//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines malloc/free checker, which checks for potential memory // leaks, double free, and use-after-free problems. // //===----------------------------------------------------------------------===// #include "ClangSACheckers.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" #include "llvm/ADT/ImmutableMap.h" using namespace clang; using namespace ento; namespace { class RefState { enum Kind { AllocateUnchecked, AllocateFailed, Released, Escaped, Relinquished } K; const Stmt *S; public: RefState(Kind k, const Stmt *s) : K(k), S(s) {} bool isAllocated() const { return K == AllocateUnchecked; } //bool isFailed() const { return K == AllocateFailed; } bool isReleased() const { return K == Released; } //bool isEscaped() const { return K == Escaped; } //bool isRelinquished() const { return K == Relinquished; } bool operator==(const RefState &X) const { return K == X.K && S == X.S; } static RefState getAllocateUnchecked(const Stmt *s) { return RefState(AllocateUnchecked, s); } static RefState getAllocateFailed() { return RefState(AllocateFailed, 0); } static RefState getReleased(const Stmt *s) { return RefState(Released, s); } static RefState getEscaped(const Stmt *s) { return RefState(Escaped, s); } static RefState getRelinquished(const Stmt *s) { return RefState(Relinquished, s); } void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(K); ID.AddPointer(S); } }; class RegionState {}; class MallocChecker : public Checker, check::Location, check::Bind, eval::Assume> { mutable llvm::OwningPtr BT_DoubleFree; mutable llvm::OwningPtr BT_Leak; mutable llvm::OwningPtr BT_UseFree; mutable llvm::OwningPtr BT_UseRelinquished; mutable llvm::OwningPtr BT_BadFree; mutable IdentifierInfo *II_malloc, *II_free, *II_realloc, *II_calloc; public: MallocChecker() : II_malloc(0), II_free(0), II_realloc(0), II_calloc(0) {} bool evalCall(const CallExpr *CE, CheckerContext &C) const; void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; void checkEndPath(EndOfFunctionNodeBuilder &B, ExprEngine &Eng) const; void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; const ProgramState *evalAssume(const ProgramState *state, SVal Cond, bool Assumption) const; void checkLocation(SVal l, bool isLoad, const Stmt *S, CheckerContext &C) const; void checkBind(SVal location, SVal val, const Stmt*S, CheckerContext &C) const; private: static void MallocMem(CheckerContext &C, const CallExpr *CE); static void MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, const OwnershipAttr* Att); static const ProgramState *MallocMemAux(CheckerContext &C, const CallExpr *CE, const Expr *SizeEx, SVal Init, const ProgramState *state) { return MallocMemAux(C, CE, state->getSVal(SizeEx), Init, state); } static const ProgramState *MallocMemAux(CheckerContext &C, const CallExpr *CE, SVal SizeEx, SVal Init, const ProgramState *state); void FreeMem(CheckerContext &C, const CallExpr *CE) const; void FreeMemAttr(CheckerContext &C, const CallExpr *CE, const OwnershipAttr* Att) const; const ProgramState *FreeMemAux(CheckerContext &C, const CallExpr *CE, const ProgramState *state, unsigned Num, bool Hold) const; void ReallocMem(CheckerContext &C, const CallExpr *CE) const; static void CallocMem(CheckerContext &C, const CallExpr *CE); static bool SummarizeValue(raw_ostream &os, SVal V); static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange range) const; }; } // end anonymous namespace typedef llvm::ImmutableMap RegionStateTy; namespace clang { namespace ento { template <> struct ProgramStateTrait : public ProgramStatePartialTrait { static void *GDMIndex() { static int x; return &x; } }; } } bool MallocChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { const ProgramState *state = C.getState(); const Expr *Callee = CE->getCallee(); SVal L = state->getSVal(Callee); const FunctionDecl *FD = L.getAsFunctionDecl(); if (!FD) return false; ASTContext &Ctx = C.getASTContext(); if (!II_malloc) II_malloc = &Ctx.Idents.get("malloc"); if (!II_free) II_free = &Ctx.Idents.get("free"); if (!II_realloc) II_realloc = &Ctx.Idents.get("realloc"); if (!II_calloc) II_calloc = &Ctx.Idents.get("calloc"); if (FD->getIdentifier() == II_malloc) { MallocMem(C, CE); return true; } if (FD->getIdentifier() == II_free) { FreeMem(C, CE); return true; } if (FD->getIdentifier() == II_realloc) { ReallocMem(C, CE); return true; } if (FD->getIdentifier() == II_calloc) { CallocMem(C, CE); return true; } // Check all the attributes, if there are any. // There can be multiple of these attributes. bool rv = false; if (FD->hasAttrs()) { for (specific_attr_iterator i = FD->specific_attr_begin(), e = FD->specific_attr_end(); i != e; ++i) { switch ((*i)->getOwnKind()) { case OwnershipAttr::Returns: { MallocMemReturnsAttr(C, CE, *i); rv = true; break; } case OwnershipAttr::Takes: case OwnershipAttr::Holds: { FreeMemAttr(C, CE, *i); rv = true; break; } default: break; } } } return rv; } void MallocChecker::MallocMem(CheckerContext &C, const CallExpr *CE) { const ProgramState *state = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), C.getState()); C.addTransition(state); } void MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, const OwnershipAttr* Att) { if (Att->getModule() != "malloc") return; OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); if (I != E) { const ProgramState *state = MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), C.getState()); C.addTransition(state); return; } const ProgramState *state = MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), C.getState()); C.addTransition(state); } const ProgramState *MallocChecker::MallocMemAux(CheckerContext &C, const CallExpr *CE, SVal Size, SVal Init, const ProgramState *state) { unsigned Count = C.getCurrentBlockCount(); SValBuilder &svalBuilder = C.getSValBuilder(); // Set the return value. SVal retVal = svalBuilder.getConjuredSymbolVal(NULL, CE, CE->getType(), Count); state = state->BindExpr(CE, retVal); // Fill the region with the initialization value. state = state->bindDefault(retVal, Init); // Set the region's extent equal to the Size parameter. const SymbolicRegion *R = cast(retVal.getAsRegion()); DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); DefinedOrUnknownSVal DefinedSize = cast(Size); DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ(state, Extent, DefinedSize); state = state->assume(extentMatchesSize, true); assert(state); SymbolRef Sym = retVal.getAsLocSymbol(); assert(Sym); // Set the symbol's state to Allocated. return state->set(Sym, RefState::getAllocateUnchecked(CE)); } void MallocChecker::FreeMem(CheckerContext &C, const CallExpr *CE) const { const ProgramState *state = FreeMemAux(C, CE, C.getState(), 0, false); if (state) C.addTransition(state); } void MallocChecker::FreeMemAttr(CheckerContext &C, const CallExpr *CE, const OwnershipAttr* Att) const { if (Att->getModule() != "malloc") return; for (OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); I != E; ++I) { const ProgramState *state = FreeMemAux(C, CE, C.getState(), *I, Att->getOwnKind() == OwnershipAttr::Holds); if (state) C.addTransition(state); } } const ProgramState *MallocChecker::FreeMemAux(CheckerContext &C, const CallExpr *CE, const ProgramState *state, unsigned Num, bool Hold) const { const Expr *ArgExpr = CE->getArg(Num); SVal ArgVal = state->getSVal(ArgExpr); DefinedOrUnknownSVal location = cast(ArgVal); // Check for null dereferences. if (!isa(location)) return state; // FIXME: Technically using 'Assume' here can result in a path // bifurcation. In such cases we need to return two states, not just one. const ProgramState *notNullState, *nullState; llvm::tie(notNullState, nullState) = state->assume(location); // The explicit NULL case, no operation is performed. if (nullState && !notNullState) return nullState; assert(notNullState); // Unknown values could easily be okay // Undefined values are handled elsewhere if (ArgVal.isUnknownOrUndef()) return notNullState; const MemRegion *R = ArgVal.getAsRegion(); // Nonlocs can't be freed, of course. // Non-region locations (labels and fixed addresses) also shouldn't be freed. if (!R) { ReportBadFree(C, ArgVal, ArgExpr->getSourceRange()); return NULL; } R = R->StripCasts(); // Blocks might show up as heap data, but should not be free()d if (isa(R)) { ReportBadFree(C, ArgVal, ArgExpr->getSourceRange()); return NULL; } const MemSpaceRegion *MS = R->getMemorySpace(); // Parameters, locals, statics, and globals shouldn't be freed. if (!(isa(MS) || isa(MS))) { // FIXME: at the time this code was written, malloc() regions were // represented by conjured symbols, which are all in UnknownSpaceRegion. // This means that there isn't actually anything from HeapSpaceRegion // that should be freed, even though we allow it here. // Of course, free() can work on memory allocated outside the current // function, so UnknownSpaceRegion is always a possibility. // False negatives are better than false positives. ReportBadFree(C, ArgVal, ArgExpr->getSourceRange()); return NULL; } const SymbolicRegion *SR = dyn_cast(R); // Various cases could lead to non-symbol values here. // For now, ignore them. if (!SR) return notNullState; SymbolRef Sym = SR->getSymbol(); const RefState *RS = state->get(Sym); // If the symbol has not been tracked, return. This is possible when free() is // called on a pointer that does not get its pointee directly from malloc(). // Full support of this requires inter-procedural analysis. if (!RS) return notNullState; // Check double free. if (RS->isReleased()) { if (ExplodedNode *N = C.generateSink()) { if (!BT_DoubleFree) BT_DoubleFree.reset( new BuiltinBug("Double free", "Try to free a memory block that has been released")); // FIXME: should find where it's freed last time. BugReport *R = new BugReport(*BT_DoubleFree, BT_DoubleFree->getDescription(), N); C.EmitReport(R); } return NULL; } // Normal free. if (Hold) return notNullState->set(Sym, RefState::getRelinquished(CE)); return notNullState->set(Sym, RefState::getReleased(CE)); } bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { if (nonloc::ConcreteInt *IntVal = dyn_cast(&V)) os << "an integer (" << IntVal->getValue() << ")"; else if (loc::ConcreteInt *ConstAddr = dyn_cast(&V)) os << "a constant address (" << ConstAddr->getValue() << ")"; else if (loc::GotoLabel *Label = dyn_cast(&V)) os << "the address of the label '" << Label->getLabel()->getName() << "'"; else return false; return true; } bool MallocChecker::SummarizeRegion(raw_ostream &os, const MemRegion *MR) { switch (MR->getKind()) { case MemRegion::FunctionTextRegionKind: { const FunctionDecl *FD = cast(MR)->getDecl(); if (FD) os << "the address of the function '" << *FD << '\''; else os << "the address of a function"; return true; } case MemRegion::BlockTextRegionKind: os << "block text"; return true; case MemRegion::BlockDataRegionKind: // FIXME: where the block came from? os << "a block"; return true; default: { const MemSpaceRegion *MS = MR->getMemorySpace(); switch (MS->getKind()) { case MemRegion::StackLocalsSpaceRegionKind: { const VarRegion *VR = dyn_cast(MR); const VarDecl *VD; if (VR) VD = VR->getDecl(); else VD = NULL; if (VD) os << "the address of the local variable '" << VD->getName() << "'"; else os << "the address of a local stack variable"; return true; } case MemRegion::StackArgumentsSpaceRegionKind: { const VarRegion *VR = dyn_cast(MR); const VarDecl *VD; if (VR) VD = VR->getDecl(); else VD = NULL; if (VD) os << "the address of the parameter '" << VD->getName() << "'"; else os << "the address of a parameter"; return true; } case MemRegion::NonStaticGlobalSpaceRegionKind: case MemRegion::StaticGlobalSpaceRegionKind: { const VarRegion *VR = dyn_cast(MR); const VarDecl *VD; if (VR) VD = VR->getDecl(); else VD = NULL; if (VD) { if (VD->isStaticLocal()) os << "the address of the static variable '" << VD->getName() << "'"; else os << "the address of the global variable '" << VD->getName() << "'"; } else os << "the address of a global variable"; return true; } default: return false; } } } } void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange range) const { if (ExplodedNode *N = C.generateSink()) { if (!BT_BadFree) BT_BadFree.reset(new BuiltinBug("Bad free")); llvm::SmallString<100> buf; llvm::raw_svector_ostream os(buf); const MemRegion *MR = ArgVal.getAsRegion(); if (MR) { while (const ElementRegion *ER = dyn_cast(MR)) MR = ER->getSuperRegion(); // Special case for alloca() if (isa(MR)) os << "Argument to free() was allocated by alloca(), not malloc()"; else { os << "Argument to free() is "; if (SummarizeRegion(os, MR)) os << ", which is not memory allocated by malloc()"; else os << "not memory allocated by malloc()"; } } else { os << "Argument to free() is "; if (SummarizeValue(os, ArgVal)) os << ", which is not memory allocated by malloc()"; else os << "not memory allocated by malloc()"; } BugReport *R = new BugReport(*BT_BadFree, os.str(), N); R->addRange(range); C.EmitReport(R); } } void MallocChecker::ReallocMem(CheckerContext &C, const CallExpr *CE) const { const ProgramState *state = C.getState(); const Expr *arg0Expr = CE->getArg(0); DefinedOrUnknownSVal arg0Val = cast(state->getSVal(arg0Expr)); SValBuilder &svalBuilder = C.getSValBuilder(); DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ(state, arg0Val, svalBuilder.makeNull()); // Get the size argument. If there is no size arg then give up. const Expr *Arg1 = CE->getArg(1); if (!Arg1) return; // Get the value of the size argument. DefinedOrUnknownSVal Arg1Val = cast(state->getSVal(Arg1)); // Compare the size argument to 0. DefinedOrUnknownSVal SizeZero = svalBuilder.evalEQ(state, Arg1Val, svalBuilder.makeIntValWithPtrWidth(0, false)); // If the ptr is NULL and the size is not 0, the call is equivalent to // malloc(size). const ProgramState *stateEqual = state->assume(PtrEQ, true); if (stateEqual && state->assume(SizeZero, false)) { // Hack: set the NULL symbolic region to released to suppress false warning. // In the future we should add more states for allocated regions, e.g., // CheckedNull, CheckedNonNull. SymbolRef Sym = arg0Val.getAsLocSymbol(); if (Sym) stateEqual = stateEqual->set(Sym, RefState::getReleased(CE)); const ProgramState *stateMalloc = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), stateEqual); C.addTransition(stateMalloc); } if (const ProgramState *stateNotEqual = state->assume(PtrEQ, false)) { // If the size is 0, free the memory. if (const ProgramState *stateSizeZero = stateNotEqual->assume(SizeZero, true)) if (const ProgramState *stateFree = FreeMemAux(C, CE, stateSizeZero, 0, false)) { // Bind the return value to NULL because it is now free. C.addTransition(stateFree->BindExpr(CE, svalBuilder.makeNull(), true)); } if (const ProgramState *stateSizeNotZero = stateNotEqual->assume(SizeZero,false)) if (const ProgramState *stateFree = FreeMemAux(C, CE, stateSizeNotZero, 0, false)) { // FIXME: We should copy the content of the original buffer. const ProgramState *stateRealloc = MallocMemAux(C, CE, CE->getArg(1), UnknownVal(), stateFree); C.addTransition(stateRealloc); } } } void MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE) { const ProgramState *state = C.getState(); SValBuilder &svalBuilder = C.getSValBuilder(); SVal count = state->getSVal(CE->getArg(0)); SVal elementSize = state->getSVal(CE->getArg(1)); SVal TotalSize = svalBuilder.evalBinOp(state, BO_Mul, count, elementSize, svalBuilder.getContext().getSizeType()); SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); C.addTransition(MallocMemAux(C, CE, TotalSize, zeroVal, state)); } void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const { if (!SymReaper.hasDeadSymbols()) return; const ProgramState *state = C.getState(); RegionStateTy RS = state->get(); RegionStateTy::Factory &F = state->get_context(); bool generateReport = false; for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { if (SymReaper.isDead(I->first)) { if (I->second.isAllocated()) generateReport = true; // Remove the dead symbol from the map. RS = F.remove(RS, I->first); } } ExplodedNode *N = C.generateNode(state->set(RS)); // FIXME: This does not handle when we have multiple leaks at a single // place. if (N && generateReport) { if (!BT_Leak) BT_Leak.reset(new BuiltinBug("Memory leak", "Allocated memory never released. Potential memory leak.")); // FIXME: where it is allocated. BugReport *R = new BugReport(*BT_Leak, BT_Leak->getDescription(), N); C.EmitReport(R); } } void MallocChecker::checkEndPath(EndOfFunctionNodeBuilder &B, ExprEngine &Eng) const { const ProgramState *state = B.getState(); RegionStateTy M = state->get(); for (RegionStateTy::iterator I = M.begin(), E = M.end(); I != E; ++I) { RefState RS = I->second; if (RS.isAllocated()) { ExplodedNode *N = B.generateNode(state); if (N) { if (!BT_Leak) BT_Leak.reset(new BuiltinBug("Memory leak", "Allocated memory never released. Potential memory leak.")); BugReport *R = new BugReport(*BT_Leak, BT_Leak->getDescription(), N); Eng.getBugReporter().EmitReport(R); } } } } void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { const Expr *retExpr = S->getRetValue(); if (!retExpr) return; const ProgramState *state = C.getState(); SymbolRef Sym = state->getSVal(retExpr).getAsSymbol(); if (!Sym) return; const RefState *RS = state->get(Sym); if (!RS) return; // FIXME: check other cases. if (RS->isAllocated()) state = state->set(Sym, RefState::getEscaped(S)); C.addTransition(state); } const ProgramState *MallocChecker::evalAssume(const ProgramState *state, SVal Cond, bool Assumption) const { // If a symblic region is assumed to NULL, set its state to AllocateFailed. // FIXME: should also check symbols assumed to non-null. RegionStateTy RS = state->get(); for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { // If the symbol is assumed to NULL, this will return an APSInt*. if (state->getSymVal(I.getKey())) state = state->set(I.getKey(),RefState::getAllocateFailed()); } return state; } // Check if the location is a freed symbolic region. void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, CheckerContext &C) const { SymbolRef Sym = l.getLocSymbolInBase(); if (Sym) { const RefState *RS = C.getState()->get(Sym); if (RS && RS->isReleased()) { if (ExplodedNode *N = C.generateNode()) { if (!BT_UseFree) BT_UseFree.reset(new BuiltinBug("Use dynamically allocated memory " "after it is freed.")); BugReport *R = new BugReport(*BT_UseFree, BT_UseFree->getDescription(), N); C.EmitReport(R); } } } } void MallocChecker::checkBind(SVal location, SVal val, const Stmt *BindS, CheckerContext &C) const { // The PreVisitBind implements the same algorithm as already used by the // Objective C ownership checker: if the pointer escaped from this scope by // assignment, let it go. However, assigning to fields of a stack-storage // structure does not transfer ownership. const ProgramState *state = C.getState(); DefinedOrUnknownSVal l = cast(location); // Check for null dereferences. if (!isa(l)) return; // Before checking if the state is null, check if 'val' has a RefState. // Only then should we check for null and bifurcate the state. SymbolRef Sym = val.getLocSymbolInBase(); if (Sym) { if (const RefState *RS = state->get(Sym)) { // If ptr is NULL, no operation is performed. const ProgramState *notNullState, *nullState; llvm::tie(notNullState, nullState) = state->assume(l); // Generate a transition for 'nullState' to record the assumption // that the state was null. if (nullState) C.addTransition(nullState); if (!notNullState) return; if (RS->isAllocated()) { // Something we presently own is being assigned somewhere. const MemRegion *AR = location.getAsRegion(); if (!AR) return; AR = AR->StripCasts()->getBaseRegion(); do { // If it is on the stack, we still own it. if (AR->hasStackNonParametersStorage()) break; // If the state can't represent this binding, we still own it. if (notNullState == (notNullState->bindLoc(cast(location), UnknownVal()))) break; // We no longer own this pointer. notNullState = notNullState->set(Sym, RefState::getRelinquished(BindS)); } while (false); } C.addTransition(notNullState); } } } void ento::registerMallocChecker(CheckerManager &mgr) { mgr.registerChecker(); }