//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the template classes ExplodedNode and ExplodedGraph, // which represent a path-sensitive, intra-procedural "exploded graph." // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h" #include "clang/AST/Stmt.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include using namespace clang; using namespace ento; //===----------------------------------------------------------------------===// // Node auditing. //===----------------------------------------------------------------------===// // An out of line virtual method to provide a home for the class vtable. ExplodedNode::Auditor::~Auditor() {} #ifndef NDEBUG static ExplodedNode::Auditor* NodeAuditor = 0; #endif void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) { #ifndef NDEBUG NodeAuditor = A; #endif } //===----------------------------------------------------------------------===// // Cleanup. //===----------------------------------------------------------------------===// typedef std::vector NodeList; static inline NodeList*& getNodeList(void *&p) { return (NodeList*&) p; } ExplodedGraph::~ExplodedGraph() { if (reclaimNodes) { delete getNodeList(recentlyAllocatedNodes); delete getNodeList(freeNodes); } } //===----------------------------------------------------------------------===// // Node reclamation. //===----------------------------------------------------------------------===// void ExplodedGraph::reclaimRecentlyAllocatedNodes() { if (!recentlyAllocatedNodes) return; NodeList &nl = *getNodeList(recentlyAllocatedNodes); // Reclaimn all nodes that match *all* the following criteria: // // (1) 1 predecessor (that has one successor) // (2) 1 successor (that has one predecessor) // (3) The ProgramPoint is for a PostStmt. // (4) There is no 'tag' for the ProgramPoint. // (5) The 'store' is the same as the predecessor. // (6) The 'GDM' is the same as the predecessor. // (7) The LocationContext is the same as the predecessor. // (8) The PostStmt is for a non-CFGElement expression. for (NodeList::iterator i = nl.begin(), e = nl.end() ; i != e; ++i) { ExplodedNode *node = *i; // Conditions 1 and 2. if (node->pred_size() != 1 || node->succ_size() != 1) continue; ExplodedNode *pred = *(node->pred_begin()); if (pred->succ_size() != 1) continue; ExplodedNode *succ = *(node->succ_begin()); if (succ->pred_size() != 1) continue; // Condition 3. ProgramPoint progPoint = node->getLocation(); if (!isa(progPoint)) continue; // Condition 4. PostStmt ps = cast(progPoint); if (ps.getTag() || isa(ps)) continue; if (isa(ps.getStmt())) continue; // Conditions 5, 6, and 7. const GRState *state = node->getState(); const GRState *pred_state = pred->getState(); if (state->store != pred_state->store || state->GDM != pred_state->GDM || progPoint.getLocationContext() != pred->getLocationContext()) continue; // Condition 8. if (node->getCFG().isBlkExpr(ps.getStmt())) continue; // If we reach here, we can remove the node. This means: // (a) changing the predecessors successor to the successor of this node // (b) changing the successors predecessor to the predecessor of this node // (c) Putting 'node' onto freeNodes. pred->replaceSuccessor(succ); succ->replacePredecessor(pred); if (!freeNodes) freeNodes = new NodeList(); getNodeList(freeNodes)->push_back(node); Nodes.RemoveNode(node); --NumNodes; node->~ExplodedNode(); } nl.clear(); } //===----------------------------------------------------------------------===// // ExplodedNode. //===----------------------------------------------------------------------===// static inline BumpVector& getVector(void* P) { return *reinterpret_cast*>(P); } void ExplodedNode::addPredecessor(ExplodedNode* V, ExplodedGraph &G) { assert (!V->isSink()); Preds.addNode(V, G); V->Succs.addNode(this, G); #ifndef NDEBUG if (NodeAuditor) NodeAuditor->AddEdge(V, this); #endif } void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { assert(getKind() == Size1); P = reinterpret_cast(node); assert(getKind() == Size1); } void ExplodedNode::NodeGroup::addNode(ExplodedNode* N, ExplodedGraph &G) { assert((reinterpret_cast(N) & Mask) == 0x0); assert(!getFlag()); if (getKind() == Size1) { if (ExplodedNode* NOld = getNode()) { BumpVectorContext &Ctx = G.getNodeAllocator(); BumpVector *V = G.getAllocator().Allocate >(); new (V) BumpVector(Ctx, 4); assert((reinterpret_cast(V) & Mask) == 0x0); V->push_back(NOld, Ctx); V->push_back(N, Ctx); P = reinterpret_cast(V) | SizeOther; assert(getPtr() == (void*) V); assert(getKind() == SizeOther); } else { P = reinterpret_cast(N); assert(getKind() == Size1); } } else { assert(getKind() == SizeOther); getVector(getPtr()).push_back(N, G.getNodeAllocator()); } } unsigned ExplodedNode::NodeGroup::size() const { if (getFlag()) return 0; if (getKind() == Size1) return getNode() ? 1 : 0; else return getVector(getPtr()).size(); } ExplodedNode **ExplodedNode::NodeGroup::begin() const { if (getFlag()) return NULL; if (getKind() == Size1) return (ExplodedNode**) (getPtr() ? &P : NULL); else return const_cast(&*(getVector(getPtr()).begin())); } ExplodedNode** ExplodedNode::NodeGroup::end() const { if (getFlag()) return NULL; if (getKind() == Size1) return (ExplodedNode**) (getPtr() ? &P+1 : NULL); else { // Dereferencing end() is undefined behaviour. The vector is not empty, so // we can dereference the last elem and then add 1 to the result. return const_cast(getVector(getPtr()).end()); } } ExplodedNode *ExplodedGraph::getNode(const ProgramPoint& L, const GRState* State, bool* IsNew) { // Profile 'State' to determine if we already have an existing node. llvm::FoldingSetNodeID profile; void* InsertPos = 0; NodeTy::Profile(profile, L, State); NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); if (!V) { if (freeNodes && !getNodeList(freeNodes)->empty()) { NodeList *nl = getNodeList(freeNodes); V = nl->back(); nl->pop_back(); } else { // Allocate a new node. V = (NodeTy*) getAllocator().Allocate(); } new (V) NodeTy(L, State); if (reclaimNodes) { if (!recentlyAllocatedNodes) recentlyAllocatedNodes = new NodeList(); getNodeList(recentlyAllocatedNodes)->push_back(V); } // Insert the node into the node set and return it. Nodes.InsertNode(V, InsertPos); ++NumNodes; if (IsNew) *IsNew = true; } else if (IsNew) *IsNew = false; return V; } std::pair ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd, llvm::DenseMap *InverseMap) const { if (NBeg == NEnd) return std::make_pair((ExplodedGraph*) 0, (InterExplodedGraphMap*) 0); assert (NBeg < NEnd); llvm::OwningPtr M(new InterExplodedGraphMap()); ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap); return std::make_pair(static_cast(G), M.take()); } ExplodedGraph* ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources, const ExplodedNode* const* EndSources, InterExplodedGraphMap* M, llvm::DenseMap *InverseMap) const { typedef llvm::DenseSet Pass1Ty; Pass1Ty Pass1; typedef llvm::DenseMap Pass2Ty; Pass2Ty& Pass2 = M->M; llvm::SmallVector WL1, WL2; // ===- Pass 1 (reverse DFS) -=== for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) { assert(*I); WL1.push_back(*I); } // Process the first worklist until it is empty. Because it is a std::list // it acts like a FIFO queue. while (!WL1.empty()) { const ExplodedNode *N = WL1.back(); WL1.pop_back(); // Have we already visited this node? If so, continue to the next one. if (Pass1.count(N)) continue; // Otherwise, mark this node as visited. Pass1.insert(N); // If this is a root enqueue it to the second worklist. if (N->Preds.empty()) { WL2.push_back(N); continue; } // Visit our predecessors and enqueue them. for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) WL1.push_back(*I); } // We didn't hit a root? Return with a null pointer for the new graph. if (WL2.empty()) return 0; // Create an empty graph. ExplodedGraph* G = MakeEmptyGraph(); // ===- Pass 2 (forward DFS to construct the new graph) -=== while (!WL2.empty()) { const ExplodedNode* N = WL2.back(); WL2.pop_back(); // Skip this node if we have already processed it. if (Pass2.find(N) != Pass2.end()) continue; // Create the corresponding node in the new graph and record the mapping // from the old node to the new node. ExplodedNode* NewN = G->getNode(N->getLocation(), N->State, NULL); Pass2[N] = NewN; // Also record the reverse mapping from the new node to the old node. if (InverseMap) (*InverseMap)[NewN] = N; // If this node is a root, designate it as such in the graph. if (N->Preds.empty()) G->addRoot(NewN); // In the case that some of the intended predecessors of NewN have already // been created, we should hook them up as predecessors. // Walk through the predecessors of 'N' and hook up their corresponding // nodes in the new graph (if any) to the freshly created node. for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) { Pass2Ty::iterator PI = Pass2.find(*I); if (PI == Pass2.end()) continue; NewN->addPredecessor(PI->second, *G); } // In the case that some of the intended successors of NewN have already // been created, we should hook them up as successors. Otherwise, enqueue // the new nodes from the original graph that should have nodes created // in the new graph. for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) { Pass2Ty::iterator PI = Pass2.find(*I); if (PI != Pass2.end()) { PI->second->addPredecessor(NewN, *G); continue; } // Enqueue nodes to the worklist that were marked during pass 1. if (Pass1.count(*I)) WL2.push_back(*I); } // Finally, explicitly mark all nodes without any successors as sinks. if (N->isSink()) NewN->markAsSink(); } return G; } ExplodedNode* InterExplodedGraphMap::getMappedNode(const ExplodedNode* N) const { llvm::DenseMap::const_iterator I = M.find(N); return I == M.end() ? 0 : I->second; }