//===- CoreEngine.cpp - Path-Sensitive Dataflow Engine --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a generic engine for intraprocedural, path-sensitive, // dataflow analysis via graph reachability engine. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/Analysis/AnalysisDeclContext.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/ProgramPoint.h" #include "clang/Basic/LLVM.h" #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" #include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/StaticAnalyzer/Core/PathSensitive/FunctionSummary.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include #include #include #include using namespace clang; using namespace ento; #define DEBUG_TYPE "CoreEngine" STATISTIC(NumSteps, "The # of steps executed."); STATISTIC(NumReachedMaxSteps, "The # of times we reached the max number of steps."); STATISTIC(NumPathsExplored, "The # of paths explored by the analyzer."); //===----------------------------------------------------------------------===// // Core analysis engine. //===----------------------------------------------------------------------===// static std::unique_ptr generateWorkList(AnalyzerOptions &Opts) { switch (Opts.getExplorationStrategy()) { case AnalyzerOptions::ExplorationStrategyKind::DFS: return WorkList::makeDFS(); case AnalyzerOptions::ExplorationStrategyKind::BFS: return WorkList::makeBFS(); case AnalyzerOptions::ExplorationStrategyKind::BFSBlockDFSContents: return WorkList::makeBFSBlockDFSContents(); case AnalyzerOptions::ExplorationStrategyKind::UnexploredFirst: return WorkList::makeUnexploredFirst(); case AnalyzerOptions::ExplorationStrategyKind::UnexploredFirstQueue: return WorkList::makeUnexploredFirstPriorityQueue(); default: llvm_unreachable("Unexpected case"); } } CoreEngine::CoreEngine(SubEngine &subengine, FunctionSummariesTy *FS, AnalyzerOptions &Opts) : SubEng(subengine), WList(generateWorkList(Opts)), BCounterFactory(G.getAllocator()), FunctionSummaries(FS) {} /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps. bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps, ProgramStateRef InitState) { if (G.num_roots() == 0) { // Initialize the analysis by constructing // the root if none exists. const CFGBlock *Entry = &(L->getCFG()->getEntry()); assert(Entry->empty() && "Entry block must be empty."); assert(Entry->succ_size() == 1 && "Entry block must have 1 successor."); // Mark the entry block as visited. FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(), L->getDecl(), L->getCFG()->getNumBlockIDs()); // Get the solitary successor. const CFGBlock *Succ = *(Entry->succ_begin()); // Construct an edge representing the // starting location in the function. BlockEdge StartLoc(Entry, Succ, L); // Set the current block counter to being empty. WList->setBlockCounter(BCounterFactory.GetEmptyCounter()); if (!InitState) InitState = SubEng.getInitialState(L); bool IsNew; ExplodedNode *Node = G.getNode(StartLoc, InitState, false, &IsNew); assert(IsNew); G.addRoot(Node); NodeBuilderContext BuilderCtx(*this, StartLoc.getDst(), Node); ExplodedNodeSet DstBegin; SubEng.processBeginOfFunction(BuilderCtx, Node, DstBegin, StartLoc); enqueue(DstBegin); } // Check if we have a steps limit bool UnlimitedSteps = Steps == 0; // Cap our pre-reservation in the event that the user specifies // a very large number of maximum steps. const unsigned PreReservationCap = 4000000; if(!UnlimitedSteps) G.reserve(std::min(Steps,PreReservationCap)); while (WList->hasWork()) { if (!UnlimitedSteps) { if (Steps == 0) { NumReachedMaxSteps++; break; } --Steps; } NumSteps++; const WorkListUnit& WU = WList->dequeue(); // Set the current block counter. WList->setBlockCounter(WU.getBlockCounter()); // Retrieve the node. ExplodedNode *Node = WU.getNode(); dispatchWorkItem(Node, Node->getLocation(), WU); } SubEng.processEndWorklist(hasWorkRemaining()); return WList->hasWork(); } void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc, const WorkListUnit& WU) { // Dispatch on the location type. switch (Loc.getKind()) { case ProgramPoint::BlockEdgeKind: HandleBlockEdge(Loc.castAs(), Pred); break; case ProgramPoint::BlockEntranceKind: HandleBlockEntrance(Loc.castAs(), Pred); break; case ProgramPoint::BlockExitKind: assert(false && "BlockExit location never occur in forward analysis."); break; case ProgramPoint::CallEnterKind: HandleCallEnter(Loc.castAs(), Pred); break; case ProgramPoint::CallExitBeginKind: SubEng.processCallExit(Pred); break; case ProgramPoint::EpsilonKind: { assert(Pred->hasSinglePred() && "Assume epsilon has exactly one predecessor by construction"); ExplodedNode *PNode = Pred->getFirstPred(); dispatchWorkItem(Pred, PNode->getLocation(), WU); break; } default: assert(Loc.getAs() || Loc.getAs() || Loc.getAs() || Loc.getAs() || Loc.getAs() || Loc.getAs()); HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred); break; } } bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L, unsigned Steps, ProgramStateRef InitState, ExplodedNodeSet &Dst) { bool DidNotFinish = ExecuteWorkList(L, Steps, InitState); for (ExplodedGraph::eop_iterator I = G.eop_begin(), E = G.eop_end(); I != E; ++I) { Dst.Add(*I); } return DidNotFinish; } void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) { const CFGBlock *Blk = L.getDst(); NodeBuilderContext BuilderCtx(*this, Blk, Pred); // Mark this block as visited. const LocationContext *LC = Pred->getLocationContext(); FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(), LC->getDecl(), LC->getCFG()->getNumBlockIDs()); // Check if we are entering the EXIT block. if (Blk == &(L.getLocationContext()->getCFG()->getExit())) { assert(L.getLocationContext()->getCFG()->getExit().empty() && "EXIT block cannot contain Stmts."); // Get return statement.. const ReturnStmt *RS = nullptr; if (!L.getSrc()->empty()) { if (Optional LastStmt = L.getSrc()->back().getAs()) { RS = dyn_cast(LastStmt->getStmt()); } } // Process the final state transition. SubEng.processEndOfFunction(BuilderCtx, Pred, RS); // This path is done. Don't enqueue any more nodes. return; } // Call into the SubEngine to process entering the CFGBlock. ExplodedNodeSet dstNodes; BlockEntrance BE(Blk, Pred->getLocationContext()); NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE); SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred); // Auto-generate a node. if (!nodeBuilder.hasGeneratedNodes()) { nodeBuilder.generateNode(Pred->State, Pred); } // Enqueue nodes onto the worklist. enqueue(dstNodes); } void CoreEngine::HandleBlockEntrance(const BlockEntrance &L, ExplodedNode *Pred) { // Increment the block counter. const LocationContext *LC = Pred->getLocationContext(); unsigned BlockId = L.getBlock()->getBlockID(); BlockCounter Counter = WList->getBlockCounter(); Counter = BCounterFactory.IncrementCount(Counter, LC->getStackFrame(), BlockId); WList->setBlockCounter(Counter); // Process the entrance of the block. if (Optional E = L.getFirstElement()) { NodeBuilderContext Ctx(*this, L.getBlock(), Pred); SubEng.processCFGElement(*E, Pred, 0, &Ctx); } else HandleBlockExit(L.getBlock(), Pred); } void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) { if (const Stmt *Term = B->getTerminator()) { switch (Term->getStmtClass()) { default: llvm_unreachable("Analysis for this terminator not implemented."); case Stmt::CXXBindTemporaryExprClass: HandleCleanupTemporaryBranch( cast(B->getTerminator().getStmt()), B, Pred); return; // Model static initializers. case Stmt::DeclStmtClass: HandleStaticInit(cast(Term), B, Pred); return; case Stmt::BinaryOperatorClass: // '&&' and '||' HandleBranch(cast(Term)->getLHS(), Term, B, Pred); return; case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; // FIXME: Use constant-folding in CFG construction to simplify this // case. case Stmt::ChooseExprClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; case Stmt::CXXTryStmtClass: // Generate a node for each of the successors. // Our logic for EH analysis can certainly be improved. for (CFGBlock::const_succ_iterator it = B->succ_begin(), et = B->succ_end(); it != et; ++it) { if (const CFGBlock *succ = *it) { generateNode(BlockEdge(B, succ, Pred->getLocationContext()), Pred->State, Pred); } } return; case Stmt::DoStmtClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; case Stmt::CXXForRangeStmtClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; case Stmt::ForStmtClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; case Stmt::ContinueStmtClass: case Stmt::BreakStmtClass: case Stmt::GotoStmtClass: break; case Stmt::IfStmtClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; case Stmt::IndirectGotoStmtClass: { // Only 1 successor: the indirect goto dispatch block. assert(B->succ_size() == 1); IndirectGotoNodeBuilder builder(Pred, B, cast(Term)->getTarget(), *(B->succ_begin()), this); SubEng.processIndirectGoto(builder); return; } case Stmt::ObjCForCollectionStmtClass: // In the case of ObjCForCollectionStmt, it appears twice in a CFG: // // (1) inside a basic block, which represents the binding of the // 'element' variable to a value. // (2) in a terminator, which represents the branch. // // For (1), subengines will bind a value (i.e., 0 or 1) indicating // whether or not collection contains any more elements. We cannot // just test to see if the element is nil because a container can // contain nil elements. HandleBranch(Term, Term, B, Pred); return; case Stmt::SwitchStmtClass: { SwitchNodeBuilder builder(Pred, B, cast(Term)->getCond(), this); SubEng.processSwitch(builder); return; } case Stmt::WhileStmtClass: HandleBranch(cast(Term)->getCond(), Term, B, Pred); return; } } assert(B->succ_size() == 1 && "Blocks with no terminator should have at most 1 successor."); generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()), Pred->State, Pred); } void CoreEngine::HandleCallEnter(const CallEnter &CE, ExplodedNode *Pred) { NodeBuilderContext BuilderCtx(*this, CE.getEntry(), Pred); SubEng.processCallEnter(BuilderCtx, CE, Pred); } void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock * B, ExplodedNode *Pred) { assert(B->succ_size() == 2); NodeBuilderContext Ctx(*this, B, Pred); ExplodedNodeSet Dst; SubEng.processBranch(Cond, Term, Ctx, Pred, Dst, *(B->succ_begin()), *(B->succ_begin()+1)); // Enqueue the new frontier onto the worklist. enqueue(Dst); } void CoreEngine::HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE, const CFGBlock *B, ExplodedNode *Pred) { assert(B->succ_size() == 2); NodeBuilderContext Ctx(*this, B, Pred); ExplodedNodeSet Dst; SubEng.processCleanupTemporaryBranch(BTE, Ctx, Pred, Dst, *(B->succ_begin()), *(B->succ_begin() + 1)); // Enqueue the new frontier onto the worklist. enqueue(Dst); } void CoreEngine::HandleStaticInit(const DeclStmt *DS, const CFGBlock *B, ExplodedNode *Pred) { assert(B->succ_size() == 2); NodeBuilderContext Ctx(*this, B, Pred); ExplodedNodeSet Dst; SubEng.processStaticInitializer(DS, Ctx, Pred, Dst, *(B->succ_begin()), *(B->succ_begin()+1)); // Enqueue the new frontier onto the worklist. enqueue(Dst); } void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred) { assert(B); assert(!B->empty()); if (StmtIdx == B->size()) HandleBlockExit(B, Pred); else { NodeBuilderContext Ctx(*this, B, Pred); SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx); } } /// generateNode - Utility method to generate nodes, hook up successors, /// and add nodes to the worklist. void CoreEngine::generateNode(const ProgramPoint &Loc, ProgramStateRef State, ExplodedNode *Pred) { bool IsNew; ExplodedNode *Node = G.getNode(Loc, State, false, &IsNew); if (Pred) Node->addPredecessor(Pred, G); // Link 'Node' with its predecessor. else { assert(IsNew); G.addRoot(Node); // 'Node' has no predecessor. Make it a root. } // Only add 'Node' to the worklist if it was freshly generated. if (IsNew) WList->enqueue(Node); } void CoreEngine::enqueueStmtNode(ExplodedNode *N, const CFGBlock *Block, unsigned Idx) { assert(Block); assert(!N->isSink()); // Check if this node entered a callee. if (N->getLocation().getAs()) { // Still use the index of the CallExpr. It's needed to create the callee // StackFrameContext. WList->enqueue(N, Block, Idx); return; } // Do not create extra nodes. Move to the next CFG element. if (N->getLocation().getAs() || N->getLocation().getAs()|| N->getLocation().getAs()) { WList->enqueue(N, Block, Idx+1); return; } if (N->getLocation().getAs()) { WList->enqueue(N, Block, Idx); return; } if ((*Block)[Idx].getKind() == CFGElement::NewAllocator) { WList->enqueue(N, Block, Idx+1); return; } // At this point, we know we're processing a normal statement. CFGStmt CS = (*Block)[Idx].castAs(); PostStmt Loc(CS.getStmt(), N->getLocationContext()); if (Loc == N->getLocation().withTag(nullptr)) { // Note: 'N' should be a fresh node because otherwise it shouldn't be // a member of Deferred. WList->enqueue(N, Block, Idx+1); return; } bool IsNew; ExplodedNode *Succ = G.getNode(Loc, N->getState(), false, &IsNew); Succ->addPredecessor(N, G); if (IsNew) WList->enqueue(Succ, Block, Idx+1); } ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N, const ReturnStmt *RS) { // Create a CallExitBegin node and enqueue it. const auto *LocCtx = cast(N->getLocationContext()); // Use the callee location context. CallExitBegin Loc(LocCtx, RS); bool isNew; ExplodedNode *Node = G.getNode(Loc, N->getState(), false, &isNew); Node->addPredecessor(N, G); return isNew ? Node : nullptr; } void CoreEngine::enqueue(ExplodedNodeSet &Set) { for (const auto I : Set) WList->enqueue(I); } void CoreEngine::enqueue(ExplodedNodeSet &Set, const CFGBlock *Block, unsigned Idx) { for (const auto I : Set) enqueueStmtNode(I, Block, Idx); } void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set, const ReturnStmt *RS) { for (auto I : Set) { // If we are in an inlined call, generate CallExitBegin node. if (I->getLocationContext()->getParent()) { I = generateCallExitBeginNode(I, RS); if (I) WList->enqueue(I); } else { // TODO: We should run remove dead bindings here. G.addEndOfPath(I); NumPathsExplored++; } } } void NodeBuilder::anchor() {} ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc, ProgramStateRef State, ExplodedNode *FromN, bool MarkAsSink) { HasGeneratedNodes = true; bool IsNew; ExplodedNode *N = C.Eng.G.getNode(Loc, State, MarkAsSink, &IsNew); N->addPredecessor(FromN, C.Eng.G); Frontier.erase(FromN); if (!IsNew) return nullptr; if (!MarkAsSink) Frontier.Add(N); return N; } void NodeBuilderWithSinks::anchor() {} StmtNodeBuilder::~StmtNodeBuilder() { if (EnclosingBldr) for (const auto I : Frontier) EnclosingBldr->addNodes(I); } void BranchNodeBuilder::anchor() {} ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State, bool branch, ExplodedNode *NodePred) { // If the branch has been marked infeasible we should not generate a node. if (!isFeasible(branch)) return nullptr; ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF, NodePred->getLocationContext()); ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred); return Succ; } ExplodedNode* IndirectGotoNodeBuilder::generateNode(const iterator &I, ProgramStateRef St, bool IsSink) { bool IsNew; ExplodedNode *Succ = Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()), St, IsSink, &IsNew); Succ->addPredecessor(Pred, Eng.G); if (!IsNew) return nullptr; if (!IsSink) Eng.WList->enqueue(Succ); return Succ; } ExplodedNode* SwitchNodeBuilder::generateCaseStmtNode(const iterator &I, ProgramStateRef St) { bool IsNew; ExplodedNode *Succ = Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()), St, false, &IsNew); Succ->addPredecessor(Pred, Eng.G); if (!IsNew) return nullptr; Eng.WList->enqueue(Succ); return Succ; } ExplodedNode* SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St, bool IsSink) { // Get the block for the default case. assert(Src->succ_rbegin() != Src->succ_rend()); CFGBlock *DefaultBlock = *Src->succ_rbegin(); // Sanity check for default blocks that are unreachable and not caught // by earlier stages. if (!DefaultBlock) return nullptr; bool IsNew; ExplodedNode *Succ = Eng.G.getNode(BlockEdge(Src, DefaultBlock, Pred->getLocationContext()), St, IsSink, &IsNew); Succ->addPredecessor(Pred, Eng.G); if (!IsNew) return nullptr; if (!IsSink) Eng.WList->enqueue(Succ); return Succ; }