', and /// pointers to interfaces. FIXME: Once we've determined the /// appropriate overloading rules for Objective-C, we may want to /// split the Objective-C checks into a different routine; however, /// GCC seems to consider all of these conversions to be pointer /// conversions, so for now they live here. IncompatibleObjC will be /// set if the conversion is an allowed Objective-C conversion that /// should result in a warning. bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType& ConvertedType, bool &IncompatibleObjC) { IncompatibleObjC = false; if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) return true; // Conversion from a null pointer constant to any Objective-C pointer type. if (ToType->isObjCObjectPointerType() && isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { ConvertedType = ToType; return true; } // Blocks: Block pointers can be converted to void*. if (FromType->isBlockPointerType() && ToType->isPointerType() && ToType->getAs()->getPointeeType()->isVoidType()) { ConvertedType = ToType; return true; } // Blocks: A null pointer constant can be converted to a block // pointer type. if (ToType->isBlockPointerType() && isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { ConvertedType = ToType; return true; } // If the left-hand-side is nullptr_t, the right side can be a null // pointer constant. if (ToType->isNullPtrType() && isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { ConvertedType = ToType; return true; } const PointerType* ToTypePtr = ToType->getAs(); if (!ToTypePtr) return false; // A null pointer constant can be converted to a pointer type (C++ 4.10p1). if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { ConvertedType = ToType; return true; } // Beyond this point, both types need to be pointers // , including objective-c pointers. QualType ToPointeeType = ToTypePtr->getPointeeType(); if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, ToType, Context); return true; } const PointerType *FromTypePtr = FromType->getAs(); if (!FromTypePtr) return false; QualType FromPointeeType = FromTypePtr->getPointeeType(); // If the unqualified pointee types are the same, this can't be a // pointer conversion, so don't do all of the work below. if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) return false; // An rvalue of type "pointer to cv T," where T is an object type, // can be converted to an rvalue of type "pointer to cv void" (C++ // 4.10p2). if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } // When we're overloading in C, we allow a special kind of pointer // conversion for compatible-but-not-identical pointee types. if (!getLangOptions().CPlusPlus && Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } // C++ [conv.ptr]p3: // // An rvalue of type "pointer to cv D," where D is a class type, // can be converted to an rvalue of type "pointer to cv B," where // B is a base class (clause 10) of D. If B is an inaccessible // (clause 11) or ambiguous (10.2) base class of D, a program that // necessitates this conversion is ill-formed. The result of the // conversion is a pointer to the base class sub-object of the // derived class object. The null pointer value is converted to // the null pointer value of the destination type. // // Note that we do not check for ambiguity or inaccessibility // here. That is handled by CheckPointerConversion. if (getLangOptions().CPlusPlus && FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && IsDerivedFrom(FromPointeeType, ToPointeeType)) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } return false; } /// isObjCPointerConversion - Determines whether this is an /// Objective-C pointer conversion. Subroutine of IsPointerConversion, /// with the same arguments and return values. bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC) { if (!getLangOptions().ObjC1) return false; // First, we handle all conversions on ObjC object pointer types. const ObjCObjectPointerType* ToObjCPtr = ToType->getAs(); const ObjCObjectPointerType *FromObjCPtr = FromType->getAs(); if (ToObjCPtr && FromObjCPtr) { // Objective C++: We're able to convert between "id" or "Class" and a // pointer to any interface (in both directions). if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { ConvertedType = ToType; return true; } // Conversions with Objective-C's id<...>. if ((FromObjCPtr->isObjCQualifiedIdType() || ToObjCPtr->isObjCQualifiedIdType()) && Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) { ConvertedType = ToType; return true; } // Objective C++: We're able to convert from a pointer to an // interface to a pointer to a different interface. if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); if (getLangOptions().CPlusPlus && LHS && RHS && !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( FromObjCPtr->getPointeeType())) return false; ConvertedType = ToType; return true; } if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { // Okay: this is some kind of implicit downcast of Objective-C // interfaces, which is permitted. However, we're going to // complain about it. IncompatibleObjC = true; ConvertedType = FromType; return true; } } // Beyond this point, both types need to be C pointers or block pointers. QualType ToPointeeType; if (const PointerType *ToCPtr = ToType->getAs()) ToPointeeType = ToCPtr->getPointeeType(); else if (const BlockPointerType *ToBlockPtr = ToType->getAs()) { // Objective C++: We're able to convert from a pointer to any object // to a block pointer type. if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { ConvertedType = ToType; return true; } ToPointeeType = ToBlockPtr->getPointeeType(); } else if (FromType->getAs() && ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { // Objective C++: We're able to convert from a block pointer type to a // pointer to any object. ConvertedType = ToType; return true; } else return false; QualType FromPointeeType; if (const PointerType *FromCPtr = FromType->getAs()) FromPointeeType = FromCPtr->getPointeeType(); else if (const BlockPointerType *FromBlockPtr = FromType->getAs()) FromPointeeType = FromBlockPtr->getPointeeType(); else return false; // If we have pointers to pointers, recursively check whether this // is an Objective-C conversion. if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, IncompatibleObjC)) { // We always complain about this conversion. IncompatibleObjC = true; ConvertedType = ToType; return true; } // Allow conversion of pointee being objective-c pointer to another one; // as in I* to id. if (FromPointeeType->getAs() && ToPointeeType->getAs() && isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, IncompatibleObjC)) { ConvertedType = ToType; return true; } // If we have pointers to functions or blocks, check whether the only // differences in the argument and result types are in Objective-C // pointer conversions. If so, we permit the conversion (but // complain about it). const FunctionProtoType *FromFunctionType = FromPointeeType->getAs(); const FunctionProtoType *ToFunctionType = ToPointeeType->getAs(); if (FromFunctionType && ToFunctionType) { // If the function types are exactly the same, this isn't an // Objective-C pointer conversion. if (Context.getCanonicalType(FromPointeeType) == Context.getCanonicalType(ToPointeeType)) return false; // Perform the quick checks that will tell us whether these // function types are obviously different. if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) return false; bool HasObjCConversion = false; if (Context.getCanonicalType(FromFunctionType->getResultType()) == Context.getCanonicalType(ToFunctionType->getResultType())) { // Okay, the types match exactly. Nothing to do. } else if (isObjCPointerConversion(FromFunctionType->getResultType(), ToFunctionType->getResultType(), ConvertedType, IncompatibleObjC)) { // Okay, we have an Objective-C pointer conversion. HasObjCConversion = true; } else { // Function types are too different. Abort. return false; } // Check argument types. for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); ArgIdx != NumArgs; ++ArgIdx) { QualType FromArgType = FromFunctionType->getArgType(ArgIdx); QualType ToArgType = ToFunctionType->getArgType(ArgIdx); if (Context.getCanonicalType(FromArgType) == Context.getCanonicalType(ToArgType)) { // Okay, the types match exactly. Nothing to do. } else if (isObjCPointerConversion(FromArgType, ToArgType, ConvertedType, IncompatibleObjC)) { // Okay, we have an Objective-C pointer conversion. HasObjCConversion = true; } else { // Argument types are too different. Abort. return false; } } if (HasObjCConversion) { // We had an Objective-C conversion. Allow this pointer // conversion, but complain about it. ConvertedType = ToType; IncompatibleObjC = true; return true; } } return false; } /// FunctionArgTypesAreEqual - This routine checks two function proto types /// for equlity of their argument types. Caller has already checked that /// they have same number of arguments. This routine assumes that Objective-C /// pointer types which only differ in their protocol qualifiers are equal. bool Sema::FunctionArgTypesAreEqual(FunctionProtoType* OldType, FunctionProtoType* NewType){ if (!getLangOptions().ObjC1) return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), NewType->arg_type_begin()); for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), N = NewType->arg_type_begin(), E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { QualType ToType = (*O); QualType FromType = (*N); if (ToType != FromType) { if (const PointerType *PTTo = ToType->getAs()) { if (const PointerType *PTFr = FromType->getAs()) if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && PTFr->getPointeeType()->isObjCQualifiedIdType()) || (PTTo->getPointeeType()->isObjCQualifiedClassType() && PTFr->getPointeeType()->isObjCQualifiedClassType())) continue; } else if (const ObjCObjectPointerType *PTTo = ToType->getAs()) { if (const ObjCObjectPointerType *PTFr = FromType->getAs()) if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) continue; } return false; } } return true; } /// CheckPointerConversion - Check the pointer conversion from the /// expression From to the type ToType. This routine checks for /// ambiguous or inaccessible derived-to-base pointer /// conversions for which IsPointerConversion has already returned /// true. It returns true and produces a diagnostic if there was an /// error, or returns false otherwise. bool Sema::CheckPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath& BasePath, bool IgnoreBaseAccess) { QualType FromType = From->getType(); if (CXXBoolLiteralExpr* LitBool = dyn_cast(From->IgnoreParens())) if (LitBool->getValue() == false) Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false) << ToType; if (const PointerType *FromPtrType = FromType->getAs()) if (const PointerType *ToPtrType = ToType->getAs()) { QualType FromPointeeType = FromPtrType->getPointeeType(), ToPointeeType = ToPtrType->getPointeeType(); if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { // We must have a derived-to-base conversion. Check an // ambiguous or inaccessible conversion. if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, From->getExprLoc(), From->getSourceRange(), &BasePath, IgnoreBaseAccess)) return true; // The conversion was successful. Kind = CK_DerivedToBase; } } if (const ObjCObjectPointerType *FromPtrType = FromType->getAs()) if (const ObjCObjectPointerType *ToPtrType = ToType->getAs()) { // Objective-C++ conversions are always okay. // FIXME: We should have a different class of conversions for the // Objective-C++ implicit conversions. if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) return false; } return false; } /// IsMemberPointerConversion - Determines whether the conversion of the /// expression From, which has the (possibly adjusted) type FromType, can be /// converted to the type ToType via a member pointer conversion (C++ 4.11). /// If so, returns true and places the converted type (that might differ from /// ToType in its cv-qualifiers at some level) into ConvertedType. bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType &ConvertedType) { const MemberPointerType *ToTypePtr = ToType->getAs(); if (!ToTypePtr) return false; // A null pointer constant can be converted to a member pointer (C++ 4.11p1) if (From->isNullPointerConstant(Context, InOverloadResolution? Expr::NPC_ValueDependentIsNotNull : Expr::NPC_ValueDependentIsNull)) { ConvertedType = ToType; return true; } // Otherwise, both types have to be member pointers. const MemberPointerType *FromTypePtr = FromType->getAs(); if (!FromTypePtr) return false; // A pointer to member of B can be converted to a pointer to member of D, // where D is derived from B (C++ 4.11p2). QualType FromClass(FromTypePtr->getClass(), 0); QualType ToClass(ToTypePtr->getClass(), 0); // FIXME: What happens when these are dependent? Is this function even called? if (IsDerivedFrom(ToClass, FromClass)) { ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), ToClass.getTypePtr()); return true; } return false; } /// CheckMemberPointerConversion - Check the member pointer conversion from the /// expression From to the type ToType. This routine checks for ambiguous or /// virtual or inaccessible base-to-derived member pointer conversions /// for which IsMemberPointerConversion has already returned true. It returns /// true and produces a diagnostic if there was an error, or returns false /// otherwise. bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath &BasePath, bool IgnoreBaseAccess) { QualType FromType = From->getType(); const MemberPointerType *FromPtrType = FromType->getAs(); if (!FromPtrType) { // This must be a null pointer to member pointer conversion assert(From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!"); Kind = CK_NullToMemberPointer; return false; } const MemberPointerType *ToPtrType = ToType->getAs(); assert(ToPtrType && "No member pointer cast has a target type " "that is not a member pointer."); QualType FromClass = QualType(FromPtrType->getClass(), 0); QualType ToClass = QualType(ToPtrType->getClass(), 0); // FIXME: What about dependent types? assert(FromClass->isRecordType() && "Pointer into non-class."); assert(ToClass->isRecordType() && "Pointer into non-class."); CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/true); bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); assert(DerivationOkay && "Should not have been called if derivation isn't OK."); (void)DerivationOkay; if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). getUnqualifiedType())) { std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); return true; } if (const RecordType *VBase = Paths.getDetectedVirtual()) { Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) << FromClass << ToClass << QualType(VBase, 0) << From->getSourceRange(); return true; } if (!IgnoreBaseAccess) CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, Paths.front(), diag::err_downcast_from_inaccessible_base); // Must be a base to derived member conversion. BuildBasePathArray(Paths, BasePath); Kind = CK_BaseToDerivedMemberPointer; return false; } /// IsQualificationConversion - Determines whether the conversion from /// an rvalue of type FromType to ToType is a qualification conversion /// (C++ 4.4). bool Sema::IsQualificationConversion(QualType FromType, QualType ToType) { FromType = Context.getCanonicalType(FromType); ToType = Context.getCanonicalType(ToType); // If FromType and ToType are the same type, this is not a // qualification conversion. if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) return false; // (C++ 4.4p4): // A conversion can add cv-qualifiers at levels other than the first // in multi-level pointers, subject to the following rules: [...] bool PreviousToQualsIncludeConst = true; bool UnwrappedAnyPointer = false; while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { // Within each iteration of the loop, we check the qualifiers to // determine if this still looks like a qualification // conversion. Then, if all is well, we unwrap one more level of // pointers or pointers-to-members and do it all again // until there are no more pointers or pointers-to-members left to // unwrap. UnwrappedAnyPointer = true; // -- for every j > 0, if const is in cv 1,j then const is in cv // 2,j, and similarly for volatile. if (!ToType.isAtLeastAsQualifiedAs(FromType)) return false; // -- if the cv 1,j and cv 2,j are different, then const is in // every cv for 0 < k < j. if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() && !PreviousToQualsIncludeConst) return false; // Keep track of whether all prior cv-qualifiers in the "to" type // include const. PreviousToQualsIncludeConst = PreviousToQualsIncludeConst && ToType.isConstQualified(); } // We are left with FromType and ToType being the pointee types // after unwrapping the original FromType and ToType the same number // of types. If we unwrapped any pointers, and if FromType and // ToType have the same unqualified type (since we checked // qualifiers above), then this is a qualification conversion. return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); } /// Determines whether there is a user-defined conversion sequence /// (C++ [over.ics.user]) that converts expression From to the type /// ToType. If such a conversion exists, User will contain the /// user-defined conversion sequence that performs such a conversion /// and this routine will return true. Otherwise, this routine returns /// false and User is unspecified. /// /// \param AllowExplicit true if the conversion should consider C++0x /// "explicit" conversion functions as well as non-explicit conversion /// functions (C++0x [class.conv.fct]p2). static OverloadingResult IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, UserDefinedConversionSequence& User, OverloadCandidateSet& CandidateSet, bool AllowExplicit) { // Whether we will only visit constructors. bool ConstructorsOnly = false; // If the type we are conversion to is a class type, enumerate its // constructors. if (const RecordType *ToRecordType = ToType->getAs()) { // C++ [over.match.ctor]p1: // When objects of class type are direct-initialized (8.5), or // copy-initialized from an expression of the same or a // derived class type (8.5), overload resolution selects the // constructor. [...] For copy-initialization, the candidate // functions are all the converting constructors (12.3.1) of // that class. The argument list is the expression-list within // the parentheses of the initializer. if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || (From->getType()->getAs() && S.IsDerivedFrom(From->getType(), ToType))) ConstructorsOnly = true; if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) { // We're not going to find any constructors. } else if (CXXRecordDecl *ToRecordDecl = dyn_cast(ToRecordType->getDecl())) { DeclContext::lookup_iterator Con, ConEnd; for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); Con != ConEnd; ++Con) { NamedDecl *D = *Con; DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); // Find the constructor (which may be a template). CXXConstructorDecl *Constructor = 0; FunctionTemplateDecl *ConstructorTmpl = dyn_cast(D); if (ConstructorTmpl) Constructor = cast(ConstructorTmpl->getTemplatedDecl()); else Constructor = cast(D); if (!Constructor->isInvalidDecl() && Constructor->isConvertingConstructor(AllowExplicit)) { if (ConstructorTmpl) S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, /*ExplicitArgs*/ 0, &From, 1, CandidateSet, /*SuppressUserConversions=*/ !ConstructorsOnly); else // Allow one user-defined conversion when user specifies a // From->ToType conversion via an static cast (c-style, etc). S.AddOverloadCandidate(Constructor, FoundDecl, &From, 1, CandidateSet, /*SuppressUserConversions=*/ !ConstructorsOnly); } } } } // Enumerate conversion functions, if we're allowed to. if (ConstructorsOnly) { } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), S.PDiag(0) << From->getSourceRange())) { // No conversion functions from incomplete types. } else if (const RecordType *FromRecordType = From->getType()->getAs()) { if (CXXRecordDecl *FromRecordDecl = dyn_cast(FromRecordType->getDecl())) { // Add all of the conversion functions as candidates. const UnresolvedSetImpl *Conversions = FromRecordDecl->getVisibleConversionFunctions(); for (UnresolvedSetImpl::iterator I = Conversions->begin(), E = Conversions->end(); I != E; ++I) { DeclAccessPair FoundDecl = I.getPair(); NamedDecl *D = FoundDecl.getDecl(); CXXRecordDecl *ActingContext = cast(D->getDeclContext()); if (isa(D)) D = cast(D)->getTargetDecl(); CXXConversionDecl *Conv; FunctionTemplateDecl *ConvTemplate; if ((ConvTemplate = dyn_cast(D))) Conv = cast(ConvTemplate->getTemplatedDecl()); else Conv = cast(D); if (AllowExplicit || !Conv->isExplicit()) { if (ConvTemplate) S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet); else S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, CandidateSet); } } } } OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best)) { case OR_Success: // Record the standard conversion we used and the conversion function. if (CXXConstructorDecl *Constructor = dyn_cast(Best->Function)) { // C++ [over.ics.user]p1: // If the user-defined conversion is specified by a // constructor (12.3.1), the initial standard conversion // sequence converts the source type to the type required by // the argument of the constructor. // QualType ThisType = Constructor->getThisType(S.Context); if (Best->Conversions[0].isEllipsis()) User.EllipsisConversion = true; else { User.Before = Best->Conversions[0].Standard; User.EllipsisConversion = false; } User.ConversionFunction = Constructor; User.After.setAsIdentityConversion(); User.After.setFromType(ThisType->getAs()->getPointeeType()); User.After.setAllToTypes(ToType); return OR_Success; } else if (CXXConversionDecl *Conversion = dyn_cast(Best->Function)) { // C++ [over.ics.user]p1: // // [...] If the user-defined conversion is specified by a // conversion function (12.3.2), the initial standard // conversion sequence converts the source type to the // implicit object parameter of the conversion function. User.Before = Best->Conversions[0].Standard; User.ConversionFunction = Conversion; User.EllipsisConversion = false; // C++ [over.ics.user]p2: // The second standard conversion sequence converts the // result of the user-defined conversion to the target type // for the sequence. Since an implicit conversion sequence // is an initialization, the special rules for // initialization by user-defined conversion apply when // selecting the best user-defined conversion for a // user-defined conversion sequence (see 13.3.3 and // 13.3.3.1). User.After = Best->FinalConversion; return OR_Success; } else { llvm_unreachable("Not a constructor or conversion function?"); return OR_No_Viable_Function; } case OR_No_Viable_Function: return OR_No_Viable_Function; case OR_Deleted: // No conversion here! We're done. return OR_Deleted; case OR_Ambiguous: return OR_Ambiguous; } return OR_No_Viable_Function; } bool Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { ImplicitConversionSequence ICS; OverloadCandidateSet CandidateSet(From->getExprLoc()); OverloadingResult OvResult = IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, CandidateSet, false); if (OvResult == OR_Ambiguous) Diag(From->getSourceRange().getBegin(), diag::err_typecheck_ambiguous_condition) << From->getType() << ToType << From->getSourceRange(); else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) Diag(From->getSourceRange().getBegin(), diag::err_typecheck_nonviable_condition) << From->getType() << ToType << From->getSourceRange(); else return false; CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); return true; } /// CompareImplicitConversionSequences - Compare two implicit /// conversion sequences to determine whether one is better than the /// other or if they are indistinguishable (C++ 13.3.3.2). static ImplicitConversionSequence::CompareKind CompareImplicitConversionSequences(Sema &S, const ImplicitConversionSequence& ICS1, const ImplicitConversionSequence& ICS2) { // (C++ 13.3.3.2p2): When comparing the basic forms of implicit // conversion sequences (as defined in 13.3.3.1) // -- a standard conversion sequence (13.3.3.1.1) is a better // conversion sequence than a user-defined conversion sequence or // an ellipsis conversion sequence, and // -- a user-defined conversion sequence (13.3.3.1.2) is a better // conversion sequence than an ellipsis conversion sequence // (13.3.3.1.3). // // C++0x [over.best.ics]p10: // For the purpose of ranking implicit conversion sequences as // described in 13.3.3.2, the ambiguous conversion sequence is // treated as a user-defined sequence that is indistinguishable // from any other user-defined conversion sequence. if (ICS1.getKindRank() < ICS2.getKindRank()) return ImplicitConversionSequence::Better; else if (ICS2.getKindRank() < ICS1.getKindRank()) return ImplicitConversionSequence::Worse; // The following checks require both conversion sequences to be of // the same kind. if (ICS1.getKind() != ICS2.getKind()) return ImplicitConversionSequence::Indistinguishable; // Two implicit conversion sequences of the same form are // indistinguishable conversion sequences unless one of the // following rules apply: (C++ 13.3.3.2p3): if (ICS1.isStandard()) return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard); else if (ICS1.isUserDefined()) { // User-defined conversion sequence U1 is a better conversion // sequence than another user-defined conversion sequence U2 if // they contain the same user-defined conversion function or // constructor and if the second standard conversion sequence of // U1 is better than the second standard conversion sequence of // U2 (C++ 13.3.3.2p3). if (ICS1.UserDefined.ConversionFunction == ICS2.UserDefined.ConversionFunction) return CompareStandardConversionSequences(S, ICS1.UserDefined.After, ICS2.UserDefined.After); } return ImplicitConversionSequence::Indistinguishable; } static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { while (Context.UnwrapSimilarPointerTypes(T1, T2)) { Qualifiers Quals; T1 = Context.getUnqualifiedArrayType(T1, Quals); T2 = Context.getUnqualifiedArrayType(T2, Quals); } return Context.hasSameUnqualifiedType(T1, T2); } // Per 13.3.3.2p3, compare the given standard conversion sequences to // determine if one is a proper subset of the other. static ImplicitConversionSequence::CompareKind compareStandardConversionSubsets(ASTContext &Context, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2) { ImplicitConversionSequence::CompareKind Result = ImplicitConversionSequence::Indistinguishable; // the identity conversion sequence is considered to be a subsequence of // any non-identity conversion sequence if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) { if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) return ImplicitConversionSequence::Better; else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) return ImplicitConversionSequence::Worse; } if (SCS1.Second != SCS2.Second) { if (SCS1.Second == ICK_Identity) Result = ImplicitConversionSequence::Better; else if (SCS2.Second == ICK_Identity) Result = ImplicitConversionSequence::Worse; else return ImplicitConversionSequence::Indistinguishable; } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) return ImplicitConversionSequence::Indistinguishable; if (SCS1.Third == SCS2.Third) { return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result : ImplicitConversionSequence::Indistinguishable; } if (SCS1.Third == ICK_Identity) return Result == ImplicitConversionSequence::Worse ? ImplicitConversionSequence::Indistinguishable : ImplicitConversionSequence::Better; if (SCS2.Third == ICK_Identity) return Result == ImplicitConversionSequence::Better ? ImplicitConversionSequence::Indistinguishable : ImplicitConversionSequence::Worse; return ImplicitConversionSequence::Indistinguishable; } /// CompareStandardConversionSequences - Compare two standard /// conversion sequences to determine whether one is better than the /// other or if they are indistinguishable (C++ 13.3.3.2p3). static ImplicitConversionSequence::CompareKind CompareStandardConversionSequences(Sema &S, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2) { // Standard conversion sequence S1 is a better conversion sequence // than standard conversion sequence S2 if (C++ 13.3.3.2p3): // -- S1 is a proper subsequence of S2 (comparing the conversion // sequences in the canonical form defined by 13.3.3.1.1, // excluding any Lvalue Transformation; the identity conversion // sequence is considered to be a subsequence of any // non-identity conversion sequence) or, if not that, if (ImplicitConversionSequence::CompareKind CK = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) return CK; // -- the rank of S1 is better than the rank of S2 (by the rules // defined below), or, if not that, ImplicitConversionRank Rank1 = SCS1.getRank(); ImplicitConversionRank Rank2 = SCS2.getRank(); if (Rank1 < Rank2) return ImplicitConversionSequence::Better; else if (Rank2 < Rank1) return ImplicitConversionSequence::Worse; // (C++ 13.3.3.2p4): Two conversion sequences with the same rank // are indistinguishable unless one of the following rules // applies: // A conversion that is not a conversion of a pointer, or // pointer to member, to bool is better than another conversion // that is such a conversion. if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) return SCS2.isPointerConversionToBool() ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; // C++ [over.ics.rank]p4b2: // // If class B is derived directly or indirectly from class A, // conversion of B* to A* is better than conversion of B* to // void*, and conversion of A* to void* is better than conversion // of B* to void*. bool SCS1ConvertsToVoid = SCS1.isPointerConversionToVoidPointer(S.Context); bool SCS2ConvertsToVoid = SCS2.isPointerConversionToVoidPointer(S.Context); if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { // Exactly one of the conversion sequences is a conversion to // a void pointer; it's the worse conversion. return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { // Neither conversion sequence converts to a void pointer; compare // their derived-to-base conversions. if (ImplicitConversionSequence::CompareKind DerivedCK = CompareDerivedToBaseConversions(S, SCS1, SCS2)) return DerivedCK; } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { // Both conversion sequences are conversions to void // pointers. Compare the source types to determine if there's an // inheritance relationship in their sources. QualType FromType1 = SCS1.getFromType(); QualType FromType2 = SCS2.getFromType(); // Adjust the types we're converting from via the array-to-pointer // conversion, if we need to. if (SCS1.First == ICK_Array_To_Pointer) FromType1 = S.Context.getArrayDecayedType(FromType1); if (SCS2.First == ICK_Array_To_Pointer) FromType2 = S.Context.getArrayDecayedType(FromType2); QualType FromPointee1 = FromType1->getAs()->getPointeeType().getUnqualifiedType(); QualType FromPointee2 = FromType2->getAs()->getPointeeType().getUnqualifiedType(); if (S.IsDerivedFrom(FromPointee2, FromPointee1)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) return ImplicitConversionSequence::Worse; // Objective-C++: If one interface is more specific than the // other, it is the better one. const ObjCObjectType* FromIface1 = FromPointee1->getAs(); const ObjCObjectType* FromIface2 = FromPointee2->getAs(); if (FromIface1 && FromIface1) { if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1)) return ImplicitConversionSequence::Better; else if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2)) return ImplicitConversionSequence::Worse; } } // Compare based on qualification conversions (C++ 13.3.3.2p3, // bullet 3). if (ImplicitConversionSequence::CompareKind QualCK = CompareQualificationConversions(S, SCS1, SCS2)) return QualCK; if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { // C++0x [over.ics.rank]p3b4: // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an // implicit object parameter of a non-static member function declared // without a ref-qualifier, and S1 binds an rvalue reference to an // rvalue and S2 binds an lvalue reference. // FIXME: We don't know if we're dealing with the implicit object parameter, // or if the member function in this case has a ref qualifier. // (Of course, we don't have ref qualifiers yet.) if (SCS1.RRefBinding != SCS2.RRefBinding) return SCS1.RRefBinding ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; // C++ [over.ics.rank]p3b4: // -- S1 and S2 are reference bindings (8.5.3), and the types to // which the references refer are the same type except for // top-level cv-qualifiers, and the type to which the reference // initialized by S2 refers is more cv-qualified than the type // to which the reference initialized by S1 refers. QualType T1 = SCS1.getToType(2); QualType T2 = SCS2.getToType(2); T1 = S.Context.getCanonicalType(T1); T2 = S.Context.getCanonicalType(T2); Qualifiers T1Quals, T2Quals; QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); if (UnqualT1 == UnqualT2) { // If the type is an array type, promote the element qualifiers to the type // for comparison. if (isa(T1) && T1Quals) T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); if (isa(T2) && T2Quals) T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); if (T2.isMoreQualifiedThan(T1)) return ImplicitConversionSequence::Better; else if (T1.isMoreQualifiedThan(T2)) return ImplicitConversionSequence::Worse; } } return ImplicitConversionSequence::Indistinguishable; } /// CompareQualificationConversions - Compares two standard conversion /// sequences to determine whether they can be ranked based on their /// qualification conversions (C++ 13.3.3.2p3 bullet 3). ImplicitConversionSequence::CompareKind CompareQualificationConversions(Sema &S, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2) { // C++ 13.3.3.2p3: // -- S1 and S2 differ only in their qualification conversion and // yield similar types T1 and T2 (C++ 4.4), respectively, and the // cv-qualification signature of type T1 is a proper subset of // the cv-qualification signature of type T2, and S1 is not the // deprecated string literal array-to-pointer conversion (4.2). if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) return ImplicitConversionSequence::Indistinguishable; // FIXME: the example in the standard doesn't use a qualification // conversion (!) QualType T1 = SCS1.getToType(2); QualType T2 = SCS2.getToType(2); T1 = S.Context.getCanonicalType(T1); T2 = S.Context.getCanonicalType(T2); Qualifiers T1Quals, T2Quals; QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); // If the types are the same, we won't learn anything by unwrapped // them. if (UnqualT1 == UnqualT2) return ImplicitConversionSequence::Indistinguishable; // If the type is an array type, promote the element qualifiers to the type // for comparison. if (isa(T1) && T1Quals) T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); if (isa(T2) && T2Quals) T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); ImplicitConversionSequence::CompareKind Result = ImplicitConversionSequence::Indistinguishable; while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { // Within each iteration of the loop, we check the qualifiers to // determine if this still looks like a qualification // conversion. Then, if all is well, we unwrap one more level of // pointers or pointers-to-members and do it all again // until there are no more pointers or pointers-to-members left // to unwrap. This essentially mimics what // IsQualificationConversion does, but here we're checking for a // strict subset of qualifiers. if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) // The qualifiers are the same, so this doesn't tell us anything // about how the sequences rank. ; else if (T2.isMoreQualifiedThan(T1)) { // T1 has fewer qualifiers, so it could be the better sequence. if (Result == ImplicitConversionSequence::Worse) // Neither has qualifiers that are a subset of the other's // qualifiers. return ImplicitConversionSequence::Indistinguishable; Result = ImplicitConversionSequence::Better; } else if (T1.isMoreQualifiedThan(T2)) { // T2 has fewer qualifiers, so it could be the better sequence. if (Result == ImplicitConversionSequence::Better) // Neither has qualifiers that are a subset of the other's // qualifiers. return ImplicitConversionSequence::Indistinguishable; Result = ImplicitConversionSequence::Worse; } else { // Qualifiers are disjoint. return ImplicitConversionSequence::Indistinguishable; } // If the types after this point are equivalent, we're done. if (S.Context.hasSameUnqualifiedType(T1, T2)) break; } // Check that the winning standard conversion sequence isn't using // the deprecated string literal array to pointer conversion. switch (Result) { case ImplicitConversionSequence::Better: if (SCS1.DeprecatedStringLiteralToCharPtr) Result = ImplicitConversionSequence::Indistinguishable; break; case ImplicitConversionSequence::Indistinguishable: break; case ImplicitConversionSequence::Worse: if (SCS2.DeprecatedStringLiteralToCharPtr) Result = ImplicitConversionSequence::Indistinguishable; break; } return Result; } /// CompareDerivedToBaseConversions - Compares two standard conversion /// sequences to determine whether they can be ranked based on their /// various kinds of derived-to-base conversions (C++ /// [over.ics.rank]p4b3). As part of these checks, we also look at /// conversions between Objective-C interface types. ImplicitConversionSequence::CompareKind CompareDerivedToBaseConversions(Sema &S, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2) { QualType FromType1 = SCS1.getFromType(); QualType ToType1 = SCS1.getToType(1); QualType FromType2 = SCS2.getFromType(); QualType ToType2 = SCS2.getToType(1); // Adjust the types we're converting from via the array-to-pointer // conversion, if we need to. if (SCS1.First == ICK_Array_To_Pointer) FromType1 = S.Context.getArrayDecayedType(FromType1); if (SCS2.First == ICK_Array_To_Pointer) FromType2 = S.Context.getArrayDecayedType(FromType2); // Canonicalize all of the types. FromType1 = S.Context.getCanonicalType(FromType1); ToType1 = S.Context.getCanonicalType(ToType1); FromType2 = S.Context.getCanonicalType(FromType2); ToType2 = S.Context.getCanonicalType(ToType2); // C++ [over.ics.rank]p4b3: // // If class B is derived directly or indirectly from class A and // class C is derived directly or indirectly from B, // // For Objective-C, we let A, B, and C also be Objective-C // interfaces. // Compare based on pointer conversions. if (SCS1.Second == ICK_Pointer_Conversion && SCS2.Second == ICK_Pointer_Conversion && /*FIXME: Remove if Objective-C id conversions get their own rank*/ FromType1->isPointerType() && FromType2->isPointerType() && ToType1->isPointerType() && ToType2->isPointerType()) { QualType FromPointee1 = FromType1->getAs()->getPointeeType().getUnqualifiedType(); QualType ToPointee1 = ToType1->getAs()->getPointeeType().getUnqualifiedType(); QualType FromPointee2 = FromType2->getAs()->getPointeeType().getUnqualifiedType(); QualType ToPointee2 = ToType2->getAs()->getPointeeType().getUnqualifiedType(); const ObjCObjectType* FromIface1 = FromPointee1->getAs(); const ObjCObjectType* FromIface2 = FromPointee2->getAs(); const ObjCObjectType* ToIface1 = ToPointee1->getAs(); const ObjCObjectType* ToIface2 = ToPointee2->getAs(); // -- conversion of C* to B* is better than conversion of C* to A*, if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { if (S.IsDerivedFrom(ToPointee1, ToPointee2)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) return ImplicitConversionSequence::Worse; if (ToIface1 && ToIface2) { if (S.Context.canAssignObjCInterfaces(ToIface2, ToIface1)) return ImplicitConversionSequence::Better; else if (S.Context.canAssignObjCInterfaces(ToIface1, ToIface2)) return ImplicitConversionSequence::Worse; } } // -- conversion of B* to A* is better than conversion of C* to A*, if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { if (S.IsDerivedFrom(FromPointee2, FromPointee1)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) return ImplicitConversionSequence::Worse; if (FromIface1 && FromIface2) { if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2)) return ImplicitConversionSequence::Better; else if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1)) return ImplicitConversionSequence::Worse; } } } // Ranking of member-pointer types. if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { const MemberPointerType * FromMemPointer1 = FromType1->getAs(); const MemberPointerType * ToMemPointer1 = ToType1->getAs(); const MemberPointerType * FromMemPointer2 = FromType2->getAs(); const MemberPointerType * ToMemPointer2 = ToType2->getAs(); const Type *FromPointeeType1 = FromMemPointer1->getClass(); const Type *ToPointeeType1 = ToMemPointer1->getClass(); const Type *FromPointeeType2 = FromMemPointer2->getClass(); const Type *ToPointeeType2 = ToMemPointer2->getClass(); QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); // conversion of A::* to B::* is better than conversion of A::* to C::*, if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { if (S.IsDerivedFrom(ToPointee1, ToPointee2)) return ImplicitConversionSequence::Worse; else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) return ImplicitConversionSequence::Better; } // conversion of B::* to C::* is better than conversion of A::* to C::* if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { if (S.IsDerivedFrom(FromPointee1, FromPointee2)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) return ImplicitConversionSequence::Worse; } } if (SCS1.Second == ICK_Derived_To_Base) { // -- conversion of C to B is better than conversion of C to A, // -- binding of an expression of type C to a reference of type // B& is better than binding an expression of type C to a // reference of type A&, if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { if (S.IsDerivedFrom(ToType1, ToType2)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(ToType2, ToType1)) return ImplicitConversionSequence::Worse; } // -- conversion of B to A is better than conversion of C to A. // -- binding of an expression of type B to a reference of type // A& is better than binding an expression of type C to a // reference of type A&, if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { if (S.IsDerivedFrom(FromType2, FromType1)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(FromType1, FromType2)) return ImplicitConversionSequence::Worse; } } return ImplicitConversionSequence::Indistinguishable; } /// CompareReferenceRelationship - Compare the two types T1 and T2 to /// determine whether they are reference-related, /// reference-compatible, reference-compatible with added /// qualification, or incompatible, for use in C++ initialization by /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference /// type, and the first type (T1) is the pointee type of the reference /// type being initialized. Sema::ReferenceCompareResult Sema::CompareReferenceRelationship(SourceLocation Loc, QualType OrigT1, QualType OrigT2, bool &DerivedToBase, bool &ObjCConversion) { assert(!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"); assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); QualType T1 = Context.getCanonicalType(OrigT1); QualType T2 = Context.getCanonicalType(OrigT2); Qualifiers T1Quals, T2Quals; QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); // C++ [dcl.init.ref]p4: // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is // reference-related to "cv2 T2" if T1 is the same type as T2, or // T1 is a base class of T2. DerivedToBase = false; ObjCConversion = false; if (UnqualT1 == UnqualT2) { // Nothing to do. } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && IsDerivedFrom(UnqualT2, UnqualT1)) DerivedToBase = true; else if (UnqualT1->isObjCObjectOrInterfaceType() && UnqualT2->isObjCObjectOrInterfaceType() && Context.canBindObjCObjectType(UnqualT1, UnqualT2)) ObjCConversion = true; else return Ref_Incompatible; // At this point, we know that T1 and T2 are reference-related (at // least). // If the type is an array type, promote the element qualifiers to the type // for comparison. if (isa(T1) && T1Quals) T1 = Context.getQualifiedType(UnqualT1, T1Quals); if (isa(T2) && T2Quals) T2 = Context.getQualifiedType(UnqualT2, T2Quals); // C++ [dcl.init.ref]p4: // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is // reference-related to T2 and cv1 is the same cv-qualification // as, or greater cv-qualification than, cv2. For purposes of // overload resolution, cases for which cv1 is greater // cv-qualification than cv2 are identified as // reference-compatible with added qualification (see 13.3.3.2). if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) return Ref_Compatible; else if (T1.isMoreQualifiedThan(T2)) return Ref_Compatible_With_Added_Qualification; else return Ref_Related; } /// \brief Look for a user-defined conversion to an value reference-compatible /// with DeclType. Return true if something definite is found. static bool FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, QualType DeclType, SourceLocation DeclLoc, Expr *Init, QualType T2, bool AllowRvalues, bool AllowExplicit) { assert(T2->isRecordType() && "Can only find conversions of record types."); CXXRecordDecl *T2RecordDecl = dyn_cast(T2->getAs()->getDecl()); QualType ToType = AllowRvalues? DeclType->getAs()->getPointeeType() : DeclType; OverloadCandidateSet CandidateSet(DeclLoc); const UnresolvedSetImpl *Conversions = T2RecordDecl->getVisibleConversionFunctions(); for (UnresolvedSetImpl::iterator I = Conversions->begin(), E = Conversions->end(); I != E; ++I) { NamedDecl *D = *I; CXXRecordDecl *ActingDC = cast(D->getDeclContext()); if (isa(D)) D = cast(D)->getTargetDecl(); FunctionTemplateDecl *ConvTemplate = dyn_cast(D); CXXConversionDecl *Conv; if (ConvTemplate) Conv = cast(ConvTemplate->getTemplatedDecl()); else Conv = cast(D); // If this is an explicit conversion, and we're not allowed to consider // explicit conversions, skip it. if (!AllowExplicit && Conv->isExplicit()) continue; if (AllowRvalues) { bool DerivedToBase = false; bool ObjCConversion = false; if (!ConvTemplate && S.CompareReferenceRelationship(DeclLoc, Conv->getConversionType().getNonReferenceType().getUnqualifiedType(), DeclType.getNonReferenceType().getUnqualifiedType(), DerivedToBase, ObjCConversion) == Sema::Ref_Incompatible) continue; } else { // If the conversion function doesn't return a reference type, // it can't be considered for this conversion. An rvalue reference // is only acceptable if its referencee is a function type. const ReferenceType *RefType = Conv->getConversionType()->getAs(); if (!RefType || (!RefType->isLValueReferenceType() && !RefType->getPointeeType()->isFunctionType())) continue; } if (ConvTemplate) S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, Init, ToType, CandidateSet); else S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, ToType, CandidateSet); } OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { case OR_Success: // C++ [over.ics.ref]p1: // // [...] If the parameter binds directly to the result of // applying a conversion function to the argument // expression, the implicit conversion sequence is a // user-defined conversion sequence (13.3.3.1.2), with the // second standard conversion sequence either an identity // conversion or, if the conversion function returns an // entity of a type that is a derived class of the parameter // type, a derived-to-base Conversion. if (!Best->FinalConversion.DirectBinding) return false; ICS.setUserDefined(); ICS.UserDefined.Before = Best->Conversions[0].Standard; ICS.UserDefined.After = Best->FinalConversion; ICS.UserDefined.ConversionFunction = Best->Function; ICS.UserDefined.EllipsisConversion = false; assert(ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!"); return true; case OR_Ambiguous: ICS.setAmbiguous(); for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); Cand != CandidateSet.end(); ++Cand) if (Cand->Viable) ICS.Ambiguous.addConversion(Cand->Function); return true; case OR_No_Viable_Function: case OR_Deleted: // There was no suitable conversion, or we found a deleted // conversion; continue with other checks. return false; } return false; } /// \brief Compute an implicit conversion sequence for reference /// initialization. static ImplicitConversionSequence TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, SourceLocation DeclLoc, bool SuppressUserConversions, bool AllowExplicit) { assert(DeclType->isReferenceType() && "Reference init needs a reference"); // Most paths end in a failed conversion. ImplicitConversionSequence ICS; ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); QualType T1 = DeclType->getAs()->getPointeeType(); QualType T2 = Init->getType(); // If the initializer is the address of an overloaded function, try // to resolve the overloaded function. If all goes well, T2 is the // type of the resulting function. if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { DeclAccessPair Found; if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, false, Found)) T2 = Fn->getType(); } // Compute some basic properties of the types and the initializer. bool isRValRef = DeclType->isRValueReferenceType(); bool DerivedToBase = false; bool ObjCConversion = false; Expr::Classification InitCategory = Init->Classify(S.Context); Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, ObjCConversion); // C++0x [dcl.init.ref]p5: // A reference to type "cv1 T1" is initialized by an expression // of type "cv2 T2" as follows: // -- If reference is an lvalue reference and the initializer expression // The next bullet point (T1 is a function) is pretty much equivalent to this // one, so it's handled here. if (!isRValRef || T1->isFunctionType()) { // -- is an lvalue (but is not a bit-field), and "cv1 T1" is // reference-compatible with "cv2 T2," or // // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. if (InitCategory.isLValue() && RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { // C++ [over.ics.ref]p1: // When a parameter of reference type binds directly (8.5.3) // to an argument expression, the implicit conversion sequence // is the identity conversion, unless the argument expression // has a type that is a derived class of the parameter type, // in which case the implicit conversion sequence is a // derived-to-base Conversion (13.3.3.1). ICS.setStandard(); ICS.Standard.First = ICK_Identity; ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ObjCConversion? ICK_Compatible_Conversion : ICK_Identity; ICS.Standard.Third = ICK_Identity; ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); ICS.Standard.setToType(0, T2); ICS.Standard.setToType(1, T1); ICS.Standard.setToType(2, T1); ICS.Standard.ReferenceBinding = true; ICS.Standard.DirectBinding = true; ICS.Standard.RRefBinding = isRValRef; ICS.Standard.CopyConstructor = 0; // Nothing more to do: the inaccessibility/ambiguity check for // derived-to-base conversions is suppressed when we're // computing the implicit conversion sequence (C++ // [over.best.ics]p2). return ICS; } // -- has a class type (i.e., T2 is a class type), where T1 is // not reference-related to T2, and can be implicitly // converted to an lvalue of type "cv3 T3," where "cv1 T1" // is reference-compatible with "cv3 T3" 92) (this // conversion is selected by enumerating the applicable // conversion functions (13.3.1.6) and choosing the best // one through overload resolution (13.3)), if (!SuppressUserConversions && T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && RefRelationship == Sema::Ref_Incompatible) { if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, Init, T2, /*AllowRvalues=*/false, AllowExplicit)) return ICS; } } // -- Otherwise, the reference shall be an lvalue reference to a // non-volatile const type (i.e., cv1 shall be const), or the reference // shall be an rvalue reference and the initializer expression shall be // an rvalue or have a function type. // // We actually handle one oddity of C++ [over.ics.ref] at this // point, which is that, due to p2 (which short-circuits reference // binding by only attempting a simple conversion for non-direct // bindings) and p3's strange wording, we allow a const volatile // reference to bind to an rvalue. Hence the check for the presence // of "const" rather than checking for "const" being the only // qualifier. // This is also the point where rvalue references and lvalue inits no longer // go together. if ((!isRValRef && !T1.isConstQualified()) || (isRValRef && InitCategory.isLValue())) return ICS; // -- If T1 is a function type, then // -- if T2 is the same type as T1, the reference is bound to the // initializer expression lvalue; // -- if T2 is a class type and the initializer expression can be // implicitly converted to an lvalue of type T1 [...], the // reference is bound to the function lvalue that is the result // of the conversion; // This is the same as for the lvalue case above, so it was handled there. // -- otherwise, the program is ill-formed. // This is the one difference to the lvalue case. if (T1->isFunctionType()) return ICS; // -- Otherwise, if T2 is a class type and // -- the initializer expression is an rvalue and "cv1 T1" // is reference-compatible with "cv2 T2," or // // -- T1 is not reference-related to T2 and the initializer // expression can be implicitly converted to an rvalue // of type "cv3 T3" (this conversion is selected by // enumerating the applicable conversion functions // (13.3.1.6) and choosing the best one through overload // resolution (13.3)), // // then the reference is bound to the initializer // expression rvalue in the first case and to the object // that is the result of the conversion in the second case // (or, in either case, to the appropriate base class // subobject of the object). if (T2->isRecordType()) { // First case: "cv1 T1" is reference-compatible with "cv2 T2". This is a // direct binding in C++0x but not in C++03. if (InitCategory.isRValue() && RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { ICS.setStandard(); ICS.Standard.First = ICK_Identity; ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ObjCConversion? ICK_Compatible_Conversion : ICK_Identity; ICS.Standard.Third = ICK_Identity; ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); ICS.Standard.setToType(0, T2); ICS.Standard.setToType(1, T1); ICS.Standard.setToType(2, T1); ICS.Standard.ReferenceBinding = true; ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x; ICS.Standard.RRefBinding = isRValRef; ICS.Standard.CopyConstructor = 0; return ICS; } // Second case: not reference-related. if (RefRelationship == Sema::Ref_Incompatible && !S.RequireCompleteType(DeclLoc, T2, 0) && FindConversionForRefInit(S, ICS, DeclType, DeclLoc, Init, T2, /*AllowRvalues=*/true, AllowExplicit)) return ICS; } // -- Otherwise, a temporary of type "cv1 T1" is created and // initialized from the initializer expression using the // rules for a non-reference copy initialization (8.5). The // reference is then bound to the temporary. If T1 is // reference-related to T2, cv1 must be the same // cv-qualification as, or greater cv-qualification than, // cv2; otherwise, the program is ill-formed. if (RefRelationship == Sema::Ref_Related) { // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then // we would be reference-compatible or reference-compatible with // added qualification. But that wasn't the case, so the reference // initialization fails. return ICS; } // If at least one of the types is a class type, the types are not // related, and we aren't allowed any user conversions, the // reference binding fails. This case is important for breaking // recursion, since TryImplicitConversion below will attempt to // create a temporary through the use of a copy constructor. if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && (T1->isRecordType() || T2->isRecordType())) return ICS; // C++ [over.ics.ref]p2: // When a parameter of reference type is not bound directly to // an argument expression, the conversion sequence is the one // required to convert the argument expression to the // underlying type of the reference according to // 13.3.3.1. Conceptually, this conversion sequence corresponds // to copy-initializing a temporary of the underlying type with // the argument expression. Any difference in top-level // cv-qualification is subsumed by the initialization itself // and does not constitute a conversion. ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, /*AllowExplicit=*/false, /*InOverloadResolution=*/false); // Of course, that's still a reference binding. if (ICS.isStandard()) { ICS.Standard.ReferenceBinding = true; ICS.Standard.RRefBinding = isRValRef; } else if (ICS.isUserDefined()) { ICS.UserDefined.After.ReferenceBinding = true; ICS.UserDefined.After.RRefBinding = isRValRef; } return ICS; } /// TryCopyInitialization - Try to copy-initialize a value of type /// ToType from the expression From. Return the implicit conversion /// sequence required to pass this argument, which may be a bad /// conversion sequence (meaning that the argument cannot be passed to /// a parameter of this type). If @p SuppressUserConversions, then we /// do not permit any user-defined conversion sequences. static ImplicitConversionSequence TryCopyInitialization(Sema &S, Expr *From, QualType ToType, bool SuppressUserConversions, bool InOverloadResolution) { if (ToType->isReferenceType()) return TryReferenceInit(S, From, ToType, /*FIXME:*/From->getLocStart(), SuppressUserConversions, /*AllowExplicit=*/false); return TryImplicitConversion(S, From, ToType, SuppressUserConversions, /*AllowExplicit=*/false, InOverloadResolution); } /// TryObjectArgumentInitialization - Try to initialize the object /// parameter of the given member function (@c Method) from the /// expression @p From. static ImplicitConversionSequence TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, CXXMethodDecl *Method, CXXRecordDecl *ActingContext) { QualType ClassType = S.Context.getTypeDeclType(ActingContext); // [class.dtor]p2: A destructor can be invoked for a const, volatile or // const volatile object. unsigned Quals = isa(Method) ? Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); // Set up the conversion sequence as a "bad" conversion, to allow us // to exit early. ImplicitConversionSequence ICS; // We need to have an object of class type. QualType FromType = OrigFromType; if (const PointerType *PT = FromType->getAs()) FromType = PT->getPointeeType(); assert(FromType->isRecordType()); // The implicit object parameter is has the type "reference to cv X", // where X is the class of which the function is a member // (C++ [over.match.funcs]p4). However, when finding an implicit // conversion sequence for the argument, we are not allowed to // create temporaries or perform user-defined conversions // (C++ [over.match.funcs]p5). We perform a simplified version of // reference binding here, that allows class rvalues to bind to // non-constant references. // First check the qualifiers. We don't care about lvalue-vs-rvalue // with the implicit object parameter (C++ [over.match.funcs]p5). QualType FromTypeCanon = S.Context.getCanonicalType(FromType); if (ImplicitParamType.getCVRQualifiers() != FromTypeCanon.getLocalCVRQualifiers() && !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { ICS.setBad(BadConversionSequence::bad_qualifiers, OrigFromType, ImplicitParamType); return ICS; } // Check that we have either the same type or a derived type. It // affects the conversion rank. QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); ImplicitConversionKind SecondKind; if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { SecondKind = ICK_Identity; } else if (S.IsDerivedFrom(FromType, ClassType)) SecondKind = ICK_Derived_To_Base; else { ICS.setBad(BadConversionSequence::unrelated_class, FromType, ImplicitParamType); return ICS; } // Success. Mark this as a reference binding. ICS.setStandard(); ICS.Standard.setAsIdentityConversion(); ICS.Standard.Second = SecondKind; ICS.Standard.setFromType(FromType); ICS.Standard.setAllToTypes(ImplicitParamType); ICS.Standard.ReferenceBinding = true; ICS.Standard.DirectBinding = true; ICS.Standard.RRefBinding = false; return ICS; } /// PerformObjectArgumentInitialization - Perform initialization of /// the implicit object parameter for the given Method with the given /// expression. bool Sema::PerformObjectArgumentInitialization(Expr *&From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, CXXMethodDecl *Method) { QualType FromRecordType, DestType; QualType ImplicitParamRecordType = Method->getThisType(Context)->getAs()->getPointeeType(); if (const PointerType *PT = From->getType()->getAs()) { FromRecordType = PT->getPointeeType(); DestType = Method->getThisType(Context); } else { FromRecordType = From->getType(); DestType = ImplicitParamRecordType; } // Note that we always use the true parent context when performing // the actual argument initialization. ImplicitConversionSequence ICS = TryObjectArgumentInitialization(*this, From->getType(), Method, Method->getParent()); if (ICS.isBad()) return Diag(From->getSourceRange().getBegin(), diag::err_implicit_object_parameter_init) << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); if (ICS.Standard.Second == ICK_Derived_To_Base) return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); if (!Context.hasSameType(From->getType(), DestType)) ImpCastExprToType(From, DestType, CK_NoOp, From->getType()->isPointerType() ? VK_RValue : VK_LValue); return false; } /// TryContextuallyConvertToBool - Attempt to contextually convert the /// expression From to bool (C++0x [conv]p3). static ImplicitConversionSequence TryContextuallyConvertToBool(Sema &S, Expr *From) { // FIXME: This is pretty broken. return TryImplicitConversion(S, From, S.Context.BoolTy, // FIXME: Are these flags correct? /*SuppressUserConversions=*/false, /*AllowExplicit=*/true, /*InOverloadResolution=*/false); } /// PerformContextuallyConvertToBool - Perform a contextual conversion /// of the expression From to bool (C++0x [conv]p3). bool Sema::PerformContextuallyConvertToBool(Expr *&From) { ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); if (!ICS.isBad()) return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) return Diag(From->getSourceRange().getBegin(), diag::err_typecheck_bool_condition) << From->getType() << From->getSourceRange(); return true; } /// TryContextuallyConvertToObjCId - Attempt to contextually convert the /// expression From to 'id'. static ImplicitConversionSequence TryContextuallyConvertToObjCId(Sema &S, Expr *From) { QualType Ty = S.Context.getObjCIdType(); return TryImplicitConversion(S, From, Ty, // FIXME: Are these flags correct? /*SuppressUserConversions=*/false, /*AllowExplicit=*/true, /*InOverloadResolution=*/false); } /// PerformContextuallyConvertToObjCId - Perform a contextual conversion /// of the expression From to 'id'. bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { QualType Ty = Context.getObjCIdType(); ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From); if (!ICS.isBad()) return PerformImplicitConversion(From, Ty, ICS, AA_Converting); return true; } /// \brief Attempt to convert the given expression to an integral or /// enumeration type. /// /// This routine will attempt to convert an expression of class type to an /// integral or enumeration type, if that class type only has a single /// conversion to an integral or enumeration type. /// /// \param Loc The source location of the construct that requires the /// conversion. /// /// \param FromE The expression we're converting from. /// /// \param NotIntDiag The diagnostic to be emitted if the expression does not /// have integral or enumeration type. /// /// \param IncompleteDiag The diagnostic to be emitted if the expression has /// incomplete class type. /// /// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an /// explicit conversion function (because no implicit conversion functions /// were available). This is a recovery mode. /// /// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, /// showing which conversion was picked. /// /// \param AmbigDiag The diagnostic to be emitted if there is more than one /// conversion function that could convert to integral or enumeration type. /// /// \param AmbigNote The note to be emitted with \p AmbigDiag for each /// usable conversion function. /// /// \param ConvDiag The diagnostic to be emitted if we are calling a conversion /// function, which may be an extension in this case. /// /// \returns The expression, converted to an integral or enumeration type if /// successful. ExprResult Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, const PartialDiagnostic &NotIntDiag, const PartialDiagnostic &IncompleteDiag, const PartialDiagnostic &ExplicitConvDiag, const PartialDiagnostic &ExplicitConvNote, const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &AmbigNote, const PartialDiagnostic &ConvDiag) { // We can't perform any more checking for type-dependent expressions. if (From->isTypeDependent()) return Owned(From); // If the expression already has integral or enumeration type, we're golden. QualType T = From->getType(); if (T->isIntegralOrEnumerationType()) return Owned(From); // FIXME: Check for missing '()' if T is a function type? // If we don't have a class type in C++, there's no way we can get an // expression of integral or enumeration type. const RecordType *RecordTy = T->getAs(); if (!RecordTy || !getLangOptions().CPlusPlus) { Diag(Loc, NotIntDiag) << T << From->getSourceRange(); return Owned(From); } // We must have a complete class type. if (RequireCompleteType(Loc, T, IncompleteDiag)) return Owned(From); // Look for a conversion to an integral or enumeration type. UnresolvedSet<4> ViableConversions; UnresolvedSet<4> ExplicitConversions; const UnresolvedSetImpl *Conversions = cast(RecordTy->getDecl())->getVisibleConversionFunctions(); for (UnresolvedSetImpl::iterator I = Conversions->begin(), E = Conversions->end(); I != E; ++I) { if (CXXConversionDecl *Conversion = dyn_cast((*I)->getUnderlyingDecl())) if (Conversion->getConversionType().getNonReferenceType() ->isIntegralOrEnumerationType()) { if (Conversion->isExplicit()) ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); else ViableConversions.addDecl(I.getDecl(), I.getAccess()); } } switch (ViableConversions.size()) { case 0: if (ExplicitConversions.size() == 1) { DeclAccessPair Found = ExplicitConversions[0]; CXXConversionDecl *Conversion = cast(Found->getUnderlyingDecl()); // The user probably meant to invoke the given explicit // conversion; use it. QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); std::string TypeStr; ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy); Diag(Loc, ExplicitConvDiag) << T << ConvTy << FixItHint::CreateInsertion(From->getLocStart(), "static_cast<" + TypeStr + ">(") << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), ")"); Diag(Conversion->getLocation(), ExplicitConvNote) << ConvTy->isEnumeralType() << ConvTy; // If we aren't in a SFINAE context, build a call to the // explicit conversion function. if (isSFINAEContext()) return ExprError(); CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); From = BuildCXXMemberCallExpr(From, Found, Conversion); } // We'll complain below about a non-integral condition type. break; case 1: { // Apply this conversion. DeclAccessPair Found = ViableConversions[0]; CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); CXXConversionDecl *Conversion = cast(Found->getUnderlyingDecl()); QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); if (ConvDiag.getDiagID()) { if (isSFINAEContext()) return ExprError(); Diag(Loc, ConvDiag) << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); } From = BuildCXXMemberCallExpr(From, Found, cast(Found->getUnderlyingDecl())); break; } default: Diag(Loc, AmbigDiag) << T << From->getSourceRange(); for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { CXXConversionDecl *Conv = cast(ViableConversions[I]->getUnderlyingDecl()); QualType ConvTy = Conv->getConversionType().getNonReferenceType(); Diag(Conv->getLocation(), AmbigNote) << ConvTy->isEnumeralType() << ConvTy; } return Owned(From); } if (!From->getType()->isIntegralOrEnumerationType()) Diag(Loc, NotIntDiag) << From->getType() << From->getSourceRange(); return Owned(From); } /// AddOverloadCandidate - Adds the given function to the set of /// candidate functions, using the given function call arguments. If /// @p SuppressUserConversions, then don't allow user-defined /// conversions via constructors or conversion operators. /// /// \para PartialOverloading true if we are performing "partial" overloading /// based on an incomplete set of function arguments. This feature is used by /// code completion. void Sema::AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions, bool PartialOverloading) { const FunctionProtoType* Proto = dyn_cast(Function->getType()->getAs()); assert(Proto && "Functions without a prototype cannot be overloaded"); assert(!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"); if (CXXMethodDecl *Method = dyn_cast(Function)) { if (!isa(Method)) { // If we get here, it's because we're calling a member function // that is named without a member access expression (e.g., // "this->f") that was either written explicitly or created // implicitly. This can happen with a qualified call to a member // function, e.g., X::f(). We use an empty type for the implied // object argument (C++ [over.call.func]p3), and the acting context // is irrelevant. AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(), Args, NumArgs, CandidateSet, SuppressUserConversions); return; } // We treat a constructor like a non-member function, since its object // argument doesn't participate in overload resolution. } if (!CandidateSet.isNewCandidate(Function)) return; // Overload resolution is always an unevaluated context. EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); if (CXXConstructorDecl *Constructor = dyn_cast(Function)){ // C++ [class.copy]p3: // A member function template is never instantiated to perform the copy // of a class object to an object of its class type. QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); if (NumArgs == 1 && Constructor->isCopyConstructorLikeSpecialization() && (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || IsDerivedFrom(Args[0]->getType(), ClassType))) return; } // Add this candidate CandidateSet.push_back(OverloadCandidate()); OverloadCandidate& Candidate = CandidateSet.back(); Candidate.FoundDecl = FoundDecl; Candidate.Function = Function; Candidate.Viable = true; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; unsigned NumArgsInProto = Proto->getNumArgs(); // (C++ 13.3.2p2): A candidate function having fewer than m // parameters is viable only if it has an ellipsis in its parameter // list (8.3.5). if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && !Proto->isVariadic()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_many_arguments; return; } // (C++ 13.3.2p2): A candidate function having more than m parameters // is viable only if the (m+1)st parameter has a default argument // (8.3.6). For the purposes of overload resolution, the // parameter list is truncated on the right, so that there are // exactly m parameters. unsigned MinRequiredArgs = Function->getMinRequiredArguments(); if (NumArgs < MinRequiredArgs && !PartialOverloading) { // Not enough arguments. Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_few_arguments; return; } // Determine the implicit conversion sequences for each of the // arguments. Candidate.Conversions.resize(NumArgs); for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { if (ArgIdx < NumArgsInProto) { // (C++ 13.3.2p3): for F to be a viable function, there shall // exist for each argument an implicit conversion sequence // (13.3.3.1) that converts that argument to the corresponding // parameter of F. QualType ParamType = Proto->getArgType(ArgIdx); Candidate.Conversions[ArgIdx] = TryCopyInitialization(*this, Args[ArgIdx], ParamType, SuppressUserConversions, /*InOverloadResolution=*/true); if (Candidate.Conversions[ArgIdx].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; break; } } else { // (C++ 13.3.2p2): For the purposes of overload resolution, any // argument for which there is no corresponding parameter is // considered to ""match the ellipsis" (C+ 13.3.3.1.3). Candidate.Conversions[ArgIdx].setEllipsis(); } } } /// \brief Add all of the function declarations in the given function set to /// the overload canddiate set. void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions) { for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { NamedDecl *D = F.getDecl()->getUnderlyingDecl(); if (FunctionDecl *FD = dyn_cast(D)) { if (isa(FD) && !cast(FD)->isStatic()) AddMethodCandidate(cast(FD), F.getPair(), cast(FD)->getParent(), Args[0]->getType(), Args + 1, NumArgs - 1, CandidateSet, SuppressUserConversions); else AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, SuppressUserConversions); } else { FunctionTemplateDecl *FunTmpl = cast(D); if (isa(FunTmpl->getTemplatedDecl()) && !cast(FunTmpl->getTemplatedDecl())->isStatic()) AddMethodTemplateCandidate(FunTmpl, F.getPair(), cast(FunTmpl->getDeclContext()), /*FIXME: explicit args */ 0, Args[0]->getType(), Args + 1, NumArgs - 1, CandidateSet, SuppressUserConversions); else AddTemplateOverloadCandidate(FunTmpl, F.getPair(), /*FIXME: explicit args */ 0, Args, NumArgs, CandidateSet, SuppressUserConversions); } } } /// AddMethodCandidate - Adds a named decl (which is some kind of /// method) as a method candidate to the given overload set. void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions) { NamedDecl *Decl = FoundDecl.getDecl(); CXXRecordDecl *ActingContext = cast(Decl->getDeclContext()); if (isa(Decl)) Decl = cast(Decl)->getTargetDecl(); if (FunctionTemplateDecl *TD = dyn_cast(Decl)) { assert(isa(TD->getTemplatedDecl()) && "Expected a member function template"); AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, /*ExplicitArgs*/ 0, ObjectType, Args, NumArgs, CandidateSet, SuppressUserConversions); } else { AddMethodCandidate(cast(Decl), FoundDecl, ActingContext, ObjectType, Args, NumArgs, CandidateSet, SuppressUserConversions); } } /// AddMethodCandidate - Adds the given C++ member function to the set /// of candidate functions, using the given function call arguments /// and the object argument (@c Object). For example, in a call /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't /// allow user-defined conversions via constructors or conversion /// operators. void Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, QualType ObjectType, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions) { const FunctionProtoType* Proto = dyn_cast(Method->getType()->getAs()); assert(Proto && "Methods without a prototype cannot be overloaded"); assert(!isa(Method) && "Use AddOverloadCandidate for constructors"); if (!CandidateSet.isNewCandidate(Method)) return; // Overload resolution is always an unevaluated context. EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); // Add this candidate CandidateSet.push_back(OverloadCandidate()); OverloadCandidate& Candidate = CandidateSet.back(); Candidate.FoundDecl = FoundDecl; Candidate.Function = Method; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; unsigned NumArgsInProto = Proto->getNumArgs(); // (C++ 13.3.2p2): A candidate function having fewer than m // parameters is viable only if it has an ellipsis in its parameter // list (8.3.5). if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_many_arguments; return; } // (C++ 13.3.2p2): A candidate function having more than m parameters // is viable only if the (m+1)st parameter has a default argument // (8.3.6). For the purposes of overload resolution, the // parameter list is truncated on the right, so that there are // exactly m parameters. unsigned MinRequiredArgs = Method->getMinRequiredArguments(); if (NumArgs < MinRequiredArgs) { // Not enough arguments. Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_few_arguments; return; } Candidate.Viable = true; Candidate.Conversions.resize(NumArgs + 1); if (Method->isStatic() || ObjectType.isNull()) // The implicit object argument is ignored. Candidate.IgnoreObjectArgument = true; else { // Determine the implicit conversion sequence for the object // parameter. Candidate.Conversions[0] = TryObjectArgumentInitialization(*this, ObjectType, Method, ActingContext); if (Candidate.Conversions[0].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; return; } } // Determine the implicit conversion sequences for each of the // arguments. for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { if (ArgIdx < NumArgsInProto) { // (C++ 13.3.2p3): for F to be a viable function, there shall // exist for each argument an implicit conversion sequence // (13.3.3.1) that converts that argument to the corresponding // parameter of F. QualType ParamType = Proto->getArgType(ArgIdx); Candidate.Conversions[ArgIdx + 1] = TryCopyInitialization(*this, Args[ArgIdx], ParamType, SuppressUserConversions, /*InOverloadResolution=*/true); if (Candidate.Conversions[ArgIdx + 1].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; break; } } else { // (C++ 13.3.2p2): For the purposes of overload resolution, any // argument for which there is no corresponding parameter is // considered to ""match the ellipsis" (C+ 13.3.3.1.3). Candidate.Conversions[ArgIdx + 1].setEllipsis(); } } } /// \brief Add a C++ member function template as a candidate to the candidate /// set, using template argument deduction to produce an appropriate member /// function template specialization. void Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, const TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions) { if (!CandidateSet.isNewCandidate(MethodTmpl)) return; // C++ [over.match.funcs]p7: // In each case where a candidate is a function template, candidate // function template specializations are generated using template argument // deduction (14.8.3, 14.8.2). Those candidates are then handled as // candidate functions in the usual way.113) A given name can refer to one // or more function templates and also to a set of overloaded non-template // functions. In such a case, the candidate functions generated from each // function template are combined with the set of non-template candidate // functions. TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); FunctionDecl *Specialization = 0; if (TemplateDeductionResult Result = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args, NumArgs, Specialization, Info)) { CandidateSet.push_back(OverloadCandidate()); OverloadCandidate &Candidate = CandidateSet.back(); Candidate.FoundDecl = FoundDecl; Candidate.Function = MethodTmpl->getTemplatedDecl(); Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_deduction; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, Info); return; } // Add the function template specialization produced by template argument // deduction as a candidate. assert(Specialization && "Missing member function template specialization?"); assert(isa(Specialization) && "Specialization is not a member function?"); AddMethodCandidate(cast(Specialization), FoundDecl, ActingContext, ObjectType, Args, NumArgs, CandidateSet, SuppressUserConversions); } /// \brief Add a C++ function template specialization as a candidate /// in the candidate set, using template argument deduction to produce /// an appropriate function template specialization. void Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, const TemplateArgumentListInfo *ExplicitTemplateArgs, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions) { if (!CandidateSet.isNewCandidate(FunctionTemplate)) return; // C++ [over.match.funcs]p7: // In each case where a candidate is a function template, candidate // function template specializations are generated using template argument // deduction (14.8.3, 14.8.2). Those candidates are then handled as // candidate functions in the usual way.113) A given name can refer to one // or more function templates and also to a set of overloaded non-template // functions. In such a case, the candidate functions generated from each // function template are combined with the set of non-template candidate // functions. TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); FunctionDecl *Specialization = 0; if (TemplateDeductionResult Result = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args, NumArgs, Specialization, Info)) { CandidateSet.push_back(OverloadCandidate()); OverloadCandidate &Candidate = CandidateSet.back(); Candidate.FoundDecl = FoundDecl; Candidate.Function = FunctionTemplate->getTemplatedDecl(); Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_deduction; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, Info); return; } // Add the function template specialization produced by template argument // deduction as a candidate. assert(Specialization && "Missing function template specialization?"); AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, SuppressUserConversions); } /// AddConversionCandidate - Add a C++ conversion function as a /// candidate in the candidate set (C++ [over.match.conv], /// C++ [over.match.copy]). From is the expression we're converting from, /// and ToType is the type that we're eventually trying to convert to /// (which may or may not be the same type as the type that the /// conversion function produces). void Sema::AddConversionCandidate(CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, Expr *From, QualType ToType, OverloadCandidateSet& CandidateSet) { assert(!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"); QualType ConvType = Conversion->getConversionType().getNonReferenceType(); if (!CandidateSet.isNewCandidate(Conversion)) return; // Overload resolution is always an unevaluated context. EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); // Add this candidate CandidateSet.push_back(OverloadCandidate()); OverloadCandidate& Candidate = CandidateSet.back(); Candidate.FoundDecl = FoundDecl; Candidate.Function = Conversion; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; Candidate.FinalConversion.setAsIdentityConversion(); Candidate.FinalConversion.setFromType(ConvType); Candidate.FinalConversion.setAllToTypes(ToType); Candidate.Viable = true; Candidate.Conversions.resize(1); // C++ [over.match.funcs]p4: // For conversion functions, the function is considered to be a member of // the class of the implicit implied object argument for the purpose of // defining the type of the implicit object parameter. // // Determine the implicit conversion sequence for the implicit // object parameter. QualType ImplicitParamType = From->getType(); if (const PointerType *FromPtrType = ImplicitParamType->getAs()) ImplicitParamType = FromPtrType->getPointeeType(); CXXRecordDecl *ConversionContext = cast(ImplicitParamType->getAs()->getDecl()); Candidate.Conversions[0] = TryObjectArgumentInitialization(*this, From->getType(), Conversion, ConversionContext); if (Candidate.Conversions[0].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; return; } // We won't go through a user-define type conversion function to convert a // derived to base as such conversions are given Conversion Rank. They only // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] QualType FromCanon = Context.getCanonicalType(From->getType().getUnqualifiedType()); QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_trivial_conversion; return; } // To determine what the conversion from the result of calling the // conversion function to the type we're eventually trying to // convert to (ToType), we need to synthesize a call to the // conversion function and attempt copy initialization from it. This // makes sure that we get the right semantics with respect to // lvalues/rvalues and the type. Fortunately, we can allocate this // call on the stack and we don't need its arguments to be // well-formed. DeclRefExpr ConversionRef(Conversion, Conversion->getType(), From->getLocStart()); ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, Context.getPointerType(Conversion->getType()), CK_FunctionToPointerDecay, &ConversionRef, VK_RValue); // Note that it is safe to allocate CallExpr on the stack here because // there are 0 arguments (i.e., nothing is allocated using ASTContext's // allocator). CallExpr Call(Context, &ConversionFn, 0, 0, Conversion->getConversionType().getNonLValueExprType(Context), From->getLocStart()); ImplicitConversionSequence ICS = TryCopyInitialization(*this, &Call, ToType, /*SuppressUserConversions=*/true, /*InOverloadResolution=*/false); switch (ICS.getKind()) { case ImplicitConversionSequence::StandardConversion: Candidate.FinalConversion = ICS.Standard; // C++ [over.ics.user]p3: // If the user-defined conversion is specified by a specialization of a // conversion function template, the second standard conversion sequence // shall have exact match rank. if (Conversion->getPrimaryTemplate() && GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_final_conversion_not_exact; } break; case ImplicitConversionSequence::BadConversion: Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_final_conversion; break; default: assert(false && "Can only end up with a standard conversion sequence or failure"); } } /// \brief Adds a conversion function template specialization /// candidate to the overload set, using template argument deduction /// to deduce the template arguments of the conversion function /// template from the type that we are converting to (C++ /// [temp.deduct.conv]). void Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, CXXRecordDecl *ActingDC, Expr *From, QualType ToType, OverloadCandidateSet &CandidateSet) { assert(isa(FunctionTemplate->getTemplatedDecl()) && "Only conversion function templates permitted here"); if (!CandidateSet.isNewCandidate(FunctionTemplate)) return; TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); CXXConversionDecl *Specialization = 0; if (TemplateDeductionResult Result = DeduceTemplateArguments(FunctionTemplate, ToType, Specialization, Info)) { CandidateSet.push_back(OverloadCandidate()); OverloadCandidate &Candidate = CandidateSet.back(); Candidate.FoundDecl = FoundDecl; Candidate.Function = FunctionTemplate->getTemplatedDecl(); Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_deduction; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, Info); return; } // Add the conversion function template specialization produced by // template argument deduction as a candidate. assert(Specialization && "Missing function template specialization?"); AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, CandidateSet); } /// AddSurrogateCandidate - Adds a "surrogate" candidate function that /// converts the given @c Object to a function pointer via the /// conversion function @c Conversion, and then attempts to call it /// with the given arguments (C++ [over.call.object]p2-4). Proto is /// the type of function that we'll eventually be calling. void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, const FunctionProtoType *Proto, QualType ObjectType, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet) { if (!CandidateSet.isNewCandidate(Conversion)) return; // Overload resolution is always an unevaluated context. EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); CandidateSet.push_back(OverloadCandidate()); OverloadCandidate& Candidate = CandidateSet.back(); Candidate.FoundDecl = FoundDecl; Candidate.Function = 0; Candidate.Surrogate = Conversion; Candidate.Viable = true; Candidate.IsSurrogate = true; Candidate.IgnoreObjectArgument = false; Candidate.Conversions.resize(NumArgs + 1); // Determine the implicit conversion sequence for the implicit // object parameter. ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(*this, ObjectType, Conversion, ActingContext); if (ObjectInit.isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; Candidate.Conversions[0] = ObjectInit; return; } // The first conversion is actually a user-defined conversion whose // first conversion is ObjectInit's standard conversion (which is // effectively a reference binding). Record it as such. Candidate.Conversions[0].setUserDefined(); Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; Candidate.Conversions[0].UserDefined.EllipsisConversion = false; Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; Candidate.Conversions[0].UserDefined.After = Candidate.Conversions[0].UserDefined.Before; Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); // Find the unsigned NumArgsInProto = Proto->getNumArgs(); // (C++ 13.3.2p2): A candidate function having fewer than m // parameters is viable only if it has an ellipsis in its parameter // list (8.3.5). if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_many_arguments; return; } // Function types don't have any default arguments, so just check if // we have enough arguments. if (NumArgs < NumArgsInProto) { // Not enough arguments. Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_few_arguments; return; } // Determine the implicit conversion sequences for each of the // arguments. for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { if (ArgIdx < NumArgsInProto) { // (C++ 13.3.2p3): for F to be a viable function, there shall // exist for each argument an implicit conversion sequence // (13.3.3.1) that converts that argument to the corresponding // parameter of F. QualType ParamType = Proto->getArgType(ArgIdx); Candidate.Conversions[ArgIdx + 1] = TryCopyInitialization(*this, Args[ArgIdx], ParamType, /*SuppressUserConversions=*/false, /*InOverloadResolution=*/false); if (Candidate.Conversions[ArgIdx + 1].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; break; } } else { // (C++ 13.3.2p2): For the purposes of overload resolution, any // argument for which there is no corresponding parameter is // considered to ""match the ellipsis" (C+ 13.3.3.1.3). Candidate.Conversions[ArgIdx + 1].setEllipsis(); } } } /// \brief Add overload candidates for overloaded operators that are /// member functions. /// /// Add the overloaded operator candidates that are member functions /// for the operator Op that was used in an operator expression such /// as "x Op y". , Args/NumArgs provides the operator arguments, and /// CandidateSet will store the added overload candidates. (C++ /// [over.match.oper]). void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, SourceRange OpRange) { DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); // C++ [over.match.oper]p3: // For a unary operator @ with an operand of a type whose // cv-unqualified version is T1, and for a binary operator @ with // a left operand of a type whose cv-unqualified version is T1 and // a right operand of a type whose cv-unqualified version is T2, // three sets of candidate functions, designated member // candidates, non-member candidates and built-in candidates, are // constructed as follows: QualType T1 = Args[0]->getType(); // -- If T1 is a class type, the set of member candidates is the // result of the qualified lookup of T1::operator@ // (13.3.1.1.1); otherwise, the set of member candidates is // empty. if (const RecordType *T1Rec = T1->getAs()) { // Complete the type if it can be completed. Otherwise, we're done. if (RequireCompleteType(OpLoc, T1, PDiag())) return; LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); LookupQualifiedName(Operators, T1Rec->getDecl()); Operators.suppressDiagnostics(); for (LookupResult::iterator Oper = Operators.begin(), OperEnd = Operators.end(); Oper != OperEnd; ++Oper) AddMethodCandidate(Oper.getPair(), Args[0]->getType(), Args + 1, NumArgs - 1, CandidateSet, /* SuppressUserConversions = */ false); } } /// AddBuiltinCandidate - Add a candidate for a built-in /// operator. ResultTy and ParamTys are the result and parameter types /// of the built-in candidate, respectively. Args and NumArgs are the /// arguments being passed to the candidate. IsAssignmentOperator /// should be true when this built-in candidate is an assignment /// operator. NumContextualBoolArguments is the number of arguments /// (at the beginning of the argument list) that will be contextually /// converted to bool. void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool IsAssignmentOperator, unsigned NumContextualBoolArguments) { // Overload resolution is always an unevaluated context. EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); // Add this candidate CandidateSet.push_back(OverloadCandidate()); OverloadCandidate& Candidate = CandidateSet.back(); Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); Candidate.Function = 0; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; Candidate.BuiltinTypes.ResultTy = ResultTy; for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; // Determine the implicit conversion sequences for each of the // arguments. Candidate.Viable = true; Candidate.Conversions.resize(NumArgs); for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { // C++ [over.match.oper]p4: // For the built-in assignment operators, conversions of the // left operand are restricted as follows: // -- no temporaries are introduced to hold the left operand, and // -- no user-defined conversions are applied to the left // operand to achieve a type match with the left-most // parameter of a built-in candidate. // // We block these conversions by turning off user-defined // conversions, since that is the only way that initialization of // a reference to a non-class type can occur from something that // is not of the same type. if (ArgIdx < NumContextualBoolArguments) { assert(ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"); Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(*this, Args[ArgIdx]); } else { Candidate.Conversions[ArgIdx] = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], ArgIdx == 0 && IsAssignmentOperator, /*InOverloadResolution=*/false); } if (Candidate.Conversions[ArgIdx].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; break; } } } /// BuiltinCandidateTypeSet - A set of types that will be used for the /// candidate operator functions for built-in operators (C++ /// [over.built]). The types are separated into pointer types and /// enumeration types. class BuiltinCandidateTypeSet { /// TypeSet - A set of types. typedef llvm::SmallPtrSet TypeSet; /// PointerTypes - The set of pointer types that will be used in the /// built-in candidates. TypeSet PointerTypes; /// MemberPointerTypes - The set of member pointer types that will be /// used in the built-in candidates. TypeSet MemberPointerTypes; /// EnumerationTypes - The set of enumeration types that will be /// used in the built-in candidates. TypeSet EnumerationTypes; /// \brief The set of vector types that will be used in the built-in /// candidates. TypeSet VectorTypes; /// Sema - The semantic analysis instance where we are building the /// candidate type set. Sema &SemaRef; /// Context - The AST context in which we will build the type sets. ASTContext &Context; bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, const Qualifiers &VisibleQuals); bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); public: /// iterator - Iterates through the types that are part of the set. typedef TypeSet::iterator iterator; BuiltinCandidateTypeSet(Sema &SemaRef) : SemaRef(SemaRef), Context(SemaRef.Context) { } void AddTypesConvertedFrom(QualType Ty, SourceLocation Loc, bool AllowUserConversions, bool AllowExplicitConversions, const Qualifiers &VisibleTypeConversionsQuals); /// pointer_begin - First pointer type found; iterator pointer_begin() { return PointerTypes.begin(); } /// pointer_end - Past the last pointer type found; iterator pointer_end() { return PointerTypes.end(); } /// member_pointer_begin - First member pointer type found; iterator member_pointer_begin() { return MemberPointerTypes.begin(); } /// member_pointer_end - Past the last member pointer type found; iterator member_pointer_end() { return MemberPointerTypes.end(); } /// enumeration_begin - First enumeration type found; iterator enumeration_begin() { return EnumerationTypes.begin(); } /// enumeration_end - Past the last enumeration type found; iterator enumeration_end() { return EnumerationTypes.end(); } iterator vector_begin() { return VectorTypes.begin(); } iterator vector_end() { return VectorTypes.end(); } }; /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to /// the set of pointer types along with any more-qualified variants of /// that type. For example, if @p Ty is "int const *", this routine /// will add "int const *", "int const volatile *", "int const /// restrict *", and "int const volatile restrict *" to the set of /// pointer types. Returns true if the add of @p Ty itself succeeded, /// false otherwise. /// /// FIXME: what to do about extended qualifiers? bool BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, const Qualifiers &VisibleQuals) { // Insert this type. if (!PointerTypes.insert(Ty)) return false; QualType PointeeTy; const PointerType *PointerTy = Ty->getAs(); bool buildObjCPtr = false; if (!PointerTy) { if (const ObjCObjectPointerType *PTy = Ty->getAs()) { PointeeTy = PTy->getPointeeType(); buildObjCPtr = true; } else assert(false && "type was not a pointer type!"); } else PointeeTy = PointerTy->getPointeeType(); // Don't add qualified variants of arrays. For one, they're not allowed // (the qualifier would sink to the element type), and for another, the // only overload situation where it matters is subscript or pointer +- int, // and those shouldn't have qualifier variants anyway. if (PointeeTy->isArrayType()) return true; unsigned BaseCVR = PointeeTy.getCVRQualifiers(); if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) BaseCVR = Array->getElementType().getCVRQualifiers(); bool hasVolatile = VisibleQuals.hasVolatile(); bool hasRestrict = VisibleQuals.hasRestrict(); // Iterate through all strict supersets of BaseCVR. for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { if ((CVR | BaseCVR) != CVR) continue; // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere // in the types. if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); if (!buildObjCPtr) PointerTypes.insert(Context.getPointerType(QPointeeTy)); else PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); } return true; } /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty /// to the set of pointer types along with any more-qualified variants of /// that type. For example, if @p Ty is "int const *", this routine /// will add "int const *", "int const volatile *", "int const /// restrict *", and "int const volatile restrict *" to the set of /// pointer types. Returns true if the add of @p Ty itself succeeded, /// false otherwise. /// /// FIXME: what to do about extended qualifiers? bool BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( QualType Ty) { // Insert this type. if (!MemberPointerTypes.insert(Ty)) return false; const MemberPointerType *PointerTy = Ty->getAs(); assert(PointerTy && "type was not a member pointer type!"); QualType PointeeTy = PointerTy->getPointeeType(); // Don't add qualified variants of arrays. For one, they're not allowed // (the qualifier would sink to the element type), and for another, the // only overload situation where it matters is subscript or pointer +- int, // and those shouldn't have qualifier variants anyway. if (PointeeTy->isArrayType()) return true; const Type *ClassTy = PointerTy->getClass(); // Iterate through all strict supersets of the pointee type's CVR // qualifiers. unsigned BaseCVR = PointeeTy.getCVRQualifiers(); for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { if ((CVR | BaseCVR) != CVR) continue; QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); } return true; } /// AddTypesConvertedFrom - Add each of the types to which the type @p /// Ty can be implicit converted to the given set of @p Types. We're /// primarily interested in pointer types and enumeration types. We also /// take member pointer types, for the conditional operator. /// AllowUserConversions is true if we should look at the conversion /// functions of a class type, and AllowExplicitConversions if we /// should also include the explicit conversion functions of a class /// type. void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, SourceLocation Loc, bool AllowUserConversions, bool AllowExplicitConversions, const Qualifiers &VisibleQuals) { // Only deal with canonical types. Ty = Context.getCanonicalType(Ty); // Look through reference types; they aren't part of the type of an // expression for the purposes of conversions. if (const ReferenceType *RefTy = Ty->getAs()) Ty = RefTy->getPointeeType(); // We don't care about qualifiers on the type. Ty = Ty.getLocalUnqualifiedType(); // If we're dealing with an array type, decay to the pointer. if (Ty->isArrayType()) Ty = SemaRef.Context.getArrayDecayedType(Ty); if (Ty->isObjCIdType() || Ty->isObjCClassType()) PointerTypes.insert(Ty); else if (Ty->getAs() || Ty->getAs()) { // Insert our type, and its more-qualified variants, into the set // of types. if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) return; } else if (Ty->isMemberPointerType()) { // Member pointers are far easier, since the pointee can't be converted. if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) return; } else if (Ty->isEnumeralType()) { EnumerationTypes.insert(Ty); } else if (Ty->isVectorType()) { VectorTypes.insert(Ty); } else if (AllowUserConversions) { if (const RecordType *TyRec = Ty->getAs()) { if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { // No conversion functions in incomplete types. return; } CXXRecordDecl *ClassDecl = cast(TyRec->getDecl()); const UnresolvedSetImpl *Conversions = ClassDecl->getVisibleConversionFunctions(); for (UnresolvedSetImpl::iterator I = Conversions->begin(), E = Conversions->end(); I != E; ++I) { NamedDecl *D = I.getDecl(); if (isa(D)) D = cast(D)->getTargetDecl(); // Skip conversion function templates; they don't tell us anything // about which builtin types we can convert to. if (isa(D)) continue; CXXConversionDecl *Conv = cast(D); if (AllowExplicitConversions || !Conv->isExplicit()) { AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, VisibleQuals); } } } } } /// \brief Helper function for AddBuiltinOperatorCandidates() that adds /// the volatile- and non-volatile-qualified assignment operators for the /// given type to the candidate set. static void AddBuiltinAssignmentOperatorCandidates(Sema &S, QualType T, Expr **Args, unsigned NumArgs, OverloadCandidateSet &CandidateSet) { QualType ParamTypes[2]; // T& operator=(T&, T) ParamTypes[0] = S.Context.getLValueReferenceType(T); ParamTypes[1] = T; S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssignmentOperator=*/true); if (!S.Context.getCanonicalType(T).isVolatileQualified()) { // volatile T& operator=(volatile T&, T) ParamTypes[0] = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); ParamTypes[1] = T; S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssignmentOperator=*/true); } } /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, /// if any, found in visible type conversion functions found in ArgExpr's type. static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { Qualifiers VRQuals; const RecordType *TyRec; if (const MemberPointerType *RHSMPType = ArgExpr->getType()->getAs()) TyRec = RHSMPType->getClass()->getAs(); else TyRec = ArgExpr->getType()->getAs(); if (!TyRec) { // Just to be safe, assume the worst case. VRQuals.addVolatile(); VRQuals.addRestrict(); return VRQuals; } CXXRecordDecl *ClassDecl = cast(TyRec->getDecl()); if (!ClassDecl->hasDefinition()) return VRQuals; const UnresolvedSetImpl *Conversions = ClassDecl->getVisibleConversionFunctions(); for (UnresolvedSetImpl::iterator I = Conversions->begin(), E = Conversions->end(); I != E; ++I) { NamedDecl *D = I.getDecl(); if (isa(D)) D = cast(D)->getTargetDecl(); if (CXXConversionDecl *Conv = dyn_cast(D)) { QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); if (const ReferenceType *ResTypeRef = CanTy->getAs()) CanTy = ResTypeRef->getPointeeType(); // Need to go down the pointer/mempointer chain and add qualifiers // as see them. bool done = false; while (!done) { if (const PointerType *ResTypePtr = CanTy->getAs()) CanTy = ResTypePtr->getPointeeType(); else if (const MemberPointerType *ResTypeMPtr = CanTy->getAs()) CanTy = ResTypeMPtr->getPointeeType(); else done = true; if (CanTy.isVolatileQualified()) VRQuals.addVolatile(); if (CanTy.isRestrictQualified()) VRQuals.addRestrict(); if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) return VRQuals; } } } return VRQuals; } /// AddBuiltinOperatorCandidates - Add the appropriate built-in /// operator overloads to the candidate set (C++ [over.built]), based /// on the operator @p Op and the arguments given. For example, if the /// operator is a binary '+', this routine might add "int /// operator+(int, int)" to cover integer addition. void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet) { // The set of "promoted arithmetic types", which are the arithmetic // types are that preserved by promotion (C++ [over.built]p2). Note // that the first few of these types are the promoted integral // types; these types need to be first. // FIXME: What about complex? const unsigned FirstIntegralType = 0; const unsigned LastIntegralType = 13; const unsigned FirstPromotedIntegralType = 7, LastPromotedIntegralType = 13; const unsigned FirstPromotedArithmeticType = 7, LastPromotedArithmeticType = 16; const unsigned NumArithmeticTypes = 16; QualType ArithmeticTypes[NumArithmeticTypes] = { Context.BoolTy, Context.CharTy, Context.WCharTy, // FIXME: Context.Char16Ty, Context.Char32Ty, Context.SignedCharTy, Context.ShortTy, Context.UnsignedCharTy, Context.UnsignedShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy, Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy }; assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && "Invalid first promoted integral type"); assert(ArithmeticTypes[LastPromotedIntegralType - 1] == Context.UnsignedLongLongTy && "Invalid last promoted integral type"); assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && "Invalid first promoted arithmetic type"); assert(ArithmeticTypes[LastPromotedArithmeticType - 1] == Context.LongDoubleTy && "Invalid last promoted arithmetic type"); // Find all of the types that the arguments can convert to, but only // if the operator we're looking at has built-in operator candidates // that make use of these types. Qualifiers VisibleTypeConversionsQuals; VisibleTypeConversionsQuals.addConst(); for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); BuiltinCandidateTypeSet CandidateTypes(*this); for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), OpLoc, true, (Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe), VisibleTypeConversionsQuals); bool isComparison = false; switch (Op) { case OO_None: case NUM_OVERLOADED_OPERATORS: assert(false && "Expected an overloaded operator"); break; case OO_Star: // '*' is either unary or binary if (NumArgs == 1) goto UnaryStar; else goto BinaryStar; break; case OO_Plus: // '+' is either unary or binary if (NumArgs == 1) goto UnaryPlus; else goto BinaryPlus; break; case OO_Minus: // '-' is either unary or binary if (NumArgs == 1) goto UnaryMinus; else goto BinaryMinus; break; case OO_Amp: // '&' is either unary or binary if (NumArgs == 1) goto UnaryAmp; else goto BinaryAmp; case OO_PlusPlus: case OO_MinusMinus: // C++ [over.built]p3: // // For every pair (T, VQ), where T is an arithmetic type, and VQ // is either volatile or empty, there exist candidate operator // functions of the form // // VQ T& operator++(VQ T&); // T operator++(VQ T&, int); // // C++ [over.built]p4: // // For every pair (T, VQ), where T is an arithmetic type other // than bool, and VQ is either volatile or empty, there exist // candidate operator functions of the form // // VQ T& operator--(VQ T&); // T operator--(VQ T&, int); for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); Arith < NumArithmeticTypes; ++Arith) { QualType ArithTy = ArithmeticTypes[Arith]; QualType ParamTypes[2] = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; // Non-volatile version. if (NumArgs == 1) AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); else AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); // heuristic to reduce number of builtin candidates in the set. // Add volatile version only if there are conversions to a volatile type. if (VisibleTypeConversionsQuals.hasVolatile()) { // Volatile version ParamTypes[0] = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); if (NumArgs == 1) AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); else AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); } } // C++ [over.built]p5: // // For every pair (T, VQ), where T is a cv-qualified or // cv-unqualified object type, and VQ is either volatile or // empty, there exist candidate operator functions of the form // // T*VQ& operator++(T*VQ&); // T*VQ& operator--(T*VQ&); // T* operator++(T*VQ&, int); // T* operator--(T*VQ&, int); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { // Skip pointer types that aren't pointers to object types. if (!(*Ptr)->getPointeeType()->isIncompleteOrObjectType()) continue; QualType ParamTypes[2] = { Context.getLValueReferenceType(*Ptr), Context.IntTy }; // Without volatile if (NumArgs == 1) AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); else AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && VisibleTypeConversionsQuals.hasVolatile()) { // With volatile ParamTypes[0] = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); if (NumArgs == 1) AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); else AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); } } break; UnaryStar: // C++ [over.built]p6: // For every cv-qualified or cv-unqualified object type T, there // exist candidate operator functions of the form // // T& operator*(T*); // // C++ [over.built]p7: // For every function type T, there exist candidate operator // functions of the form // T& operator*(T*); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTy = *Ptr; QualType PointeeTy = ParamTy->getPointeeType(); AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), &ParamTy, Args, 1, CandidateSet); } break; UnaryPlus: // C++ [over.built]p8: // For every type T, there exist candidate operator functions of // the form // // T* operator+(T*); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTy = *Ptr; AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); } // Fall through UnaryMinus: // C++ [over.built]p9: // For every promoted arithmetic type T, there exist candidate // operator functions of the form // // T operator+(T); // T operator-(T); for (unsigned Arith = FirstPromotedArithmeticType; Arith < LastPromotedArithmeticType; ++Arith) { QualType ArithTy = ArithmeticTypes[Arith]; AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); } // Extension: We also add these operators for vector types. for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), VecEnd = CandidateTypes.vector_end(); Vec != VecEnd; ++Vec) { QualType VecTy = *Vec; AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); } break; case OO_Tilde: // C++ [over.built]p10: // For every promoted integral type T, there exist candidate // operator functions of the form // // T operator~(T); for (unsigned Int = FirstPromotedIntegralType; Int < LastPromotedIntegralType; ++Int) { QualType IntTy = ArithmeticTypes[Int]; AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); } // Extension: We also add this operator for vector types. for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), VecEnd = CandidateTypes.vector_end(); Vec != VecEnd; ++Vec) { QualType VecTy = *Vec; AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); } break; case OO_New: case OO_Delete: case OO_Array_New: case OO_Array_Delete: case OO_Call: assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); break; case OO_Comma: UnaryAmp: case OO_Arrow: // C++ [over.match.oper]p3: // -- For the operator ',', the unary operator '&', or the // operator '->', the built-in candidates set is empty. break; case OO_EqualEqual: case OO_ExclaimEqual: // C++ [over.match.oper]p16: // For every pointer to member type T, there exist candidate operator // functions of the form // // bool operator==(T,T); // bool operator!=(T,T); for (BuiltinCandidateTypeSet::iterator MemPtr = CandidateTypes.member_pointer_begin(), MemPtrEnd = CandidateTypes.member_pointer_end(); MemPtr != MemPtrEnd; ++MemPtr) { QualType ParamTypes[2] = { *MemPtr, *MemPtr }; AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); } // Fall through case OO_Less: case OO_Greater: case OO_LessEqual: case OO_GreaterEqual: // C++ [over.built]p15: // // For every pointer or enumeration type T, there exist // candidate operator functions of the form // // bool operator<(T, T); // bool operator>(T, T); // bool operator<=(T, T); // bool operator>=(T, T); // bool operator==(T, T); // bool operator!=(T, T); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTypes[2] = { *Ptr, *Ptr }; AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); } for (BuiltinCandidateTypeSet::iterator Enum = CandidateTypes.enumeration_begin(); Enum != CandidateTypes.enumeration_end(); ++Enum) { QualType ParamTypes[2] = { *Enum, *Enum }; AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); } // Fall through. isComparison = true; BinaryPlus: BinaryMinus: if (!isComparison) { // We didn't fall through, so we must have OO_Plus or OO_Minus. // C++ [over.built]p13: // // For every cv-qualified or cv-unqualified object type T // there exist candidate operator functions of the form // // T* operator+(T*, ptrdiff_t); // T& operator[](T*, ptrdiff_t); [BELOW] // T* operator-(T*, ptrdiff_t); // T* operator+(ptrdiff_t, T*); // T& operator[](ptrdiff_t, T*); [BELOW] // // C++ [over.built]p14: // // For every T, where T is a pointer to object type, there // exist candidate operator functions of the form // // ptrdiff_t operator-(T, T); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); if (Op == OO_Plus) { // T* operator+(ptrdiff_t, T*); ParamTypes[0] = ParamTypes[1]; ParamTypes[1] = *Ptr; AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); } else { // ptrdiff_t operator-(T, T); ParamTypes[1] = *Ptr; AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, Args, 2, CandidateSet); } } } // Fall through case OO_Slash: BinaryStar: Conditional: // C++ [over.built]p12: // // For every pair of promoted arithmetic types L and R, there // exist candidate operator functions of the form // // LR operator*(L, R); // LR operator/(L, R); // LR operator+(L, R); // LR operator-(L, R); // bool operator<(L, R); // bool operator>(L, R); // bool operator<=(L, R); // bool operator>=(L, R); // bool operator==(L, R); // bool operator!=(L, R); // // where LR is the result of the usual arithmetic conversions // between types L and R. // // C++ [over.built]p24: // // For every pair of promoted arithmetic types L and R, there exist // candidate operator functions of the form // // LR operator?(bool, L, R); // // where LR is the result of the usual arithmetic conversions // between types L and R. // Our candidates ignore the first parameter. for (unsigned Left = FirstPromotedArithmeticType; Left < LastPromotedArithmeticType; ++Left) { for (unsigned Right = FirstPromotedArithmeticType; Right < LastPromotedArithmeticType; ++Right) { QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; QualType Result = isComparison ? Context.BoolTy : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); } } // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the // conditional operator for vector types. for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), Vec1End = CandidateTypes.vector_end(); Vec1 != Vec1End; ++Vec1) for (BuiltinCandidateTypeSet::iterator Vec2 = CandidateTypes.vector_begin(), Vec2End = CandidateTypes.vector_end(); Vec2 != Vec2End; ++Vec2) { QualType LandR[2] = { *Vec1, *Vec2 }; QualType Result; if (isComparison) Result = Context.BoolTy; else { if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) Result = *Vec1; else Result = *Vec2; } AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); } break; case OO_Percent: BinaryAmp: case OO_Caret: case OO_Pipe: case OO_LessLess: case OO_GreaterGreater: // C++ [over.built]p17: // // For every pair of promoted integral types L and R, there // exist candidate operator functions of the form // // LR operator%(L, R); // LR operator&(L, R); // LR operator^(L, R); // LR operator|(L, R); // L operator<<(L, R); // L operator>>(L, R); // // where LR is the result of the usual arithmetic conversions // between types L and R. for (unsigned Left = FirstPromotedIntegralType; Left < LastPromotedIntegralType; ++Left) { for (unsigned Right = FirstPromotedIntegralType; Right < LastPromotedIntegralType; ++Right) { QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) ? LandR[0] : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); } } break; case OO_Equal: // C++ [over.built]p20: // // For every pair (T, VQ), where T is an enumeration or // pointer to member type and VQ is either volatile or // empty, there exist candidate operator functions of the form // // VQ T& operator=(VQ T&, T); for (BuiltinCandidateTypeSet::iterator Enum = CandidateTypes.enumeration_begin(), EnumEnd = CandidateTypes.enumeration_end(); Enum != EnumEnd; ++Enum) AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, CandidateSet); for (BuiltinCandidateTypeSet::iterator MemPtr = CandidateTypes.member_pointer_begin(), MemPtrEnd = CandidateTypes.member_pointer_end(); MemPtr != MemPtrEnd; ++MemPtr) AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, CandidateSet); // Fall through. case OO_PlusEqual: case OO_MinusEqual: // C++ [over.built]p19: // // For every pair (T, VQ), where T is any type and VQ is either // volatile or empty, there exist candidate operator functions // of the form // // T*VQ& operator=(T*VQ&, T*); // // C++ [over.built]p21: // // For every pair (T, VQ), where T is a cv-qualified or // cv-unqualified object type and VQ is either volatile or // empty, there exist candidate operator functions of the form // // T*VQ& operator+=(T*VQ&, ptrdiff_t); // T*VQ& operator-=(T*VQ&, ptrdiff_t); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTypes[2]; ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); // non-volatile version ParamTypes[0] = Context.getLValueReferenceType(*Ptr); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssigmentOperator=*/Op == OO_Equal); if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && VisibleTypeConversionsQuals.hasVolatile()) { // volatile version ParamTypes[0] = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssigmentOperator=*/Op == OO_Equal); } } // Fall through. case OO_StarEqual: case OO_SlashEqual: // C++ [over.built]p18: // // For every triple (L, VQ, R), where L is an arithmetic type, // VQ is either volatile or empty, and R is a promoted // arithmetic type, there exist candidate operator functions of // the form // // VQ L& operator=(VQ L&, R); // VQ L& operator*=(VQ L&, R); // VQ L& operator/=(VQ L&, R); // VQ L& operator+=(VQ L&, R); // VQ L& operator-=(VQ L&, R); for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { for (unsigned Right = FirstPromotedArithmeticType; Right < LastPromotedArithmeticType; ++Right) { QualType ParamTypes[2]; ParamTypes[1] = ArithmeticTypes[Right]; // Add this built-in operator as a candidate (VQ is empty). ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssigmentOperator=*/Op == OO_Equal); // Add this built-in operator as a candidate (VQ is 'volatile'). if (VisibleTypeConversionsQuals.hasVolatile()) { ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssigmentOperator=*/Op == OO_Equal); } } } // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), Vec1End = CandidateTypes.vector_end(); Vec1 != Vec1End; ++Vec1) for (BuiltinCandidateTypeSet::iterator Vec2 = CandidateTypes.vector_begin(), Vec2End = CandidateTypes.vector_end(); Vec2 != Vec2End; ++Vec2) { QualType ParamTypes[2]; ParamTypes[1] = *Vec2; // Add this built-in operator as a candidate (VQ is empty). ParamTypes[0] = Context.getLValueReferenceType(*Vec1); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssigmentOperator=*/Op == OO_Equal); // Add this built-in operator as a candidate (VQ is 'volatile'). if (VisibleTypeConversionsQuals.hasVolatile()) { ParamTypes[0] = Context.getVolatileType(*Vec1); ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, /*IsAssigmentOperator=*/Op == OO_Equal); } } break; case OO_PercentEqual: case OO_LessLessEqual: case OO_GreaterGreaterEqual: case OO_AmpEqual: case OO_CaretEqual: case OO_PipeEqual: // C++ [over.built]p22: // // For every triple (L, VQ, R), where L is an integral type, VQ // is either volatile or empty, and R is a promoted integral // type, there exist candidate operator functions of the form // // VQ L& operator%=(VQ L&, R); // VQ L& operator<<=(VQ L&, R); // VQ L& operator>>=(VQ L&, R); // VQ L& operator&=(VQ L&, R); // VQ L& operator^=(VQ L&, R); // VQ L& operator|=(VQ L&, R); for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { for (unsigned Right = FirstPromotedIntegralType; Right < LastPromotedIntegralType; ++Right) { QualType ParamTypes[2]; ParamTypes[1] = ArithmeticTypes[Right]; // Add this built-in operator as a candidate (VQ is empty). ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); if (VisibleTypeConversionsQuals.hasVolatile()) { // Add this built-in operator as a candidate (VQ is 'volatile'). ParamTypes[0] = ArithmeticTypes[Left]; ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); } } } break; case OO_Exclaim: { // C++ [over.operator]p23: // // There also exist candidate operator functions of the form // // bool operator!(bool); // bool operator&&(bool, bool); [BELOW] // bool operator||(bool, bool); [BELOW] QualType ParamTy = Context.BoolTy; AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, /*IsAssignmentOperator=*/false, /*NumContextualBoolArguments=*/1); break; } case OO_AmpAmp: case OO_PipePipe: { // C++ [over.operator]p23: // // There also exist candidate operator functions of the form // // bool operator!(bool); [ABOVE] // bool operator&&(bool, bool); // bool operator||(bool, bool); QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, /*IsAssignmentOperator=*/false, /*NumContextualBoolArguments=*/2); break; } case OO_Subscript: // C++ [over.built]p13: // // For every cv-qualified or cv-unqualified object type T there // exist candidate operator functions of the form // // T* operator+(T*, ptrdiff_t); [ABOVE] // T& operator[](T*, ptrdiff_t); // T* operator-(T*, ptrdiff_t); [ABOVE] // T* operator+(ptrdiff_t, T*); [ABOVE] // T& operator[](ptrdiff_t, T*); for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; QualType PointeeType = (*Ptr)->getPointeeType(); QualType ResultTy = Context.getLValueReferenceType(PointeeType); // T& operator[](T*, ptrdiff_t) AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); // T& operator[](ptrdiff_t, T*); ParamTypes[0] = ParamTypes[1]; ParamTypes[1] = *Ptr; AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); } break; case OO_ArrowStar: // C++ [over.built]p11: // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, // C1 is the same type as C2 or is a derived class of C2, T is an object // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, // there exist candidate operator functions of the form // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); // where CV12 is the union of CV1 and CV2. { for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); Ptr != CandidateTypes.pointer_end(); ++Ptr) { QualType C1Ty = (*Ptr); QualType C1; QualifierCollector Q1; C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); if (!isa(C1)) continue; // heuristic to reduce number of builtin candidates in the set. // Add volatile/restrict version only if there are conversions to a // volatile/restrict type. if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) continue; if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) continue; for (BuiltinCandidateTypeSet::iterator MemPtr = CandidateTypes.member_pointer_begin(), MemPtrEnd = CandidateTypes.member_pointer_end(); MemPtr != MemPtrEnd; ++MemPtr) { const MemberPointerType *mptr = cast(*MemPtr); QualType C2 = QualType(mptr->getClass(), 0); C2 = C2.getUnqualifiedType(); if (C1 != C2 && !IsDerivedFrom(C1, C2)) break; QualType ParamTypes[2] = { *Ptr, *MemPtr }; // build CV12 T& QualType T = mptr->getPointeeType(); if (!VisibleTypeConversionsQuals.hasVolatile() && T.isVolatileQualified()) continue; if (!VisibleTypeConversionsQuals.hasRestrict() && T.isRestrictQualified()) continue; T = Q1.apply(T); QualType ResultTy = Context.getLValueReferenceType(T); AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); } } } break; case OO_Conditional: // Note that we don't consider the first argument, since it has been // contextually converted to bool long ago. The candidates below are // therefore added as binary. // // C++ [over.built]p24: // For every type T, where T is a pointer or pointer-to-member type, // there exist candidate operator functions of the form // // T operator?(bool, T, T); // for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { QualType ParamTypes[2] = { *Ptr, *Ptr }; AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); } for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.member_pointer_begin(), E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { QualType ParamTypes[2] = { *Ptr, *Ptr }; AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); } goto Conditional; } } /// \brief Add function candidates found via argument-dependent lookup /// to the set of overloading candidates. /// /// This routine performs argument-dependent name lookup based on the /// given function name (which may also be an operator name) and adds /// all of the overload candidates found by ADL to the overload /// candidate set (C++ [basic.lookup.argdep]). void Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, bool Operator, Expr **Args, unsigned NumArgs, const TemplateArgumentListInfo *ExplicitTemplateArgs, OverloadCandidateSet& CandidateSet, bool PartialOverloading) { ADLResult Fns; // FIXME: This approach for uniquing ADL results (and removing // redundant candidates from the set) relies on pointer-equality, // which means we need to key off the canonical decl. However, // always going back to the canonical decl might not get us the // right set of default arguments. What default arguments are // we supposed to consider on ADL candidates, anyway? // FIXME: Pass in the explicit template arguments? ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); // Erase all of the candidates we already knew about. for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), CandEnd = CandidateSet.end(); Cand != CandEnd; ++Cand) if (Cand->Function) { Fns.erase(Cand->Function); if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) Fns.erase(FunTmpl); } // For each of the ADL candidates we found, add it to the overload // set. for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); if (FunctionDecl *FD = dyn_cast(*I)) { if (ExplicitTemplateArgs) continue; AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, false, PartialOverloading); } else AddTemplateOverloadCandidate(cast(*I), FoundDecl, ExplicitTemplateArgs, Args, NumArgs, CandidateSet); } } /// isBetterOverloadCandidate - Determines whether the first overload /// candidate is a better candidate than the second (C++ 13.3.3p1). bool isBetterOverloadCandidate(Sema &S, const OverloadCandidate& Cand1, const OverloadCandidate& Cand2, SourceLocation Loc) { // Define viable functions to be better candidates than non-viable // functions. if (!Cand2.Viable) return Cand1.Viable; else if (!Cand1.Viable) return false; // C++ [over.match.best]p1: // // -- if F is a static member function, ICS1(F) is defined such // that ICS1(F) is neither better nor worse than ICS1(G) for // any function G, and, symmetrically, ICS1(G) is neither // better nor worse than ICS1(F). unsigned StartArg = 0; if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) StartArg = 1; // C++ [over.match.best]p1: // A viable function F1 is defined to be a better function than another // viable function F2 if for all arguments i, ICSi(F1) is not a worse // conversion sequence than ICSi(F2), and then... unsigned NumArgs = Cand1.Conversions.size(); assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); bool HasBetterConversion = false; for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { switch (CompareImplicitConversionSequences(S, Cand1.Conversions[ArgIdx], Cand2.Conversions[ArgIdx])) { case ImplicitConversionSequence::Better: // Cand1 has a better conversion sequence. HasBetterConversion = true; break; case ImplicitConversionSequence::Worse: // Cand1 can't be better than Cand2. return false; case ImplicitConversionSequence::Indistinguishable: // Do nothing. break; } } // -- for some argument j, ICSj(F1) is a better conversion sequence than // ICSj(F2), or, if not that, if (HasBetterConversion) return true; // - F1 is a non-template function and F2 is a function template // specialization, or, if not that, if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && Cand2.Function && Cand2.Function->getPrimaryTemplate()) return true; // -- F1 and F2 are function template specializations, and the function // template for F1 is more specialized than the template for F2 // according to the partial ordering rules described in 14.5.5.2, or, // if not that, if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && Cand2.Function && Cand2.Function->getPrimaryTemplate()) if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), Cand2.Function->getPrimaryTemplate(), Loc, isa(Cand1.Function)? TPOC_Conversion : TPOC_Call)) return BetterTemplate == Cand1.Function->getPrimaryTemplate(); // -- the context is an initialization by user-defined conversion // (see 8.5, 13.3.1.5) and the standard conversion sequence // from the return type of F1 to the destination type (i.e., // the type of the entity being initialized) is a better // conversion sequence than the standard conversion sequence // from the return type of F2 to the destination type. if (Cand1.Function && Cand2.Function && isa(Cand1.Function) && isa(Cand2.Function)) { switch (CompareStandardConversionSequences(S, Cand1.FinalConversion, Cand2.FinalConversion)) { case ImplicitConversionSequence::Better: // Cand1 has a better conversion sequence. return true; case ImplicitConversionSequence::Worse: // Cand1 can't be better than Cand2. return false; case ImplicitConversionSequence::Indistinguishable: // Do nothing break; } } return false; } /// \brief Computes the best viable function (C++ 13.3.3) /// within an overload candidate set. /// /// \param CandidateSet the set of candidate functions. /// /// \param Loc the location of the function name (or operator symbol) for /// which overload resolution occurs. /// /// \param Best f overload resolution was successful or found a deleted /// function, Best points to the candidate function found. /// /// \returns The result of overload resolution. OverloadingResult OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, iterator& Best) { // Find the best viable function. Best = end(); for (iterator Cand = begin(); Cand != end(); ++Cand) { if (Cand->Viable) if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc)) Best = Cand; } // If we didn't find any viable functions, abort. if (Best == end()) return OR_No_Viable_Function; // Make sure that this function is better than every other viable // function. If not, we have an ambiguity. for (iterator Cand = begin(); Cand != end(); ++Cand) { if (Cand->Viable && Cand != Best && !isBetterOverloadCandidate(S, *Best, *Cand, Loc)) { Best = end(); return OR_Ambiguous; } } // Best is the best viable function. if (Best->Function && (Best->Function->isDeleted() || Best->Function->getAttr())) return OR_Deleted; // C++ [basic.def.odr]p2: // An overloaded function is used if it is selected by overload resolution // when referred to from a potentially-evaluated expression. [Note: this // covers calls to named functions (5.2.2), operator overloading // (clause 13), user-defined conversions (12.3.2), allocation function for // placement new (5.3.4), as well as non-default initialization (8.5). if (Best->Function) S.MarkDeclarationReferenced(Loc, Best->Function); return OR_Success; } namespace { enum OverloadCandidateKind { oc_function, oc_method, oc_constructor, oc_function_template, oc_method_template, oc_constructor_template, oc_implicit_default_constructor, oc_implicit_copy_constructor, oc_implicit_copy_assignment }; OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, FunctionDecl *Fn, std::string &Description) { bool isTemplate = false; if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { isTemplate = true; Description = S.getTemplateArgumentBindingsText( FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); } if (CXXConstructorDecl *Ctor = dyn_cast(Fn)) { if (!Ctor->isImplicit()) return isTemplate ? oc_constructor_template : oc_constructor; return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor : oc_implicit_default_constructor; } if (CXXMethodDecl *Meth = dyn_cast(Fn)) { // This actually gets spelled 'candidate function' for now, but // it doesn't hurt to split it out. if (!Meth->isImplicit()) return isTemplate ? oc_method_template : oc_method; assert(Meth->isCopyAssignment() && "implicit method is not copy assignment operator?"); return oc_implicit_copy_assignment; } return isTemplate ? oc_function_template : oc_function; } } // end anonymous namespace // Notes the location of an overload candidate. void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { std::string FnDesc; OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); Diag(Fn->getLocation(), diag::note_ovl_candidate) << (unsigned) K << FnDesc; } /// Diagnoses an ambiguous conversion. The partial diagnostic is the /// "lead" diagnostic; it will be given two arguments, the source and /// target types of the conversion. void ImplicitConversionSequence::DiagnoseAmbiguousConversion( Sema &S, SourceLocation CaretLoc, const PartialDiagnostic &PDiag) const { S.Diag(CaretLoc, PDiag) << Ambiguous.getFromType() << Ambiguous.getToType(); for (AmbiguousConversionSequence::const_iterator I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { S.NoteOverloadCandidate(*I); } } namespace { void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { const ImplicitConversionSequence &Conv = Cand->Conversions[I]; assert(Conv.isBad()); assert(Cand->Function && "for now, candidate must be a function"); FunctionDecl *Fn = Cand->Function; // There's a conversion slot for the object argument if this is a // non-constructor method. Note that 'I' corresponds the // conversion-slot index. bool isObjectArgument = false; if (isa(Fn) && !isa(Fn)) { if (I == 0) isObjectArgument = true; else I--; } std::string FnDesc; OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); Expr *FromExpr = Conv.Bad.FromExpr; QualType FromTy = Conv.Bad.getFromType(); QualType ToTy = Conv.Bad.getToType(); if (FromTy == S.Context.OverloadTy) { assert(FromExpr && "overload set argument came from implicit argument?"); Expr *E = FromExpr->IgnoreParens(); if (isa(E)) E = cast(E)->getSubExpr()->IgnoreParens(); DeclarationName Name = cast(E)->getName(); S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) << (unsigned) FnKind << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy << Name << I+1; return; } // Do some hand-waving analysis to see if the non-viability is due // to a qualifier mismatch. CanQualType CFromTy = S.Context.getCanonicalType(FromTy); CanQualType CToTy = S.Context.getCanonicalType(ToTy); if (CanQual RT = CToTy->getAs()) CToTy = RT->getPointeeType(); else { // TODO: detect and diagnose the full richness of const mismatches. if (CanQual FromPT = CFromTy->getAs()) if (CanQual ToPT = CToTy->getAs()) CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); } if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { // It is dumb that we have to do this here. while (isa(CFromTy)) CFromTy = CFromTy->getAs()->getElementType(); while (isa(CToTy)) CToTy = CFromTy->getAs()->getElementType(); Qualifiers FromQs = CFromTy.getQualifiers(); Qualifiers ToQs = CToTy.getQualifiers(); if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) << (unsigned) FnKind << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy << FromQs.getAddressSpace() << ToQs.getAddressSpace() << (unsigned) isObjectArgument << I+1; return; } unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); assert(CVR && "unexpected qualifiers mismatch"); if (isObjectArgument) { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) << (unsigned) FnKind << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy << (CVR - 1); } else { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) << (unsigned) FnKind << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy << (CVR - 1) << I+1; } return; } // Diagnose references or pointers to incomplete types differently, // since it's far from impossible that the incompleteness triggered // the failure. QualType TempFromTy = FromTy.getNonReferenceType(); if (const PointerType *PTy = TempFromTy->getAs()) TempFromTy = PTy->getPointeeType(); if (TempFromTy->isIncompleteType()) { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) << (unsigned) FnKind << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy << ToTy << (unsigned) isObjectArgument << I+1; return; } // Diagnose base -> derived pointer conversions. unsigned BaseToDerivedConversion = 0; if (const PointerType *FromPtrTy = FromTy->getAs()) { if (const PointerType *ToPtrTy = ToTy->getAs()) { if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( FromPtrTy->getPointeeType()) && !FromPtrTy->getPointeeType()->isIncompleteType() && !ToPtrTy->getPointeeType()->isIncompleteType() && S.IsDerivedFrom(ToPtrTy->getPointeeType(), FromPtrTy->getPointeeType())) BaseToDerivedConversion = 1; } } else if (const ObjCObjectPointerType *FromPtrTy = FromTy->getAs()) { if (const ObjCObjectPointerType *ToPtrTy = ToTy->getAs()) if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( FromPtrTy->getPointeeType()) && FromIface->isSuperClassOf(ToIface)) BaseToDerivedConversion = 2; } else if (const ReferenceType *ToRefTy = ToTy->getAs()) { if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && !FromTy->isIncompleteType() && !ToRefTy->getPointeeType()->isIncompleteType() && S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) BaseToDerivedConversion = 3; } if (BaseToDerivedConversion) { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv) << (unsigned) FnKind << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << (BaseToDerivedConversion - 1) << FromTy << ToTy << I+1; return; } // TODO: specialize more based on the kind of mismatch S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) << (unsigned) FnKind << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy << ToTy << (unsigned) isObjectArgument << I+1; } void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, unsigned NumFormalArgs) { // TODO: treat calls to a missing default constructor as a special case FunctionDecl *Fn = Cand->Function; const FunctionProtoType *FnTy = Fn->getType()->getAs(); unsigned MinParams = Fn->getMinRequiredArguments(); // at least / at most / exactly // FIXME: variadic templates "at most" should account for parameter packs unsigned mode, modeCount; if (NumFormalArgs < MinParams) { assert((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) mode = 0; // "at least" else mode = 2; // "exactly" modeCount = MinParams; } else { assert((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); if (MinParams != FnTy->getNumArgs()) mode = 1; // "at most" else mode = 2; // "exactly" modeCount = FnTy->getNumArgs(); } std::string Description; OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode << modeCount << NumFormalArgs; } /// Diagnose a failed template-argument deduction. void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, Expr **Args, unsigned NumArgs) { FunctionDecl *Fn = Cand->Function; // pattern TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); NamedDecl *ParamD; (ParamD = Param.dyn_cast()) || (ParamD = Param.dyn_cast()) || (ParamD = Param.dyn_cast()); switch (Cand->DeductionFailure.Result) { case Sema::TDK_Success: llvm_unreachable("TDK_success while diagnosing bad deduction"); case Sema::TDK_Incomplete: { assert(ParamD && "no parameter found for incomplete deduction result"); S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) << ParamD->getDeclName(); return; } case Sema::TDK_Underqualified: { assert(ParamD && "no parameter found for bad qualifiers deduction result"); TemplateTypeParmDecl *TParam = cast(ParamD); QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); // Param will have been canonicalized, but it should just be a // qualified version of ParamD, so move the qualifiers to that. QualifierCollector Qs(S.Context); Qs.strip(Param); QualType NonCanonParam = Qs.apply(TParam->getTypeForDecl()); assert(S.Context.hasSameType(Param, NonCanonParam)); // Arg has also been canonicalized, but there's nothing we can do // about that. It also doesn't matter as much, because it won't // have any template parameters in it (because deduction isn't // done on dependent types). QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) << ParamD->getDeclName() << Arg << NonCanonParam; return; } case Sema::TDK_Inconsistent: { assert(ParamD && "no parameter found for inconsistent deduction result"); int which = 0; if (isa(ParamD)) which = 0; else if (isa(ParamD)) which = 1; else { which = 2; } S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) << which << ParamD->getDeclName() << *Cand->DeductionFailure.getFirstArg() << *Cand->DeductionFailure.getSecondArg(); return; } case Sema::TDK_InvalidExplicitArguments: assert(ParamD && "no parameter found for invalid explicit arguments"); if (ParamD->getDeclName()) S.Diag(Fn->getLocation(), diag::note_ovl_candidate_explicit_arg_mismatch_named) << ParamD->getDeclName(); else { int index = 0; if (TemplateTypeParmDecl *TTP = dyn_cast(ParamD)) index = TTP->getIndex(); else if (NonTypeTemplateParmDecl *NTTP = dyn_cast(ParamD)) index = NTTP->getIndex(); else index = cast(ParamD)->getIndex(); S.Diag(Fn->getLocation(), diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) << (index + 1); } return; case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: DiagnoseArityMismatch(S, Cand, NumArgs); return; case Sema::TDK_InstantiationDepth: S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); return; case Sema::TDK_SubstitutionFailure: { std::string ArgString; if (TemplateArgumentList *Args = Cand->DeductionFailure.getTemplateArgumentList()) ArgString = S.getTemplateArgumentBindingsText( Fn->getDescribedFunctionTemplate()->getTemplateParameters(), *Args); S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) << ArgString; return; } // TODO: diagnose these individually, then kill off // note_ovl_candidate_bad_deduction, which is uselessly vague. case Sema::TDK_NonDeducedMismatch: case Sema::TDK_FailedOverloadResolution: S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); return; } } /// Generates a 'note' diagnostic for an overload candidate. We've /// already generated a primary error at the call site. /// /// It really does need to be a single diagnostic with its caret /// pointed at the candidate declaration. Yes, this creates some /// major challenges of technical writing. Yes, this makes pointing /// out problems with specific arguments quite awkward. It's still /// better than generating twenty screens of text for every failed /// overload. /// /// It would be great to be able to express per-candidate problems /// more richly for those diagnostic clients that cared, but we'd /// still have to be just as careful with the default diagnostics. void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, Expr **Args, unsigned NumArgs) { FunctionDecl *Fn = Cand->Function; // Note deleted candidates, but only if they're viable. if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr())) { std::string FnDesc; OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) << FnKind << FnDesc << Fn->isDeleted(); return; } // We don't really have anything else to say about viable candidates. if (Cand->Viable) { S.NoteOverloadCandidate(Fn); return; } switch (Cand->FailureKind) { case ovl_fail_too_many_arguments: case ovl_fail_too_few_arguments: return DiagnoseArityMismatch(S, Cand, NumArgs); case ovl_fail_bad_deduction: return DiagnoseBadDeduction(S, Cand, Args, NumArgs); case ovl_fail_trivial_conversion: case ovl_fail_bad_final_conversion: case ovl_fail_final_conversion_not_exact: return S.NoteOverloadCandidate(Fn); case ovl_fail_bad_conversion: { unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); for (unsigned N = Cand->Conversions.size(); I != N; ++I) if (Cand->Conversions[I].isBad()) return DiagnoseBadConversion(S, Cand, I); // FIXME: this currently happens when we're called from SemaInit // when user-conversion overload fails. Figure out how to handle // those conditions and diagnose them well. return S.NoteOverloadCandidate(Fn); } } } void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { // Desugar the type of the surrogate down to a function type, // retaining as many typedefs as possible while still showing // the function type (and, therefore, its parameter types). QualType FnType = Cand->Surrogate->getConversionType(); bool isLValueReference = false; bool isRValueReference = false; bool isPointer = false; if (const LValueReferenceType *FnTypeRef = FnType->getAs()) { FnType = FnTypeRef->getPointeeType(); isLValueReference = true; } else if (const RValueReferenceType *FnTypeRef = FnType->getAs()) { FnType = FnTypeRef->getPointeeType(); isRValueReference = true; } if (const PointerType *FnTypePtr = FnType->getAs()) { FnType = FnTypePtr->getPointeeType(); isPointer = true; } // Desugar down to a function type. FnType = QualType(FnType->getAs(), 0); // Reconstruct the pointer/reference as appropriate. if (isPointer) FnType = S.Context.getPointerType(FnType); if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) << FnType; } void NoteBuiltinOperatorCandidate(Sema &S, const char *Opc, SourceLocation OpLoc, OverloadCandidate *Cand) { assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); std::string TypeStr("operator"); TypeStr += Opc; TypeStr += "("; TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); if (Cand->Conversions.size() == 1) { TypeStr += ")"; S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; } else { TypeStr += ", "; TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); TypeStr += ")"; S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; } } void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, OverloadCandidate *Cand) { unsigned NoOperands = Cand->Conversions.size(); for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; if (ICS.isBad()) break; // all meaningless after first invalid if (!ICS.isAmbiguous()) continue; ICS.DiagnoseAmbiguousConversion(S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion)); } } SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { if (Cand->Function) return Cand->Function->getLocation(); if (Cand->IsSurrogate) return Cand->Surrogate->getLocation(); return SourceLocation(); } struct CompareOverloadCandidatesForDisplay { Sema &S; CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} bool operator()(const OverloadCandidate *L, const OverloadCandidate *R) { // Fast-path this check. if (L == R) return false; // Order first by viability. if (L->Viable) { if (!R->Viable) return true; // TODO: introduce a tri-valued comparison for overload // candidates. Would be more worthwhile if we had a sort // that could exploit it. if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; } else if (R->Viable) return false; assert(L->Viable == R->Viable); // Criteria by which we can sort non-viable candidates: if (!L->Viable) { // 1. Arity mismatches come after other candidates. if (L->FailureKind == ovl_fail_too_many_arguments || L->FailureKind == ovl_fail_too_few_arguments) return false; if (R->FailureKind == ovl_fail_too_many_arguments || R->FailureKind == ovl_fail_too_few_arguments) return true; // 2. Bad conversions come first and are ordered by the number // of bad conversions and quality of good conversions. if (L->FailureKind == ovl_fail_bad_conversion) { if (R->FailureKind != ovl_fail_bad_conversion) return true; // If there's any ordering between the defined conversions... // FIXME: this might not be transitive. assert(L->Conversions.size() == R->Conversions.size()); int leftBetter = 0; unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); for (unsigned E = L->Conversions.size(); I != E; ++I) { switch (CompareImplicitConversionSequences(S, L->Conversions[I], R->Conversions[I])) { case ImplicitConversionSequence::Better: leftBetter++; break; case ImplicitConversionSequence::Worse: leftBetter--; break; case ImplicitConversionSequence::Indistinguishable: break; } } if (leftBetter > 0) return true; if (leftBetter < 0) return false; } else if (R->FailureKind == ovl_fail_bad_conversion) return false; // TODO: others? } // Sort everything else by location. SourceLocation LLoc = GetLocationForCandidate(L); SourceLocation RLoc = GetLocationForCandidate(R); // Put candidates without locations (e.g. builtins) at the end. if (LLoc.isInvalid()) return false; if (RLoc.isInvalid()) return true; return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); } }; /// CompleteNonViableCandidate - Normally, overload resolution only /// computes up to the first void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, Expr **Args, unsigned NumArgs) { assert(!Cand->Viable); // Don't do anything on failures other than bad conversion. if (Cand->FailureKind != ovl_fail_bad_conversion) return; // Skip forward to the first bad conversion. unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); unsigned ConvCount = Cand->Conversions.size(); while (true) { assert(ConvIdx != ConvCount && "no bad conversion in candidate"); ConvIdx++; if (Cand->Conversions[ConvIdx - 1].isBad()) break; } if (ConvIdx == ConvCount) return; assert(!Cand->Conversions[ConvIdx].isInitialized() && "remaining conversion is initialized?"); // FIXME: this should probably be preserved from the overload // operation somehow. bool SuppressUserConversions = false; const FunctionProtoType* Proto; unsigned ArgIdx = ConvIdx; if (Cand->IsSurrogate) { QualType ConvType = Cand->Surrogate->getConversionType().getNonReferenceType(); if (const PointerType *ConvPtrType = ConvType->getAs()) ConvType = ConvPtrType->getPointeeType(); Proto = ConvType->getAs(); ArgIdx--; } else if (Cand->Function) { Proto = Cand->Function->getType()->getAs(); if (isa(Cand->Function) && !isa(Cand->Function)) ArgIdx--; } else { // Builtin binary operator with a bad first conversion. assert(ConvCount <= 3); for (; ConvIdx != ConvCount; ++ConvIdx) Cand->Conversions[ConvIdx] = TryCopyInitialization(S, Args[ConvIdx], Cand->BuiltinTypes.ParamTypes[ConvIdx], SuppressUserConversions, /*InOverloadResolution*/ true); return; } // Fill in the rest of the conversions. unsigned NumArgsInProto = Proto->getNumArgs(); for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { if (ArgIdx < NumArgsInProto) Cand->Conversions[ConvIdx] = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), SuppressUserConversions, /*InOverloadResolution=*/true); else Cand->Conversions[ConvIdx].setEllipsis(); } } } // end anonymous namespace /// PrintOverloadCandidates - When overload resolution fails, prints /// diagnostic messages containing the candidates in the candidate /// set. void OverloadCandidateSet::NoteCandidates(Sema &S, OverloadCandidateDisplayKind OCD, Expr **Args, unsigned NumArgs, const char *Opc, SourceLocation OpLoc) { // Sort the candidates by viability and position. Sorting directly would // be prohibitive, so we make a set of pointers and sort those. llvm::SmallVector Cands; if (OCD == OCD_AllCandidates) Cands.reserve(size()); for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { if (Cand->Viable) Cands.push_back(Cand); else if (OCD == OCD_AllCandidates) { CompleteNonViableCandidate(S, Cand, Args, NumArgs); if (Cand->Function || Cand->IsSurrogate) Cands.push_back(Cand); // Otherwise, this a non-viable builtin candidate. We do not, in general, // want to list every possible builtin candidate. } } std::sort(Cands.begin(), Cands.end(), CompareOverloadCandidatesForDisplay(S)); bool ReportedAmbiguousConversions = false; llvm::SmallVectorImpl::iterator I, E; const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); unsigned CandsShown = 0; for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { OverloadCandidate *Cand = *I; // Set an arbitrary limit on the number of candidate functions we'll spam // the user with. FIXME: This limit should depend on details of the // candidate list. if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { break; } ++CandsShown; if (Cand->Function) NoteFunctionCandidate(S, Cand, Args, NumArgs); else if (Cand->IsSurrogate) NoteSurrogateCandidate(S, Cand); else { assert(Cand->Viable && "Non-viable built-in candidates are not added to Cands."); // Generally we only see ambiguities including viable builtin // operators if overload resolution got screwed up by an // ambiguous user-defined conversion. // // FIXME: It's quite possible for different conversions to see // different ambiguities, though. if (!ReportedAmbiguousConversions) { NoteAmbiguousUserConversions(S, OpLoc, Cand); ReportedAmbiguousConversions = true; } // If this is a viable builtin, print it. NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); } } if (I != E) S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); } static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { if (isa(E)) return S.CheckUnresolvedLookupAccess(cast(E), D); return S.CheckUnresolvedMemberAccess(cast(E), D); } /// ResolveAddressOfOverloadedFunction - Try to resolve the address of /// an overloaded function (C++ [over.over]), where @p From is an /// expression with overloaded function type and @p ToType is the type /// we're trying to resolve to. For example: /// /// @code /// int f(double); /// int f(int); /// /// int (*pfd)(double) = f; // selects f(double) /// @endcode /// /// This routine returns the resulting FunctionDecl if it could be /// resolved, and NULL otherwise. When @p Complain is true, this /// routine will emit diagnostics if there is an error. FunctionDecl * Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, bool Complain, DeclAccessPair &FoundResult) { QualType FunctionType = ToType; bool IsMember = false; if (const PointerType *ToTypePtr = ToType->getAs()) FunctionType = ToTypePtr->getPointeeType(); else if (const ReferenceType *ToTypeRef = ToType->getAs()) FunctionType = ToTypeRef->getPointeeType(); else if (const MemberPointerType *MemTypePtr = ToType->getAs()) { FunctionType = MemTypePtr->getPointeeType(); IsMember = true; } // C++ [over.over]p1: // [...] [Note: any redundant set of parentheses surrounding the // overloaded function name is ignored (5.1). ] // C++ [over.over]p1: // [...] The overloaded function name can be preceded by the & // operator. // However, remember whether the expression has member-pointer form: // C++ [expr.unary.op]p4: // A pointer to member is only formed when an explicit & is used // and its operand is a qualified-id not enclosed in // parentheses. OverloadExpr::FindResult Ovl = OverloadExpr::find(From); OverloadExpr *OvlExpr = Ovl.Expression; // We expect a pointer or reference to function, or a function pointer. FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); if (!FunctionType->isFunctionType()) { if (Complain) Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) << OvlExpr->getName() << ToType; return 0; } // If the overload expression doesn't have the form of a pointer to // member, don't try to convert it to a pointer-to-member type. if (IsMember && !Ovl.HasFormOfMemberPointer) { if (!Complain) return 0; // TODO: Should we condition this on whether any functions might // have matched, or is it more appropriate to do that in callers? // TODO: a fixit wouldn't hurt. Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) << ToType << OvlExpr->getSourceRange(); return 0; } TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; if (OvlExpr->hasExplicitTemplateArgs()) { OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); ExplicitTemplateArgs = &ETABuffer; } assert(From->getType() == Context.OverloadTy); // Look through all of the overloaded functions, searching for one // whose type matches exactly. llvm::SmallVector, 4> Matches; llvm::SmallVector NonMatches; bool FoundNonTemplateFunction = false; for (UnresolvedSetIterator I = OvlExpr->decls_begin(), E = OvlExpr->decls_end(); I != E; ++I) { // Look through any using declarations to find the underlying function. NamedDecl *Fn = (*I)->getUnderlyingDecl(); // C++ [over.over]p3: // Non-member functions and static member functions match // targets of type "pointer-to-function" or "reference-to-function." // Nonstatic member functions match targets of // type "pointer-to-member-function." // Note that according to DR 247, the containing class does not matter. if (FunctionTemplateDecl *FunctionTemplate = dyn_cast(Fn)) { if (CXXMethodDecl *Method = dyn_cast(FunctionTemplate->getTemplatedDecl())) { // Skip non-static function templates when converting to pointer, and // static when converting to member pointer. if (Method->isStatic() == IsMember) continue; } else if (IsMember) continue; // C++ [over.over]p2: // If the name is a function template, template argument deduction is // done (14.8.2.2), and if the argument deduction succeeds, the // resulting template argument list is used to generate a single // function template specialization, which is added to the set of // overloaded functions considered. // FIXME: We don't really want to build the specialization here, do we? FunctionDecl *Specialization = 0; TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); if (TemplateDeductionResult Result = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, FunctionType, Specialization, Info)) { // FIXME: make a note of the failed deduction for diagnostics. (void)Result; } else { // FIXME: If the match isn't exact, shouldn't we just drop this as // a candidate? Find a testcase before changing the code. assert(FunctionType == Context.getCanonicalType(Specialization->getType())); Matches.push_back(std::make_pair(I.getPair(), cast(Specialization->getCanonicalDecl()))); } continue; } if (CXXMethodDecl *Method = dyn_cast(Fn)) { // Skip non-static functions when converting to pointer, and static // when converting to member pointer. if (Method->isStatic() == IsMember) continue; // If we have explicit template arguments, skip non-templates. if (OvlExpr->hasExplicitTemplateArgs()) continue; } else if (IsMember) continue; if (FunctionDecl *FunDecl = dyn_cast(Fn)) { QualType ResultTy; if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, ResultTy)) { Matches.push_back(std::make_pair(I.getPair(), cast(FunDecl->getCanonicalDecl()))); FoundNonTemplateFunction = true; } } } // If there were 0 or 1 matches, we're done. if (Matches.empty()) { if (Complain) { Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) << OvlExpr->getName() << FunctionType; for (UnresolvedSetIterator I = OvlExpr->decls_begin(), E = OvlExpr->decls_end(); I != E; ++I) if (FunctionDecl *F = dyn_cast((*I)->getUnderlyingDecl())) NoteOverloadCandidate(F); } return 0; } else if (Matches.size() == 1) { FunctionDecl *Result = Matches[0].second; FoundResult = Matches[0].first; MarkDeclarationReferenced(From->getLocStart(), Result); if (Complain) CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); return Result; } // C++ [over.over]p4: // If more than one function is selected, [...] if (!FoundNonTemplateFunction) { // [...] and any given function template specialization F1 is // eliminated if the set contains a second function template // specialization whose function template is more specialized // than the function template of F1 according to the partial // ordering rules of 14.5.5.2. // The algorithm specified above is quadratic. We instead use a // two-pass algorithm (similar to the one used to identify the // best viable function in an overload set) that identifies the // best function template (if it exists). UnresolvedSet<4> MatchesCopy; // TODO: avoid! for (unsigned I = 0, E = Matches.size(); I != E; ++I) MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); UnresolvedSetIterator Result = getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), TPOC_Other, From->getLocStart(), PDiag(), PDiag(diag::err_addr_ovl_ambiguous) << Matches[0].second->getDeclName(), PDiag(diag::note_ovl_candidate) << (unsigned) oc_function_template); assert(Result != MatchesCopy.end() && "no most-specialized template"); MarkDeclarationReferenced(From->getLocStart(), *Result); FoundResult = Matches[Result - MatchesCopy.begin()].first; if (Complain) { CheckUnresolvedAccess(*this, OvlExpr, FoundResult); DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc()); } return cast(*Result); } // [...] any function template specializations in the set are // eliminated if the set also contains a non-template function, [...] for (unsigned I = 0, N = Matches.size(); I != N; ) { if (Matches[I].second->getPrimaryTemplate() == 0) ++I; else { Matches[I] = Matches[--N]; Matches.set_size(N); } } // [...] After such eliminations, if any, there shall remain exactly one // selected function. if (Matches.size() == 1) { MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); FoundResult = Matches[0].first; if (Complain) { CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc()); } return cast(Matches[0].second); } // FIXME: We should probably return the same thing that BestViableFunction // returns (even if we issue the diagnostics here). Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) << Matches[0].second->getDeclName(); for (unsigned I = 0, E = Matches.size(); I != E; ++I) NoteOverloadCandidate(Matches[I].second); return 0; } /// \brief Given an expression that refers to an overloaded function, try to /// resolve that overloaded function expression down to a single function. /// /// This routine can only resolve template-ids that refer to a single function /// template, where that template-id refers to a single template whose template /// arguments are either provided by the template-id or have defaults, /// as described in C++0x [temp.arg.explicit]p3. FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { // C++ [over.over]p1: // [...] [Note: any redundant set of parentheses surrounding the // overloaded function name is ignored (5.1). ] // C++ [over.over]p1: // [...] The overloaded function name can be preceded by the & // operator. if (From->getType() != Context.OverloadTy) return 0; OverloadExpr *OvlExpr = OverloadExpr::find(From).Expression; // If we didn't actually find any template-ids, we're done. if (!OvlExpr->hasExplicitTemplateArgs()) return 0; TemplateArgumentListInfo ExplicitTemplateArgs; OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); // Look through all of the overloaded functions, searching for one // whose type matches exactly. FunctionDecl *Matched = 0; for (UnresolvedSetIterator I = OvlExpr->decls_begin(), E = OvlExpr->decls_end(); I != E; ++I) { // C++0x [temp.arg.explicit]p3: // [...] In contexts where deduction is done and fails, or in contexts // where deduction is not done, if a template argument list is // specified and it, along with any default template arguments, // identifies a single function template specialization, then the // template-id is an lvalue for the function template specialization. FunctionTemplateDecl *FunctionTemplate = cast((*I)->getUnderlyingDecl()); // C++ [over.over]p2: // If the name is a function template, template argument deduction is // done (14.8.2.2), and if the argument deduction succeeds, the // resulting template argument list is used to generate a single // function template specialization, which is added to the set of // overloaded functions considered. FunctionDecl *Specialization = 0; TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); if (TemplateDeductionResult Result = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, Specialization, Info)) { // FIXME: make a note of the failed deduction for diagnostics. (void)Result; continue; } // Multiple matches; we can't resolve to a single declaration. if (Matched) return 0; Matched = Specialization; } return Matched; } /// \brief Add a single candidate to the overload set. static void AddOverloadedCallCandidate(Sema &S, DeclAccessPair FoundDecl, const TemplateArgumentListInfo *ExplicitTemplateArgs, Expr **Args, unsigned NumArgs, OverloadCandidateSet &CandidateSet, bool PartialOverloading) { NamedDecl *Callee = FoundDecl.getDecl(); if (isa(Callee)) Callee = cast(Callee)->getTargetDecl(); if (FunctionDecl *Func = dyn_cast(Callee)) { assert(!ExplicitTemplateArgs && "Explicit template arguments?"); S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, false, PartialOverloading); return; } if (FunctionTemplateDecl *FuncTemplate = dyn_cast(Callee)) { S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, ExplicitTemplateArgs, Args, NumArgs, CandidateSet); return; } assert(false && "unhandled case in overloaded call candidate"); // do nothing? } /// \brief Add the overload candidates named by callee and/or found by argument /// dependent lookup to the given overload set. void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, Expr **Args, unsigned NumArgs, OverloadCandidateSet &CandidateSet, bool PartialOverloading) { #ifndef NDEBUG // Verify that ArgumentDependentLookup is consistent with the rules // in C++0x [basic.lookup.argdep]p3: // // Let X be the lookup set produced by unqualified lookup (3.4.1) // and let Y be the lookup set produced by argument dependent // lookup (defined as follows). If X contains // // -- a declaration of a class member, or // // -- a block-scope function declaration that is not a // using-declaration, or // // -- a declaration that is neither a function or a function // template // // then Y is empty. if (ULE->requiresADL()) { for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) { assert(!(*I)->getDeclContext()->isRecord()); assert(isa(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()); assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); } } #endif // It would be nice to avoid this copy. TemplateArgumentListInfo TABuffer; const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; if (ULE->hasExplicitTemplateArgs()) { ULE->copyTemplateArgumentsInto(TABuffer); ExplicitTemplateArgs = &TABuffer; } for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, NumArgs, CandidateSet, PartialOverloading); if (ULE->requiresADL()) AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, Args, NumArgs, ExplicitTemplateArgs, CandidateSet, PartialOverloading); } /// Attempts to recover from a call where no functions were found. /// /// Returns true if new candidates were found. static ExprResult BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { CXXScopeSpec SS; if (ULE->getQualifier()) { SS.setScopeRep(ULE->getQualifier()); SS.setRange(ULE->getQualifierRange()); } TemplateArgumentListInfo TABuffer; const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; if (ULE->hasExplicitTemplateArgs()) { ULE->copyTemplateArgumentsInto(TABuffer); ExplicitTemplateArgs = &TABuffer; } LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), Sema::LookupOrdinaryName); if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)) return ExprError(); assert(!R.empty() && "lookup results empty despite recovery"); // Build an implicit member call if appropriate. Just drop the // casts and such from the call, we don't really care. ExprResult NewFn = ExprError(); if ((*R.begin())->isCXXClassMember()) NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); else if (ExplicitTemplateArgs) NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); else NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); if (NewFn.isInvalid()) return ExprError(); // This shouldn't cause an infinite loop because we're giving it // an expression with non-empty lookup results, which should never // end up here. return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, MultiExprArg(Args, NumArgs), CommaLocs, RParenLoc); } /// ResolveOverloadedCallFn - Given the call expression that calls Fn /// (which eventually refers to the declaration Func) and the call /// arguments Args/NumArgs, attempt to resolve the function call down /// to a specific function. If overload resolution succeeds, returns /// the function declaration produced by overload /// resolution. Otherwise, emits diagnostics, deletes all of the /// arguments and Fn, and returns NULL. ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { #ifndef NDEBUG if (ULE->requiresADL()) { // To do ADL, we must have found an unqualified name. assert(!ULE->getQualifier() && "qualified name with ADL"); // We don't perform ADL for implicit declarations of builtins. // Verify that this was correctly set up. FunctionDecl *F; if (ULE->decls_begin() + 1 == ULE->decls_end() && (F = dyn_cast(*ULE->decls_begin())) && F->getBuiltinID() && F->isImplicit()) assert(0 && "performing ADL for builtin"); // We don't perform ADL in C. assert(getLangOptions().CPlusPlus && "ADL enabled in C"); } #endif OverloadCandidateSet CandidateSet(Fn->getExprLoc()); // Add the functions denoted by the callee to the set of candidate // functions, including those from argument-dependent lookup. AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); // If we found nothing, try to recover. // AddRecoveryCallCandidates diagnoses the error itself, so we just // bailout out if it fails. if (CandidateSet.empty()) return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, CommaLocs, RParenLoc); OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { case OR_Success: { FunctionDecl *FDecl = Best->Function; CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc()); Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); } case OR_No_Viable_Function: Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_no_viable_function_in_call) << ULE->getName() << Fn->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); break; case OR_Ambiguous: Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) << ULE->getName() << Fn->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); break; case OR_Deleted: Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) << Best->Function->isDeleted() << ULE->getName() << Fn->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); break; } // Overload resolution failed. return ExprError(); } static bool IsOverloaded(const UnresolvedSetImpl &Functions) { return Functions.size() > 1 || (Functions.size() == 1 && isa(*Functions.begin())); } /// \brief Create a unary operation that may resolve to an overloaded /// operator. /// /// \param OpLoc The location of the operator itself (e.g., '*'). /// /// \param OpcIn The UnaryOperator::Opcode that describes this /// operator. /// /// \param Functions The set of non-member functions that will be /// considered by overload resolution. The caller needs to build this /// set based on the context using, e.g., /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This /// set should not contain any member functions; those will be added /// by CreateOverloadedUnaryOp(). /// /// \param input The input argument. ExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, const UnresolvedSetImpl &Fns, Expr *Input) { UnaryOperator::Opcode Opc = static_cast(OpcIn); OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); // TODO: provide better source location info. DeclarationNameInfo OpNameInfo(OpName, OpLoc); Expr *Args[2] = { Input, 0 }; unsigned NumArgs = 1; // For post-increment and post-decrement, add the implicit '0' as // the second argument, so that we know this is a post-increment or // post-decrement. if (Opc == UO_PostInc || Opc == UO_PostDec) { llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, SourceLocation()); NumArgs = 2; } if (Input->isTypeDependent()) { if (Fns.empty()) return Owned(new (Context) UnaryOperator(Input, Opc, Context.DependentTy, OpLoc)); CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 0, SourceRange(), OpNameInfo, /*ADL*/ true, IsOverloaded(Fns), Fns.begin(), Fns.end()); return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, &Args[0], NumArgs, Context.DependentTy, OpLoc)); } // Build an empty overload set. OverloadCandidateSet CandidateSet(OpLoc); // Add the candidates from the given function set. AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); // Add operator candidates that are member functions. AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); // Add candidates from ADL. AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, Args, NumArgs, /*ExplicitTemplateArgs*/ 0, CandidateSet); // Add builtin operator candidates. AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, Best->FoundDecl, Method)) return ExprError(); } else { // Convert the arguments. ExprResult InputInit = PerformCopyInitialization(InitializedEntity::InitializeParameter( FnDecl->getParamDecl(0)), SourceLocation(), Input); if (InputInit.isInvalid()) return ExprError(); Input = InputInit.take(); } DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); // Determine the result type QualType ResultTy = FnDecl->getCallResultType(); // Build the actual expression node. Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), SourceLocation()); UsualUnaryConversions(FnExpr); Args[0] = Input; CallExpr *TheCall = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, Args, NumArgs, ResultTy, OpLoc); if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, FnDecl)) return ExprError(); return MaybeBindToTemporary(TheCall); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], Best->Conversions[0], AA_Passing)) return ExprError(); break; } } case OR_No_Viable_Function: // No viable function; fall through to handling this as a // built-in operator, which will produce an error message for us. break; case OR_Ambiguous: Diag(OpLoc, diag::err_ovl_ambiguous_oper) << UnaryOperator::getOpcodeStr(Opc) << Input->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs, UnaryOperator::getOpcodeStr(Opc), OpLoc); return ExprError(); case OR_Deleted: Diag(OpLoc, diag::err_ovl_deleted_oper) << Best->Function->isDeleted() << UnaryOperator::getOpcodeStr(Opc) << Input->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); return ExprError(); } // Either we found no viable overloaded operator or we matched a // built-in operator. In either case, fall through to trying to // build a built-in operation. return CreateBuiltinUnaryOp(OpLoc, Opc, Input); } /// \brief Create a binary operation that may resolve to an overloaded /// operator. /// /// \param OpLoc The location of the operator itself (e.g., '+'). /// /// \param OpcIn The BinaryOperator::Opcode that describes this /// operator. /// /// \param Functions The set of non-member functions that will be /// considered by overload resolution. The caller needs to build this /// set based on the context using, e.g., /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This /// set should not contain any member functions; those will be added /// by CreateOverloadedBinOp(). /// /// \param LHS Left-hand argument. /// \param RHS Right-hand argument. ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, unsigned OpcIn, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS) { Expr *Args[2] = { LHS, RHS }; LHS=RHS=0; //Please use only Args instead of LHS/RHS couple BinaryOperator::Opcode Opc = static_cast(OpcIn); OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); // If either side is type-dependent, create an appropriate dependent // expression. if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { if (Fns.empty()) { // If there are no functions to store, just build a dependent // BinaryOperator or CompoundAssignment. if (Opc <= BO_Assign || Opc > BO_OrAssign) return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, Context.DependentTy, OpLoc)); return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, Context.DependentTy, Context.DependentTy, Context.DependentTy, OpLoc)); } // FIXME: save results of ADL from here? CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators // TODO: provide better source location info in DNLoc component. DeclarationNameInfo OpNameInfo(OpName, OpLoc); UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 0, SourceRange(), OpNameInfo, /*ADL*/ true, IsOverloaded(Fns), Fns.begin(), Fns.end()); return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, Args, 2, Context.DependentTy, OpLoc)); } // If this is the .* operator, which is not overloadable, just // create a built-in binary operator. if (Opc == BO_PtrMemD) return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); // If this is the assignment operator, we only perform overload resolution // if the left-hand side is a class or enumeration type. This is actually // a hack. The standard requires that we do overload resolution between the // various built-in candidates, but as DR507 points out, this can lead to // problems. So we do it this way, which pretty much follows what GCC does. // Note that we go the traditional code path for compound assignment forms. if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); // Build an empty overload set. OverloadCandidateSet CandidateSet(OpLoc); // Add the candidates from the given function set. AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); // Add operator candidates that are member functions. AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); // Add candidates from ADL. AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, Args, 2, /*ExplicitTemplateArgs*/ 0, CandidateSet); // Add builtin operator candidates. AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { // Best->Access is only meaningful for class members. CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); ExprResult Arg1 = PerformCopyInitialization( InitializedEntity::InitializeParameter( FnDecl->getParamDecl(0)), SourceLocation(), Owned(Args[1])); if (Arg1.isInvalid()) return ExprError(); if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, Best->FoundDecl, Method)) return ExprError(); Args[1] = RHS = Arg1.takeAs(); } else { // Convert the arguments. ExprResult Arg0 = PerformCopyInitialization( InitializedEntity::InitializeParameter( FnDecl->getParamDecl(0)), SourceLocation(), Owned(Args[0])); if (Arg0.isInvalid()) return ExprError(); ExprResult Arg1 = PerformCopyInitialization( InitializedEntity::InitializeParameter( FnDecl->getParamDecl(1)), SourceLocation(), Owned(Args[1])); if (Arg1.isInvalid()) return ExprError(); Args[0] = LHS = Arg0.takeAs(); Args[1] = RHS = Arg1.takeAs(); } DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); // Determine the result type QualType ResultTy = FnDecl->getType()->getAs() ->getCallResultType(Context); // Build the actual expression node. Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), OpLoc); UsualUnaryConversions(FnExpr); CXXOperatorCallExpr *TheCall = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, Args, 2, ResultTy, OpLoc); if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, FnDecl)) return ExprError(); return MaybeBindToTemporary(TheCall); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], Best->Conversions[0], AA_Passing) || PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], Best->Conversions[1], AA_Passing)) return ExprError(); break; } } case OR_No_Viable_Function: { // C++ [over.match.oper]p9: // If the operator is the operator , [...] and there are no // viable functions, then the operator is assumed to be the // built-in operator and interpreted according to clause 5. if (Opc == BO_Comma) break; // For class as left operand for assignment or compound assigment operator // do not fall through to handling in built-in, but report that no overloaded // assignment operator found ExprResult Result = ExprError(); if (Args[0]->getType()->isRecordType() && Opc >= BO_Assign && Opc <= BO_OrAssign) { Diag(OpLoc, diag::err_ovl_no_viable_oper) << BinaryOperator::getOpcodeStr(Opc) << Args[0]->getSourceRange() << Args[1]->getSourceRange(); } else { // No viable function; try to create a built-in operation, which will // produce an error. Then, show the non-viable candidates. Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); } assert(Result.isInvalid() && "C++ binary operator overloading is missing candidates!"); if (Result.isInvalid()) CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, BinaryOperator::getOpcodeStr(Opc), OpLoc); return move(Result); } case OR_Ambiguous: Diag(OpLoc, diag::err_ovl_ambiguous_oper) << BinaryOperator::getOpcodeStr(Opc) << Args[0]->getSourceRange() << Args[1]->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, BinaryOperator::getOpcodeStr(Opc), OpLoc); return ExprError(); case OR_Deleted: Diag(OpLoc, diag::err_ovl_deleted_oper) << Best->Function->isDeleted() << BinaryOperator::getOpcodeStr(Opc) << Args[0]->getSourceRange() << Args[1]->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2); return ExprError(); } // We matched a built-in operator; build it. return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); } ExprResult Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, SourceLocation RLoc, Expr *Base, Expr *Idx) { Expr *Args[2] = { Base, Idx }; DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Subscript); // If either side is type-dependent, create an appropriate dependent // expression. if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators // CHECKME: no 'operator' keyword? DeclarationNameInfo OpNameInfo(OpName, LLoc); OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 0, SourceRange(), OpNameInfo, /*ADL*/ true, /*Overloaded*/ false, UnresolvedSetIterator(), UnresolvedSetIterator()); // Can't add any actual overloads yet return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args, 2, Context.DependentTy, RLoc)); } // Build an empty overload set. OverloadCandidateSet CandidateSet(LLoc); // Subscript can only be overloaded as a member function. // Add operator candidates that are member functions. AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); // Add builtin operator candidates. AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); DiagnoseUseOfDecl(Best->FoundDecl, LLoc); // Convert the arguments. CXXMethodDecl *Method = cast(FnDecl); if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, Best->FoundDecl, Method)) return ExprError(); // Convert the arguments. ExprResult InputInit = PerformCopyInitialization(InitializedEntity::InitializeParameter( FnDecl->getParamDecl(0)), SourceLocation(), Owned(Args[1])); if (InputInit.isInvalid()) return ExprError(); Args[1] = InputInit.takeAs(); // Determine the result type QualType ResultTy = FnDecl->getType()->getAs() ->getCallResultType(Context); // Build the actual expression node. Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), LLoc); UsualUnaryConversions(FnExpr); CXXOperatorCallExpr *TheCall = new (Context) CXXOperatorCallExpr(Context, OO_Subscript, FnExpr, Args, 2, ResultTy, RLoc); if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, FnDecl)) return ExprError(); return MaybeBindToTemporary(TheCall); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], Best->Conversions[0], AA_Passing) || PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], Best->Conversions[1], AA_Passing)) return ExprError(); break; } } case OR_No_Viable_Function: { if (CandidateSet.empty()) Diag(LLoc, diag::err_ovl_no_oper) << Args[0]->getType() << /*subscript*/ 0 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); else Diag(LLoc, diag::err_ovl_no_viable_subscript) << Args[0]->getType() << Args[0]->getSourceRange() << Args[1]->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, "[]", LLoc); return ExprError(); } case OR_Ambiguous: Diag(LLoc, diag::err_ovl_ambiguous_oper) << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, "[]", LLoc); return ExprError(); case OR_Deleted: Diag(LLoc, diag::err_ovl_deleted_oper) << Best->Function->isDeleted() << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, "[]", LLoc); return ExprError(); } // We matched a built-in operator; build it. return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); } /// BuildCallToMemberFunction - Build a call to a member /// function. MemExpr is the expression that refers to the member /// function (and includes the object parameter), Args/NumArgs are the /// arguments to the function call (not including the object /// parameter). The caller needs to validate that the member /// expression refers to a member function or an overloaded member /// function. ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { // Dig out the member expression. This holds both the object // argument and the member function we're referring to. Expr *NakedMemExpr = MemExprE->IgnoreParens(); MemberExpr *MemExpr; CXXMethodDecl *Method = 0; DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); NestedNameSpecifier *Qualifier = 0; if (isa(NakedMemExpr)) { MemExpr = cast(NakedMemExpr); Method = cast(MemExpr->getMemberDecl()); FoundDecl = MemExpr->getFoundDecl(); Qualifier = MemExpr->getQualifier(); } else { UnresolvedMemberExpr *UnresExpr = cast(NakedMemExpr); Qualifier = UnresExpr->getQualifier(); QualType ObjectType = UnresExpr->getBaseType(); // Add overload candidates OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); // FIXME: avoid copy. TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; if (UnresExpr->hasExplicitTemplateArgs()) { UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); TemplateArgs = &TemplateArgsBuffer; } for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), E = UnresExpr->decls_end(); I != E; ++I) { NamedDecl *Func = *I; CXXRecordDecl *ActingDC = cast(Func->getDeclContext()); if (isa(Func)) Func = cast(Func)->getTargetDecl(); if ((Method = dyn_cast(Func))) { // If explicit template arguments were provided, we can't call a // non-template member function. if (TemplateArgs) continue; AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, Args, NumArgs, CandidateSet, /*SuppressUserConversions=*/false); } else { AddMethodTemplateCandidate(cast(Func), I.getPair(), ActingDC, TemplateArgs, ObjectType, Args, NumArgs, CandidateSet, /*SuppressUsedConversions=*/false); } } DeclarationName DeclName = UnresExpr->getMemberName(); OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), Best)) { case OR_Success: Method = cast(Best->Function); FoundDecl = Best->FoundDecl; CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); break; case OR_No_Viable_Function: Diag(UnresExpr->getMemberLoc(), diag::err_ovl_no_viable_member_function_in_call) << DeclName << MemExprE->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); // FIXME: Leaking incoming expressions! return ExprError(); case OR_Ambiguous: Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) << DeclName << MemExprE->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); // FIXME: Leaking incoming expressions! return ExprError(); case OR_Deleted: Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) << Best->Function->isDeleted() << DeclName << MemExprE->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); // FIXME: Leaking incoming expressions! return ExprError(); } MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); // If overload resolution picked a static member, build a // non-member call based on that function. if (Method->isStatic()) { return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, NumArgs, RParenLoc); } MemExpr = cast(MemExprE->IgnoreParens()); } assert(Method && "Member call to something that isn't a method?"); CXXMemberCallExpr *TheCall = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, Method->getCallResultType(), RParenLoc); // Check for a valid return type. if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), TheCall, Method)) return ExprError(); // Convert the object argument (for a non-static member function call). // We only need to do this if there was actually an overload; otherwise // it was done at lookup. Expr *ObjectArg = MemExpr->getBase(); if (!Method->isStatic() && PerformObjectArgumentInitialization(ObjectArg, Qualifier, FoundDecl, Method)) return ExprError(); MemExpr->setBase(ObjectArg); // Convert the rest of the arguments const FunctionProtoType *Proto = Method->getType()->getAs(); if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, RParenLoc)) return ExprError(); if (CheckFunctionCall(Method, TheCall)) return ExprError(); return MaybeBindToTemporary(TheCall); } /// BuildCallToObjectOfClassType - Build a call to an object of class /// type (C++ [over.call.object]), which can end up invoking an /// overloaded function call operator (@c operator()) or performing a /// user-defined conversion on the object argument. ExprResult Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { assert(Object->getType()->isRecordType() && "Requires object type argument"); const RecordType *Record = Object->getType()->getAs(); // C++ [over.call.object]p1: // If the primary-expression E in the function call syntax // evaluates to a class object of type "cv T", then the set of // candidate functions includes at least the function call // operators of T. The function call operators of T are obtained by // ordinary lookup of the name operator() in the context of // (E).operator(). OverloadCandidateSet CandidateSet(LParenLoc); DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); if (RequireCompleteType(LParenLoc, Object->getType(), PDiag(diag::err_incomplete_object_call) << Object->getSourceRange())) return true; LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); LookupQualifiedName(R, Record->getDecl()); R.suppressDiagnostics(); for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); Oper != OperEnd; ++Oper) { AddMethodCandidate(Oper.getPair(), Object->getType(), Args, NumArgs, CandidateSet, /*SuppressUserConversions=*/ false); } // C++ [over.call.object]p2: // In addition, for each conversion function declared in T of the // form // // operator conversion-type-id () cv-qualifier; // // where cv-qualifier is the same cv-qualification as, or a // greater cv-qualification than, cv, and where conversion-type-id // denotes the type "pointer to function of (P1,...,Pn) returning // R", or the type "reference to pointer to function of // (P1,...,Pn) returning R", or the type "reference to function // of (P1,...,Pn) returning R", a surrogate call function [...] // is also considered as a candidate function. Similarly, // surrogate call functions are added to the set of candidate // functions for each conversion function declared in an // accessible base class provided the function is not hidden // within T by another intervening declaration. const UnresolvedSetImpl *Conversions = cast(Record->getDecl())->getVisibleConversionFunctions(); for (UnresolvedSetImpl::iterator I = Conversions->begin(), E = Conversions->end(); I != E; ++I) { NamedDecl *D = *I; CXXRecordDecl *ActingContext = cast(D->getDeclContext()); if (isa(D)) D = cast(D)->getTargetDecl(); // Skip over templated conversion functions; they aren't // surrogates. if (isa(D)) continue; CXXConversionDecl *Conv = cast(D); // Strip the reference type (if any) and then the pointer type (if // any) to get down to what might be a function type. QualType ConvType = Conv->getConversionType().getNonReferenceType(); if (const PointerType *ConvPtrType = ConvType->getAs()) ConvType = ConvPtrType->getPointeeType(); if (const FunctionProtoType *Proto = ConvType->getAs()) AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, Object->getType(), Args, NumArgs, CandidateSet); } // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, Object->getLocStart(), Best)) { case OR_Success: // Overload resolution succeeded; we'll build the appropriate call // below. break; case OR_No_Viable_Function: if (CandidateSet.empty()) Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) << Object->getType() << /*call*/ 1 << Object->getSourceRange(); else Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_viable_object_call) << Object->getType() << Object->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); break; case OR_Ambiguous: Diag(Object->getSourceRange().getBegin(), diag::err_ovl_ambiguous_object_call) << Object->getType() << Object->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); break; case OR_Deleted: Diag(Object->getSourceRange().getBegin(), diag::err_ovl_deleted_object_call) << Best->Function->isDeleted() << Object->getType() << Object->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); break; } if (Best == CandidateSet.end()) return true; if (Best->Function == 0) { // Since there is no function declaration, this is one of the // surrogate candidates. Dig out the conversion function. CXXConversionDecl *Conv = cast( Best->Conversions[0].UserDefined.ConversionFunction); CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); // We selected one of the surrogate functions that converts the // object parameter to a function pointer. Perform the conversion // on the object argument, then let ActOnCallExpr finish the job. // Create an implicit member expr to refer to the conversion operator. // and then call it. CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl, Conv); return ActOnCallExpr(S, CE, LParenLoc, MultiExprArg(Args, NumArgs), CommaLocs, RParenLoc); } CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); // We found an overloaded operator(). Build a CXXOperatorCallExpr // that calls this method, using Object for the implicit object // parameter and passing along the remaining arguments. CXXMethodDecl *Method = cast(Best->Function); const FunctionProtoType *Proto = Method->getType()->getAs(); unsigned NumArgsInProto = Proto->getNumArgs(); unsigned NumArgsToCheck = NumArgs; // Build the full argument list for the method call (the // implicit object parameter is placed at the beginning of the // list). Expr **MethodArgs; if (NumArgs < NumArgsInProto) { NumArgsToCheck = NumArgsInProto; MethodArgs = new Expr*[NumArgsInProto + 1]; } else { MethodArgs = new Expr*[NumArgs + 1]; } MethodArgs[0] = Object; for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) MethodArgs[ArgIdx + 1] = Args[ArgIdx]; Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), SourceLocation()); UsualUnaryConversions(NewFn); // Once we've built TheCall, all of the expressions are properly // owned. QualType ResultTy = Method->getCallResultType(); CXXOperatorCallExpr *TheCall = new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, MethodArgs, NumArgs + 1, ResultTy, RParenLoc); delete [] MethodArgs; if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, Method)) return true; // We may have default arguments. If so, we need to allocate more // slots in the call for them. if (NumArgs < NumArgsInProto) TheCall->setNumArgs(Context, NumArgsInProto + 1); else if (NumArgs > NumArgsInProto) NumArgsToCheck = NumArgsInProto; bool IsError = false; // Initialize the implicit object parameter. IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, Best->FoundDecl, Method); TheCall->setArg(0, Object); // Check the argument types. for (unsigned i = 0; i != NumArgsToCheck; i++) { Expr *Arg; if (i < NumArgs) { Arg = Args[i]; // Pass the argument. ExprResult InputInit = PerformCopyInitialization(InitializedEntity::InitializeParameter( Method->getParamDecl(i)), SourceLocation(), Arg); IsError |= InputInit.isInvalid(); Arg = InputInit.takeAs(); } else { ExprResult DefArg = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); if (DefArg.isInvalid()) { IsError = true; break; } Arg = DefArg.takeAs(); } TheCall->setArg(i + 1, Arg); } // If this is a variadic call, handle args passed through "...". if (Proto->isVariadic()) { // Promote the arguments (C99 6.5.2.2p7). for (unsigned i = NumArgsInProto; i != NumArgs; i++) { Expr *Arg = Args[i]; IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0); TheCall->setArg(i + 1, Arg); } } if (IsError) return true; if (CheckFunctionCall(Method, TheCall)) return true; return MaybeBindToTemporary(TheCall); } /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> /// (if one exists), where @c Base is an expression of class type and /// @c Member is the name of the member we're trying to find. ExprResult Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { assert(Base->getType()->isRecordType() && "left-hand side must have class type"); SourceLocation Loc = Base->getExprLoc(); // C++ [over.ref]p1: // // [...] An expression x->m is interpreted as (x.operator->())->m // for a class object x of type T if T::operator->() exists and if // the operator is selected as the best match function by the // overload resolution mechanism (13.3). DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); OverloadCandidateSet CandidateSet(Loc); const RecordType *BaseRecord = Base->getType()->getAs(); if (RequireCompleteType(Loc, Base->getType(), PDiag(diag::err_typecheck_incomplete_tag) << Base->getSourceRange())) return ExprError(); LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); LookupQualifiedName(R, BaseRecord->getDecl()); R.suppressDiagnostics(); for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); Oper != OperEnd; ++Oper) { AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet, /*SuppressUserConversions=*/false); } // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { case OR_Success: // Overload resolution succeeded; we'll build the call below. break; case OR_No_Viable_Function: if (CandidateSet.empty()) Diag(OpLoc, diag::err_typecheck_member_reference_arrow) << Base->getType() << Base->getSourceRange(); else Diag(OpLoc, diag::err_ovl_no_viable_oper) << "operator->" << Base->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); return ExprError(); case OR_Ambiguous: Diag(OpLoc, diag::err_ovl_ambiguous_oper) << "->" << Base->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); return ExprError(); case OR_Deleted: Diag(OpLoc, diag::err_ovl_deleted_oper) << Best->Function->isDeleted() << "->" << Base->getSourceRange(); CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); return ExprError(); } CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); // Convert the object parameter. CXXMethodDecl *Method = cast(Best->Function); if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, Best->FoundDecl, Method)) return ExprError(); // Build the operator call. Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), SourceLocation()); UsualUnaryConversions(FnExpr); QualType ResultTy = Method->getCallResultType(); CXXOperatorCallExpr *TheCall = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1, ResultTy, OpLoc); if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, Method)) return ExprError(); return Owned(TheCall); } /// FixOverloadedFunctionReference - E is an expression that refers to /// a C++ overloaded function (possibly with some parentheses and /// perhaps a '&' around it). We have resolved the overloaded function /// to the function declaration Fn, so patch up the expression E to /// refer (possibly indirectly) to Fn. Returns the new expr. Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, FunctionDecl *Fn) { if (ParenExpr *PE = dyn_cast(E)) { Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Found, Fn); if (SubExpr == PE->getSubExpr()) return PE->Retain(); return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); } if (ImplicitCastExpr *ICE = dyn_cast(E)) { Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Found, Fn); assert(Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && "Implicit cast type cannot be determined from overload"); assert(ICE->path_empty() && "fixing up hierarchy conversion?"); if (SubExpr == ICE->getSubExpr()) return ICE->Retain(); return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(), SubExpr, 0, ICE->getValueKind()); } if (UnaryOperator *UnOp = dyn_cast(E)) { assert(UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"); if (CXXMethodDecl *Method = dyn_cast(Fn)) { if (Method->isStatic()) { // Do nothing: static member functions aren't any different // from non-member functions. } else { // Fix the sub expression, which really has to be an // UnresolvedLookupExpr holding an overloaded member function // or template. Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Found, Fn); if (SubExpr == UnOp->getSubExpr()) return UnOp->Retain(); assert(isa(SubExpr) && "fixed to something other than a decl ref"); assert(cast(SubExpr)->getQualifier() && "fixed to a member ref with no nested name qualifier"); // We have taken the address of a pointer to member // function. Perform the computation here so that we get the // appropriate pointer to member type. QualType ClassType = Context.getTypeDeclType(cast(Method->getDeclContext())); QualType MemPtrType = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, UnOp->getOperatorLoc()); } } Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Found, Fn); if (SubExpr == UnOp->getSubExpr()) return UnOp->Retain(); return new (Context) UnaryOperator(SubExpr, UO_AddrOf, Context.getPointerType(SubExpr->getType()), UnOp->getOperatorLoc()); } if (UnresolvedLookupExpr *ULE = dyn_cast(E)) { // FIXME: avoid copy. TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; if (ULE->hasExplicitTemplateArgs()) { ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); TemplateArgs = &TemplateArgsBuffer; } return DeclRefExpr::Create(Context, ULE->getQualifier(), ULE->getQualifierRange(), Fn, ULE->getNameLoc(), Fn->getType(), TemplateArgs); } if (UnresolvedMemberExpr *MemExpr = dyn_cast(E)) { // FIXME: avoid copy. TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; if (MemExpr->hasExplicitTemplateArgs()) { MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); TemplateArgs = &TemplateArgsBuffer; } Expr *Base; // If we're filling in if (MemExpr->isImplicitAccess()) { if (cast(Fn)->isStatic()) { return DeclRefExpr::Create(Context, MemExpr->getQualifier(), MemExpr->getQualifierRange(), Fn, MemExpr->getMemberLoc(), Fn->getType(), TemplateArgs); } else { SourceLocation Loc = MemExpr->getMemberLoc(); if (MemExpr->getQualifier()) Loc = MemExpr->getQualifierRange().getBegin(); Base = new (Context) CXXThisExpr(Loc, MemExpr->getBaseType(), /*isImplicit=*/true); } } else Base = MemExpr->getBase()->Retain(); return MemberExpr::Create(Context, Base, MemExpr->isArrow(), MemExpr->getQualifier(), MemExpr->getQualifierRange(), Fn, Found, MemExpr->getMemberNameInfo(), TemplateArgs, Fn->getType()); } assert(false && "Invalid reference to overloaded function"); return E->Retain(); } ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, DeclAccessPair Found, FunctionDecl *Fn) { return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); } } // end namespace clang