//=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a meta-engine for path-sensitive dataflow analysis that // is built on GREngine, but provides the boilerplate to execute transfer // functions and build the ExplodedGraph at the expression level. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngineBuilders.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h" #include "clang/AST/CharUnits.h" #include "clang/AST/ParentMap.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/DeclCXX.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/PrettyStackTrace.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/ImmutableList.h" #ifndef NDEBUG #include "llvm/Support/GraphWriter.h" #endif using namespace clang; using namespace ento; using llvm::APSInt; //===----------------------------------------------------------------------===// // Utility functions. //===----------------------------------------------------------------------===// static inline Selector GetNullarySelector(const char* name, ASTContext &Ctx) { IdentifierInfo* II = &Ctx.Idents.get(name); return Ctx.Selectors.getSelector(0, &II); } //===----------------------------------------------------------------------===// // Engine construction and deletion. //===----------------------------------------------------------------------===// ExprEngine::ExprEngine(AnalysisManager &mgr, bool gcEnabled) : AMgr(mgr), Engine(*this), G(Engine.getGraph()), Builder(NULL), StateMgr(getContext(), mgr.getStoreManagerCreator(), mgr.getConstraintManagerCreator(), G.getAllocator(), *this), SymMgr(StateMgr.getSymbolManager()), svalBuilder(StateMgr.getSValBuilder()), EntryNode(NULL), currentStmt(NULL), NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), RaiseSel(GetNullarySelector("raise", getContext())), ObjCGCEnabled(gcEnabled), BR(mgr, *this) { if (mgr.shouldEagerlyTrimExplodedGraph()) { // Enable eager node reclaimation when constructing the ExplodedGraph. G.enableNodeReclamation(); } } ExprEngine::~ExprEngine() { BR.FlushReports(); delete [] NSExceptionInstanceRaiseSelectors; } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// const ProgramState *ExprEngine::getInitialState(const LocationContext *InitLoc) { const ProgramState *state = StateMgr.getInitialState(InitLoc); // Preconditions. // FIXME: It would be nice if we had a more general mechanism to add // such preconditions. Some day. do { const Decl *D = InitLoc->getDecl(); if (const FunctionDecl *FD = dyn_cast(D)) { // Precondition: the first argument of 'main' is an integer guaranteed // to be > 0. const IdentifierInfo *II = FD->getIdentifier(); if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) break; const ParmVarDecl *PD = FD->getParamDecl(0); QualType T = PD->getType(); if (!T->isIntegerType()) break; const MemRegion *R = state->getRegion(PD, InitLoc); if (!R) break; SVal V = state->getSVal(loc::MemRegionVal(R)); SVal Constraint_untested = evalBinOp(state, BO_GT, V, svalBuilder.makeZeroVal(T), getContext().IntTy); DefinedOrUnknownSVal *Constraint = dyn_cast(&Constraint_untested); if (!Constraint) break; if (const ProgramState *newState = state->assume(*Constraint, true)) state = newState; break; } if (const ObjCMethodDecl *MD = dyn_cast(D)) { // Precondition: 'self' is always non-null upon entry to an Objective-C // method. const ImplicitParamDecl *SelfD = MD->getSelfDecl(); const MemRegion *R = state->getRegion(SelfD, InitLoc); SVal V = state->getSVal(loc::MemRegionVal(R)); if (const Loc *LV = dyn_cast(&V)) { // Assume that the pointer value in 'self' is non-null. state = state->assume(*LV, true); assert(state && "'self' cannot be null"); } } } while (0); return state; } bool ExprEngine::doesInvalidateGlobals(const CallOrObjCMessage &callOrMessage) const { if (callOrMessage.isFunctionCall() && !callOrMessage.isCXXCall()) { SVal calleeV = callOrMessage.getFunctionCallee(); if (const FunctionTextRegion *codeR = dyn_cast_or_null(calleeV.getAsRegion())) { const FunctionDecl *fd = codeR->getDecl(); if (const IdentifierInfo *ii = fd->getIdentifier()) { StringRef fname = ii->getName(); if (fname == "strlen") return false; } } } // The conservative answer: invalidates globals. return true; } //===----------------------------------------------------------------------===// // Top-level transfer function logic (Dispatcher). //===----------------------------------------------------------------------===// /// evalAssume - Called by ConstraintManager. Used to call checker-specific /// logic for handling assumptions on symbolic values. const ProgramState *ExprEngine::processAssume(const ProgramState *state, SVal cond, bool assumption) { return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption); } bool ExprEngine::wantsRegionChangeUpdate(const ProgramState *state) { return getCheckerManager().wantsRegionChangeUpdate(state); } const ProgramState * ExprEngine::processRegionChanges(const ProgramState *state, const StoreManager::InvalidatedSymbols *invalidated, ArrayRef Explicits, ArrayRef Regions) { return getCheckerManager().runCheckersForRegionChanges(state, invalidated, Explicits, Regions); } void ExprEngine::printState(raw_ostream &Out, const ProgramState *State, const char *NL, const char *Sep) { getCheckerManager().runCheckersForPrintState(Out, State, NL, Sep); } void ExprEngine::processEndWorklist(bool hasWorkRemaining) { getCheckerManager().runCheckersForEndAnalysis(G, BR, *this); } void ExprEngine::processCFGElement(const CFGElement E, StmtNodeBuilder& builder) { switch (E.getKind()) { case CFGElement::Invalid: llvm_unreachable("Unexpected CFGElement kind."); case CFGElement::Statement: ProcessStmt(const_cast(E.getAs()->getStmt()), builder); return; case CFGElement::Initializer: ProcessInitializer(E.getAs()->getInitializer(), builder); return; case CFGElement::AutomaticObjectDtor: case CFGElement::BaseDtor: case CFGElement::MemberDtor: case CFGElement::TemporaryDtor: ProcessImplicitDtor(*E.getAs(), builder); return; } } void ExprEngine::ProcessStmt(const CFGStmt S, StmtNodeBuilder& builder) { // TODO: Use RAII to remove the unnecessary, tagged nodes. //RegisterCreatedNodes registerCreatedNodes(getGraph()); // Reclaim any unnecessary nodes in the ExplodedGraph. G.reclaimRecentlyAllocatedNodes(); // Recycle any unused states in the ProgramStateManager. StateMgr.recycleUnusedStates(); currentStmt = S.getStmt(); PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), currentStmt->getLocStart(), "Error evaluating statement"); // A tag to track convenience transitions, which can be removed at cleanup. static SimpleProgramPointTag cleanupTag("ExprEngine : Clean Node"); Builder = &builder; EntryNode = builder.getPredecessor(); const ProgramState *EntryState = EntryNode->getState(); CleanedState = EntryState; ExplodedNode *CleanedNode = 0; // Create the cleaned state. const LocationContext *LC = EntryNode->getLocationContext(); SymbolReaper SymReaper(LC, currentStmt, SymMgr, getStoreManager()); if (AMgr.getPurgeMode() != PurgeNone) { getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper); const StackFrameContext *SFC = LC->getCurrentStackFrame(); // Create a state in which dead bindings are removed from the environment // and the store. TODO: The function should just return new env and store, // not a new state. CleanedState = StateMgr.removeDeadBindings(CleanedState, SFC, SymReaper); } // Process any special transfer function for dead symbols. ExplodedNodeSet Tmp; if (!SymReaper.hasDeadSymbols()) { // Generate a CleanedNode that has the environment and store cleaned // up. Since no symbols are dead, we can optimize and not clean out // the constraint manager. CleanedNode = Builder->generateNode(currentStmt, CleanedState, EntryNode, &cleanupTag); Tmp.Add(CleanedNode); } else { SaveAndRestore OldSink(Builder->BuildSinks); SaveOr OldHasGen(Builder->hasGeneratedNode); SaveAndRestore OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); Builder->PurgingDeadSymbols = true; // Call checkers with the non-cleaned state so that they could query the // values of the soon to be dead symbols. ExplodedNodeSet CheckedSet; getCheckerManager().runCheckersForDeadSymbols(CheckedSet, EntryNode, SymReaper, currentStmt, *this); // For each node in CheckedSet, generate CleanedNodes that have the // environment, the store, and the constraints cleaned up but have the // user-supplied states as the predecessors. for (ExplodedNodeSet::const_iterator I = CheckedSet.begin(), E = CheckedSet.end(); I != E; ++I) { const ProgramState *CheckerState = (*I)->getState(); // The constraint manager has not been cleaned up yet, so clean up now. CheckerState = getConstraintManager().removeDeadBindings(CheckerState, SymReaper); assert(StateMgr.haveEqualEnvironments(CheckerState, EntryState) && "Checkers are not allowed to modify the Environment as a part of " "checkDeadSymbols processing."); assert(StateMgr.haveEqualStores(CheckerState, EntryState) && "Checkers are not allowed to modify the Store as a part of " "checkDeadSymbols processing."); // Create a state based on CleanedState with CheckerState GDM and // generate a transition to that state. const ProgramState *CleanedCheckerSt = StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState); ExplodedNode *CleanedNode = Builder->generateNode(currentStmt, CleanedCheckerSt, *I, &cleanupTag); Tmp.Add(CleanedNode); } } for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { // TODO: Remove Dest set, it's no longer needed. ExplodedNodeSet Dst; // Visit the statement. Visit(currentStmt, *I, Dst); } // NULL out these variables to cleanup. CleanedState = NULL; EntryNode = NULL; currentStmt = 0; Builder = NULL; } void ExprEngine::ProcessInitializer(const CFGInitializer Init, StmtNodeBuilder &builder) { // We don't set EntryNode and currentStmt. And we don't clean up state. const CXXCtorInitializer *BMI = Init.getInitializer(); ExplodedNode *pred = builder.getPredecessor(); const StackFrameContext *stackFrame = cast(pred->getLocationContext()); const CXXConstructorDecl *decl = cast(stackFrame->getDecl()); const CXXThisRegion *thisReg = getCXXThisRegion(decl, stackFrame); SVal thisVal = pred->getState()->getSVal(thisReg); if (BMI->isAnyMemberInitializer()) { ExplodedNodeSet Dst; // Evaluate the initializer. Visit(BMI->getInit(), pred, Dst); for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end(); I != E; ++I){ ExplodedNode *Pred = *I; const ProgramState *state = Pred->getState(); const FieldDecl *FD = BMI->getAnyMember(); SVal FieldLoc = state->getLValue(FD, thisVal); SVal InitVal = state->getSVal(BMI->getInit()); state = state->bindLoc(FieldLoc, InitVal); // Use a custom node building process. PostInitializer PP(BMI, stackFrame); // Builder automatically add the generated node to the deferred set, // which are processed in the builder's dtor. builder.generateNode(PP, state, Pred); } return; } assert(BMI->isBaseInitializer()); // Get the base class declaration. const CXXConstructExpr *ctorExpr = cast(BMI->getInit()); // Create the base object region. SVal baseVal = getStoreManager().evalDerivedToBase(thisVal, ctorExpr->getType()); const MemRegion *baseReg = baseVal.getAsRegion(); assert(baseReg); Builder = &builder; ExplodedNodeSet dst; VisitCXXConstructExpr(ctorExpr, baseReg, pred, dst); } void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D, StmtNodeBuilder &builder) { Builder = &builder; switch (D.getKind()) { case CFGElement::AutomaticObjectDtor: ProcessAutomaticObjDtor(cast(D), builder); break; case CFGElement::BaseDtor: ProcessBaseDtor(cast(D), builder); break; case CFGElement::MemberDtor: ProcessMemberDtor(cast(D), builder); break; case CFGElement::TemporaryDtor: ProcessTemporaryDtor(cast(D), builder); break; default: llvm_unreachable("Unexpected dtor kind."); } } void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor dtor, StmtNodeBuilder &builder) { ExplodedNode *pred = builder.getPredecessor(); const ProgramState *state = pred->getState(); const VarDecl *varDecl = dtor.getVarDecl(); QualType varType = varDecl->getType(); if (const ReferenceType *refType = varType->getAs()) varType = refType->getPointeeType(); const CXXRecordDecl *recordDecl = varType->getAsCXXRecordDecl(); assert(recordDecl && "get CXXRecordDecl fail"); const CXXDestructorDecl *dtorDecl = recordDecl->getDestructor(); Loc dest = state->getLValue(varDecl, pred->getLocationContext()); ExplodedNodeSet dstSet; VisitCXXDestructor(dtorDecl, cast(dest).getRegion(), dtor.getTriggerStmt(), pred, dstSet); } void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D, StmtNodeBuilder &builder) { } void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D, StmtNodeBuilder &builder) { } void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D, StmtNodeBuilder &builder) { } void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred, ExplodedNodeSet &Dst) { PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), S->getLocStart(), "Error evaluating statement"); // Expressions to ignore. if (const Expr *Ex = dyn_cast(S)) S = Ex->IgnoreParens(); // FIXME: add metadata to the CFG so that we can disable // this check when we KNOW that there is no block-level subexpression. // The motivation is that this check requires a hashtable lookup. if (S != currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S)) { Dst.Add(Pred); return; } switch (S->getStmtClass()) { // C++ and ARC stuff we don't support yet. case Expr::ObjCIndirectCopyRestoreExprClass: case Stmt::CXXBindTemporaryExprClass: case Stmt::CXXCatchStmtClass: case Stmt::CXXDependentScopeMemberExprClass: case Stmt::CXXPseudoDestructorExprClass: case Stmt::CXXThrowExprClass: case Stmt::CXXTryStmtClass: case Stmt::CXXTypeidExprClass: case Stmt::CXXUuidofExprClass: case Stmt::CXXUnresolvedConstructExprClass: case Stmt::CXXScalarValueInitExprClass: case Stmt::DependentScopeDeclRefExprClass: case Stmt::UnaryTypeTraitExprClass: case Stmt::BinaryTypeTraitExprClass: case Stmt::ArrayTypeTraitExprClass: case Stmt::ExpressionTraitExprClass: case Stmt::UnresolvedLookupExprClass: case Stmt::UnresolvedMemberExprClass: case Stmt::CXXNoexceptExprClass: case Stmt::PackExpansionExprClass: case Stmt::SubstNonTypeTemplateParmPackExprClass: case Stmt::SEHTryStmtClass: case Stmt::SEHExceptStmtClass: case Stmt::SEHFinallyStmtClass: { SaveAndRestore OldSink(Builder->BuildSinks); Builder->BuildSinks = true; const ExplodedNode *node = MakeNode(Dst, S, Pred, Pred->getState()); Engine.addAbortedBlock(node, Builder->getBlock()); break; } // We don't handle default arguments either yet, but we can fake it // for now by just skipping them. case Stmt::SubstNonTypeTemplateParmExprClass: case Stmt::CXXDefaultArgExprClass: { Dst.Add(Pred); break; } case Stmt::ParenExprClass: llvm_unreachable("ParenExprs already handled."); case Stmt::GenericSelectionExprClass: llvm_unreachable("GenericSelectionExprs already handled."); // Cases that should never be evaluated simply because they shouldn't // appear in the CFG. case Stmt::BreakStmtClass: case Stmt::CaseStmtClass: case Stmt::CompoundStmtClass: case Stmt::ContinueStmtClass: case Stmt::CXXForRangeStmtClass: case Stmt::DefaultStmtClass: case Stmt::DoStmtClass: case Stmt::ForStmtClass: case Stmt::GotoStmtClass: case Stmt::IfStmtClass: case Stmt::IndirectGotoStmtClass: case Stmt::LabelStmtClass: case Stmt::NoStmtClass: case Stmt::NullStmtClass: case Stmt::SwitchStmtClass: case Stmt::WhileStmtClass: llvm_unreachable("Stmt should not be in analyzer evaluation loop"); break; case Stmt::GNUNullExprClass: { // GNU __null is a pointer-width integer, not an actual pointer. const ProgramState *state = Pred->getState(); state = state->BindExpr(S, svalBuilder.makeIntValWithPtrWidth(0, false)); MakeNode(Dst, S, Pred, state); break; } case Stmt::ObjCAtSynchronizedStmtClass: VisitObjCAtSynchronizedStmt(cast(S), Pred, Dst); break; case Stmt::ObjCPropertyRefExprClass: // Implicitly handled by Environment::getSVal(). Dst.Add(Pred); break; case Stmt::ImplicitValueInitExprClass: { const ProgramState *state = Pred->getState(); QualType ty = cast(S)->getType(); SVal val = svalBuilder.makeZeroVal(ty); MakeNode(Dst, S, Pred, state->BindExpr(S, val)); break; } case Stmt::ExprWithCleanupsClass: { Visit(cast(S)->getSubExpr(), Pred, Dst); break; } // Cases not handled yet; but will handle some day. case Stmt::DesignatedInitExprClass: case Stmt::ExtVectorElementExprClass: case Stmt::ImaginaryLiteralClass: case Stmt::ObjCAtCatchStmtClass: case Stmt::ObjCAtFinallyStmtClass: case Stmt::ObjCAtTryStmtClass: case Stmt::ObjCAutoreleasePoolStmtClass: case Stmt::ObjCEncodeExprClass: case Stmt::ObjCIsaExprClass: case Stmt::ObjCProtocolExprClass: case Stmt::ObjCSelectorExprClass: case Stmt::ObjCStringLiteralClass: case Stmt::ParenListExprClass: case Stmt::PredefinedExprClass: case Stmt::ShuffleVectorExprClass: case Stmt::VAArgExprClass: case Stmt::CUDAKernelCallExprClass: case Stmt::OpaqueValueExprClass: case Stmt::AsTypeExprClass: case Stmt::AtomicExprClass: // Fall through. // Cases we intentionally don't evaluate, since they don't need // to be explicitly evaluated. case Stmt::AddrLabelExprClass: case Stmt::IntegerLiteralClass: case Stmt::CharacterLiteralClass: case Stmt::CXXBoolLiteralExprClass: case Stmt::FloatingLiteralClass: case Stmt::SizeOfPackExprClass: case Stmt::CXXNullPtrLiteralExprClass: Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. break; case Stmt::ArraySubscriptExprClass: VisitLvalArraySubscriptExpr(cast(S), Pred, Dst); break; case Stmt::AsmStmtClass: VisitAsmStmt(cast(S), Pred, Dst); break; case Stmt::BlockDeclRefExprClass: { const BlockDeclRefExpr *BE = cast(S); VisitCommonDeclRefExpr(BE, BE->getDecl(), Pred, Dst); break; } case Stmt::BlockExprClass: VisitBlockExpr(cast(S), Pred, Dst); break; case Stmt::BinaryOperatorClass: { const BinaryOperator* B = cast(S); if (B->isLogicalOp()) { VisitLogicalExpr(B, Pred, Dst); break; } else if (B->getOpcode() == BO_Comma) { const ProgramState *state = Pred->getState(); MakeNode(Dst, B, Pred, state->BindExpr(B, state->getSVal(B->getRHS()))); break; } if (AMgr.shouldEagerlyAssume() && (B->isRelationalOp() || B->isEqualityOp())) { ExplodedNodeSet Tmp; VisitBinaryOperator(cast(S), Pred, Tmp); evalEagerlyAssume(Dst, Tmp, cast(S)); } else VisitBinaryOperator(cast(S), Pred, Dst); break; } case Stmt::CallExprClass: case Stmt::CXXOperatorCallExprClass: case Stmt::CXXMemberCallExprClass: { VisitCallExpr(cast(S), Pred, Dst); break; } case Stmt::CXXTemporaryObjectExprClass: case Stmt::CXXConstructExprClass: { const CXXConstructExpr *C = cast(S); // For block-level CXXConstructExpr, we don't have a destination region. // Let VisitCXXConstructExpr() create one. VisitCXXConstructExpr(C, 0, Pred, Dst); break; } case Stmt::CXXNewExprClass: { const CXXNewExpr *NE = cast(S); VisitCXXNewExpr(NE, Pred, Dst); break; } case Stmt::CXXDeleteExprClass: { const CXXDeleteExpr *CDE = cast(S); VisitCXXDeleteExpr(CDE, Pred, Dst); break; } // FIXME: ChooseExpr is really a constant. We need to fix // the CFG do not model them as explicit control-flow. case Stmt::ChooseExprClass: { // __builtin_choose_expr const ChooseExpr *C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::CompoundAssignOperatorClass: VisitBinaryOperator(cast(S), Pred, Dst); break; case Stmt::CompoundLiteralExprClass: VisitCompoundLiteralExpr(cast(S), Pred, Dst); break; case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: { // '?' operator const AbstractConditionalOperator *C = cast(S); VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst); break; } case Stmt::CXXThisExprClass: VisitCXXThisExpr(cast(S), Pred, Dst); break; case Stmt::DeclRefExprClass: { const DeclRefExpr *DE = cast(S); VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst); break; } case Stmt::DeclStmtClass: VisitDeclStmt(cast(S), Pred, Dst); break; case Stmt::ImplicitCastExprClass: case Stmt::CStyleCastExprClass: case Stmt::CXXStaticCastExprClass: case Stmt::CXXDynamicCastExprClass: case Stmt::CXXReinterpretCastExprClass: case Stmt::CXXConstCastExprClass: case Stmt::CXXFunctionalCastExprClass: case Stmt::ObjCBridgedCastExprClass: { const CastExpr *C = cast(S); // Handle the previsit checks. ExplodedNodeSet dstPrevisit; getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, C, *this); // Handle the expression itself. ExplodedNodeSet dstExpr; for (ExplodedNodeSet::iterator i = dstPrevisit.begin(), e = dstPrevisit.end(); i != e ; ++i) { VisitCast(C, C->getSubExpr(), *i, dstExpr); } // Handle the postvisit checks. getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this); break; } case Expr::MaterializeTemporaryExprClass: { const MaterializeTemporaryExpr *Materialize = cast(S); if (!Materialize->getType()->isRecordType()) CreateCXXTemporaryObject(Materialize, Pred, Dst); else Visit(Materialize->GetTemporaryExpr(), Pred, Dst); break; } case Stmt::InitListExprClass: VisitInitListExpr(cast(S), Pred, Dst); break; case Stmt::MemberExprClass: VisitMemberExpr(cast(S), Pred, Dst); break; case Stmt::ObjCIvarRefExprClass: VisitLvalObjCIvarRefExpr(cast(S), Pred, Dst); break; case Stmt::ObjCForCollectionStmtClass: VisitObjCForCollectionStmt(cast(S), Pred, Dst); break; case Stmt::ObjCMessageExprClass: VisitObjCMessage(cast(S), Pred, Dst); break; case Stmt::ObjCAtThrowStmtClass: { // FIXME: This is not complete. We basically treat @throw as // an abort. SaveAndRestore OldSink(Builder->BuildSinks); Builder->BuildSinks = true; MakeNode(Dst, S, Pred, Pred->getState()); break; } case Stmt::ReturnStmtClass: VisitReturnStmt(cast(S), Pred, Dst); break; case Stmt::OffsetOfExprClass: VisitOffsetOfExpr(cast(S), Pred, Dst); break; case Stmt::UnaryExprOrTypeTraitExprClass: VisitUnaryExprOrTypeTraitExpr(cast(S), Pred, Dst); break; case Stmt::StmtExprClass: { const StmtExpr *SE = cast(S); if (SE->getSubStmt()->body_empty()) { // Empty statement expression. assert(SE->getType() == getContext().VoidTy && "Empty statement expression must have void type."); Dst.Add(Pred); break; } if (Expr *LastExpr = dyn_cast(*SE->getSubStmt()->body_rbegin())) { const ProgramState *state = Pred->getState(); MakeNode(Dst, SE, Pred, state->BindExpr(SE, state->getSVal(LastExpr))); } else Dst.Add(Pred); break; } case Stmt::StringLiteralClass: { const ProgramState *state = Pred->getState(); SVal V = state->getLValue(cast(S)); MakeNode(Dst, S, Pred, state->BindExpr(S, V)); return; } case Stmt::UnaryOperatorClass: { const UnaryOperator *U = cast(S); if (AMgr.shouldEagerlyAssume()&&(U->getOpcode() == UO_LNot)) { ExplodedNodeSet Tmp; VisitUnaryOperator(U, Pred, Tmp); evalEagerlyAssume(Dst, Tmp, U); } else VisitUnaryOperator(U, Pred, Dst); break; } } } //===----------------------------------------------------------------------===// // Block entrance. (Update counters). //===----------------------------------------------------------------------===// void ExprEngine::processCFGBlockEntrance(ExplodedNodeSet &dstNodes, GenericNodeBuilder &nodeBuilder){ // FIXME: Refactor this into a checker. const CFGBlock *block = nodeBuilder.getProgramPoint().getBlock(); ExplodedNode *pred = nodeBuilder.getPredecessor(); if (nodeBuilder.getBlockCounter().getNumVisited( pred->getLocationContext()->getCurrentStackFrame(), block->getBlockID()) >= AMgr.getMaxVisit()) { static SimpleProgramPointTag tag("ExprEngine : Block count exceeded"); nodeBuilder.generateNode(pred->getState(), pred, &tag, true); } } //===----------------------------------------------------------------------===// // Generic node creation. //===----------------------------------------------------------------------===// ExplodedNode *ExprEngine::MakeNode(ExplodedNodeSet &Dst, const Stmt *S, ExplodedNode *Pred, const ProgramState *St, ProgramPoint::Kind K, const ProgramPointTag *tag) { assert (Builder && "StmtNodeBuilder not present."); SaveAndRestore OldTag(Builder->Tag); Builder->Tag = tag; return Builder->MakeNode(Dst, S, Pred, St, K); } //===----------------------------------------------------------------------===// // Branch processing. //===----------------------------------------------------------------------===// const ProgramState *ExprEngine::MarkBranch(const ProgramState *state, const Stmt *Terminator, bool branchTaken) { switch (Terminator->getStmtClass()) { default: return state; case Stmt::BinaryOperatorClass: { // '&&' and '||' const BinaryOperator* B = cast(Terminator); BinaryOperator::Opcode Op = B->getOpcode(); assert (Op == BO_LAnd || Op == BO_LOr); // For &&, if we take the true branch, then the value of the whole // expression is that of the RHS expression. // // For ||, if we take the false branch, then the value of the whole // expression is that of the RHS expression. const Expr *Ex = (Op == BO_LAnd && branchTaken) || (Op == BO_LOr && !branchTaken) ? B->getRHS() : B->getLHS(); return state->BindExpr(B, UndefinedVal(Ex)); } case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: { // ?: const AbstractConditionalOperator* C = cast(Terminator); // For ?, if branchTaken == true then the value is either the LHS or // the condition itself. (GNU extension). const Expr *Ex; if (branchTaken) Ex = C->getTrueExpr(); else Ex = C->getFalseExpr(); return state->BindExpr(C, UndefinedVal(Ex)); } case Stmt::ChooseExprClass: { // ?: const ChooseExpr *C = cast(Terminator); const Expr *Ex = branchTaken ? C->getLHS() : C->getRHS(); return state->BindExpr(C, UndefinedVal(Ex)); } } } /// RecoverCastedSymbol - A helper function for ProcessBranch that is used /// to try to recover some path-sensitivity for casts of symbolic /// integers that promote their values (which are currently not tracked well). /// This function returns the SVal bound to Condition->IgnoreCasts if all the // cast(s) did was sign-extend the original value. static SVal RecoverCastedSymbol(ProgramStateManager& StateMgr, const ProgramState *state, const Stmt *Condition, ASTContext &Ctx) { const Expr *Ex = dyn_cast(Condition); if (!Ex) return UnknownVal(); uint64_t bits = 0; bool bitsInit = false; while (const CastExpr *CE = dyn_cast(Ex)) { QualType T = CE->getType(); if (!T->isIntegerType()) return UnknownVal(); uint64_t newBits = Ctx.getTypeSize(T); if (!bitsInit || newBits < bits) { bitsInit = true; bits = newBits; } Ex = CE->getSubExpr(); } // We reached a non-cast. Is it a symbolic value? QualType T = Ex->getType(); if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) return UnknownVal(); return state->getSVal(Ex); } void ExprEngine::processBranch(const Stmt *Condition, const Stmt *Term, BranchNodeBuilder& builder) { // Check for NULL conditions; e.g. "for(;;)" if (!Condition) { builder.markInfeasible(false); return; } PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), Condition->getLocStart(), "Error evaluating branch"); getCheckerManager().runCheckersForBranchCondition(Condition, builder, *this); // If the branch condition is undefined, return; if (!builder.isFeasible(true) && !builder.isFeasible(false)) return; const ProgramState *PrevState = builder.getState(); SVal X = PrevState->getSVal(Condition); if (X.isUnknownOrUndef()) { // Give it a chance to recover from unknown. if (const Expr *Ex = dyn_cast(Condition)) { if (Ex->getType()->isIntegerType()) { // Try to recover some path-sensitivity. Right now casts of symbolic // integers that promote their values are currently not tracked well. // If 'Condition' is such an expression, try and recover the // underlying value and use that instead. SVal recovered = RecoverCastedSymbol(getStateManager(), builder.getState(), Condition, getContext()); if (!recovered.isUnknown()) { X = recovered; } } } // If the condition is still unknown, give up. if (X.isUnknownOrUndef()) { builder.generateNode(MarkBranch(PrevState, Term, true), true); builder.generateNode(MarkBranch(PrevState, Term, false), false); return; } } DefinedSVal V = cast(X); // Process the true branch. if (builder.isFeasible(true)) { if (const ProgramState *state = PrevState->assume(V, true)) builder.generateNode(MarkBranch(state, Term, true), true); else builder.markInfeasible(true); } // Process the false branch. if (builder.isFeasible(false)) { if (const ProgramState *state = PrevState->assume(V, false)) builder.generateNode(MarkBranch(state, Term, false), false); else builder.markInfeasible(false); } } /// processIndirectGoto - Called by CoreEngine. Used to generate successor /// nodes by processing the 'effects' of a computed goto jump. void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) { const ProgramState *state = builder.getState(); SVal V = state->getSVal(builder.getTarget()); // Three possibilities: // // (1) We know the computed label. // (2) The label is NULL (or some other constant), or Undefined. // (3) We have no clue about the label. Dispatch to all targets. // typedef IndirectGotoNodeBuilder::iterator iterator; if (isa(V)) { const LabelDecl *L = cast(V).getLabel(); for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) { if (I.getLabel() == L) { builder.generateNode(I, state); return; } } llvm_unreachable("No block with label."); } if (isa(V) || isa(V)) { // Dispatch to the first target and mark it as a sink. //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); // FIXME: add checker visit. // UndefBranches.insert(N); return; } // This is really a catch-all. We don't support symbolics yet. // FIXME: Implement dispatch for symbolic pointers. for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) builder.generateNode(I, state); } /// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path /// nodes when the control reaches the end of a function. void ExprEngine::processEndOfFunction(EndOfFunctionNodeBuilder& builder) { StateMgr.EndPath(builder.getState()); getCheckerManager().runCheckersForEndPath(builder, *this); } /// ProcessSwitch - Called by CoreEngine. Used to generate successor /// nodes by processing the 'effects' of a switch statement. void ExprEngine::processSwitch(SwitchNodeBuilder& builder) { typedef SwitchNodeBuilder::iterator iterator; const ProgramState *state = builder.getState(); const Expr *CondE = builder.getCondition(); SVal CondV_untested = state->getSVal(CondE); if (CondV_untested.isUndef()) { //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); // FIXME: add checker //UndefBranches.insert(N); return; } DefinedOrUnknownSVal CondV = cast(CondV_untested); const ProgramState *DefaultSt = state; iterator I = builder.begin(), EI = builder.end(); bool defaultIsFeasible = I == EI; for ( ; I != EI; ++I) { // Successor may be pruned out during CFG construction. if (!I.getBlock()) continue; const CaseStmt *Case = I.getCase(); // Evaluate the LHS of the case value. llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext()); assert(V1.getBitWidth() == getContext().getTypeSize(CondE->getType())); // Get the RHS of the case, if it exists. llvm::APSInt V2; if (const Expr *E = Case->getRHS()) V2 = E->EvaluateKnownConstInt(getContext()); else V2 = V1; // FIXME: Eventually we should replace the logic below with a range // comparison, rather than concretize the values within the range. // This should be easy once we have "ranges" for NonLVals. do { nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1)); DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state, CondV, CaseVal); // Now "assume" that the case matches. if (const ProgramState *stateNew = state->assume(Res, true)) { builder.generateCaseStmtNode(I, stateNew); // If CondV evaluates to a constant, then we know that this // is the *only* case that we can take, so stop evaluating the // others. if (isa(CondV)) return; } // Now "assume" that the case doesn't match. Add this state // to the default state (if it is feasible). if (DefaultSt) { if (const ProgramState *stateNew = DefaultSt->assume(Res, false)) { defaultIsFeasible = true; DefaultSt = stateNew; } else { defaultIsFeasible = false; DefaultSt = NULL; } } // Concretize the next value in the range. if (V1 == V2) break; ++V1; assert (V1 <= V2); } while (true); } if (!defaultIsFeasible) return; // If we have switch(enum value), the default branch is not // feasible if all of the enum constants not covered by 'case:' statements // are not feasible values for the switch condition. // // Note that this isn't as accurate as it could be. Even if there isn't // a case for a particular enum value as long as that enum value isn't // feasible then it shouldn't be considered for making 'default:' reachable. const SwitchStmt *SS = builder.getSwitch(); const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts(); if (CondExpr->getType()->getAs()) { if (SS->isAllEnumCasesCovered()) return; } builder.generateDefaultCaseNode(DefaultSt); } //===----------------------------------------------------------------------===// // Transfer functions: Loads and stores. //===----------------------------------------------------------------------===// void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D, ExplodedNode *Pred, ExplodedNodeSet &Dst) { const ProgramState *state = Pred->getState(); if (const VarDecl *VD = dyn_cast(D)) { assert(Ex->isLValue()); SVal V = state->getLValue(VD, Pred->getLocationContext()); // For references, the 'lvalue' is the pointer address stored in the // reference region. if (VD->getType()->isReferenceType()) { if (const MemRegion *R = V.getAsRegion()) V = state->getSVal(R); else V = UnknownVal(); } MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), ProgramPoint::PostLValueKind); return; } if (const EnumConstantDecl *ED = dyn_cast(D)) { assert(!Ex->isLValue()); SVal V = svalBuilder.makeIntVal(ED->getInitVal()); MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V)); return; } if (const FunctionDecl *FD = dyn_cast(D)) { SVal V = svalBuilder.getFunctionPointer(FD); MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), ProgramPoint::PostLValueKind); return; } assert (false && "ValueDecl support for this ValueDecl not implemented."); } /// VisitArraySubscriptExpr - Transfer function for array accesses void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr *A, ExplodedNode *Pred, ExplodedNodeSet &Dst){ const Expr *Base = A->getBase()->IgnoreParens(); const Expr *Idx = A->getIdx()->IgnoreParens(); ExplodedNodeSet checkerPreStmt; getCheckerManager().runCheckersForPreStmt(checkerPreStmt, Pred, A, *this); for (ExplodedNodeSet::iterator it = checkerPreStmt.begin(), ei = checkerPreStmt.end(); it != ei; ++it) { const ProgramState *state = (*it)->getState(); SVal V = state->getLValue(A->getType(), state->getSVal(Idx), state->getSVal(Base)); assert(A->isLValue()); MakeNode(Dst, A, *it, state->BindExpr(A, V), ProgramPoint::PostLValueKind); } } /// VisitMemberExpr - Transfer function for member expressions. void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred, ExplodedNodeSet &Dst) { Decl *member = M->getMemberDecl(); if (VarDecl *VD = dyn_cast(member)) { assert(M->isLValue()); VisitCommonDeclRefExpr(M, VD, Pred, Dst); return; } FieldDecl *field = dyn_cast(member); if (!field) // FIXME: skipping member expressions for non-fields return; Expr *baseExpr = M->getBase()->IgnoreParens(); const ProgramState *state = Pred->getState(); SVal baseExprVal = state->getSVal(baseExpr); if (isa(baseExprVal) || isa(baseExprVal) || // FIXME: This can originate by conjuring a symbol for an unknown // temporary struct object, see test/Analysis/fields.c: // (p = getit()).x isa(baseExprVal)) { MakeNode(Dst, M, Pred, state->BindExpr(M, UnknownVal())); return; } // FIXME: Should we insert some assumption logic in here to determine // if "Base" is a valid piece of memory? Before we put this assumption // later when using FieldOffset lvals (which we no longer have). // For all other cases, compute an lvalue. SVal L = state->getLValue(field, baseExprVal); if (M->isLValue()) MakeNode(Dst, M, Pred, state->BindExpr(M, L), ProgramPoint::PostLValueKind); else evalLoad(Dst, M, Pred, state, L); } /// evalBind - Handle the semantics of binding a value to a specific location. /// This method is used by evalStore and (soon) VisitDeclStmt, and others. void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE, ExplodedNode *Pred, SVal location, SVal Val, bool atDeclInit) { // Do a previsit of the bind. ExplodedNodeSet CheckedSet; getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val, StoreE, *this); for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); I!=E; ++I) { const ProgramState *state = (*I)->getState(); if (atDeclInit) { const VarRegion *VR = cast(cast(location).getRegion()); state = state->bindDecl(VR, Val); } else { state = state->bindLoc(location, Val); } MakeNode(Dst, StoreE, *I, state); } } /// evalStore - Handle the semantics of a store via an assignment. /// @param Dst The node set to store generated state nodes /// @param AssignE The assignment expression if the store happens in an /// assignment. /// @param LocatioinE The location expression that is stored to. /// @param state The current simulation state /// @param location The location to store the value /// @param Val The value to be stored void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE, const Expr *LocationE, ExplodedNode *Pred, const ProgramState *state, SVal location, SVal Val, const ProgramPointTag *tag) { assert(Builder && "StmtNodeBuilder must be defined."); // Proceed with the store. We use AssignE as the anchor for the PostStore // ProgramPoint if it is non-NULL, and LocationE otherwise. const Expr *StoreE = AssignE ? AssignE : LocationE; if (isa(location)) { loc::ObjCPropRef prop = cast(location); return VisitObjCMessage(ObjCPropertySetter(prop.getPropRefExpr(), StoreE, Val), Pred, Dst); } // Evaluate the location (checks for bad dereferences). ExplodedNodeSet Tmp; evalLocation(Tmp, LocationE, Pred, state, location, tag, false); if (Tmp.empty()) return; if (location.isUndef()) return; SaveAndRestore OldSPointKind(Builder->PointKind, ProgramPoint::PostStoreKind); for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) evalBind(Dst, StoreE, *NI, location, Val); } void ExprEngine::evalLoad(ExplodedNodeSet &Dst, const Expr *Ex, ExplodedNode *Pred, const ProgramState *state, SVal location, const ProgramPointTag *tag, QualType LoadTy) { assert(!isa(location) && "location cannot be a NonLoc."); if (isa(location)) { loc::ObjCPropRef prop = cast(location); return VisitObjCMessage(ObjCPropertyGetter(prop.getPropRefExpr(), Ex), Pred, Dst); } // Are we loading from a region? This actually results in two loads; one // to fetch the address of the referenced value and one to fetch the // referenced value. if (const TypedValueRegion *TR = dyn_cast_or_null(location.getAsRegion())) { QualType ValTy = TR->getValueType(); if (const ReferenceType *RT = ValTy->getAs()) { static SimpleProgramPointTag loadReferenceTag("ExprEngine : Load Reference"); ExplodedNodeSet Tmp; evalLoadCommon(Tmp, Ex, Pred, state, location, &loadReferenceTag, getContext().getPointerType(RT->getPointeeType())); // Perform the load from the referenced value. for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) { state = (*I)->getState(); location = state->getSVal(Ex); evalLoadCommon(Dst, Ex, *I, state, location, tag, LoadTy); } return; } } evalLoadCommon(Dst, Ex, Pred, state, location, tag, LoadTy); } void ExprEngine::evalLoadCommon(ExplodedNodeSet &Dst, const Expr *Ex, ExplodedNode *Pred, const ProgramState *state, SVal location, const ProgramPointTag *tag, QualType LoadTy) { // Evaluate the location (checks for bad dereferences). ExplodedNodeSet Tmp; evalLocation(Tmp, Ex, Pred, state, location, tag, true); if (Tmp.empty()) return; if (location.isUndef()) return; SaveAndRestore OldSPointKind(Builder->PointKind); // Proceed with the load. for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { state = (*NI)->getState(); if (location.isUnknown()) { // This is important. We must nuke the old binding. MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, UnknownVal()), ProgramPoint::PostLoadKind, tag); } else { if (LoadTy.isNull()) LoadTy = Ex->getType(); SVal V = state->getSVal(cast(location), LoadTy); MakeNode(Dst, Ex, *NI, state->bindExprAndLocation(Ex, location, V), ProgramPoint::PostLoadKind, tag); } } } void ExprEngine::evalLocation(ExplodedNodeSet &Dst, const Stmt *S, ExplodedNode *Pred, const ProgramState *state, SVal location, const ProgramPointTag *tag, bool isLoad) { // Early checks for performance reason. if (location.isUnknown()) { Dst.Add(Pred); return; } ExplodedNodeSet Src; if (Pred->getState() == state) { Src.Add(Pred); } else { // Associate this new state with an ExplodedNode. // FIXME: If I pass null tag, the graph is incorrect, e.g for // int *p; // p = 0; // *p = 0xDEADBEEF; // "p = 0" is not noted as "Null pointer value stored to 'p'" but // instead "int *p" is noted as // "Variable 'p' initialized to a null pointer value" // FIXME: why is 'tag' not used instead of etag? static SimpleProgramPointTag etag("ExprEngine: Location"); ExplodedNode *N = Builder->generateNode(S, state, Pred, &etag); Src.Add(N ? N : Pred); } getCheckerManager().runCheckersForLocation(Dst, Src, location, isLoad, S, *this); } bool ExprEngine::InlineCall(ExplodedNodeSet &Dst, const CallExpr *CE, ExplodedNode *Pred) { return false; // Inlining isn't correct right now because we: // (a) don't generate CallExit nodes. // (b) we need a way to postpone doing post-visits of CallExprs until // the CallExit. This means we need CallExits for the non-inline // cases as well. #if 0 const ProgramState *state = Pred->getState(); const Expr *Callee = CE->getCallee(); SVal L = state->getSVal(Callee); const FunctionDecl *FD = L.getAsFunctionDecl(); if (!FD) return false; // Specially handle CXXMethods. const CXXMethodDecl *methodDecl = 0; switch (CE->getStmtClass()) { default: break; case Stmt::CXXOperatorCallExprClass: { const CXXOperatorCallExpr *opCall = cast(CE); methodDecl = dyn_cast_or_null(opCall->getCalleeDecl()); break; } case Stmt::CXXMemberCallExprClass: { const CXXMemberCallExpr *memberCall = cast(CE); const MemberExpr *memberExpr = cast(memberCall->getCallee()->IgnoreParens()); methodDecl = cast(memberExpr->getMemberDecl()); break; } } // Check if the function definition is in the same translation unit. if (FD->hasBody(FD)) { const StackFrameContext *stackFrame = AMgr.getStackFrame(AMgr.getAnalysisContext(FD), Pred->getLocationContext(), CE, Builder->getBlock(), Builder->getIndex()); // Now we have the definition of the callee, create a CallEnter node. CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); ExplodedNode *N = Builder->generateNode(Loc, state, Pred); Dst.Add(N); return true; } // Check if we can find the function definition in other translation units. if (AMgr.hasIndexer()) { AnalysisContext *C = AMgr.getAnalysisContextInAnotherTU(FD); if (C == 0) return false; const StackFrameContext *stackFrame = AMgr.getStackFrame(C, Pred->getLocationContext(), CE, Builder->getBlock(), Builder->getIndex()); CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); ExplodedNode *N = Builder->generateNode(Loc, state, Pred); Dst.Add(N); return true; } // Generate the CallExit node. return false; #endif } std::pair ExprEngine::getEagerlyAssumeTags() { static SimpleProgramPointTag EagerlyAssumeTrue("ExprEngine : Eagerly Assume True"), EagerlyAssumeFalse("ExprEngine : Eagerly Assume False"); return std::make_pair(&EagerlyAssumeTrue, &EagerlyAssumeFalse); } void ExprEngine::evalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src, const Expr *Ex) { for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { ExplodedNode *Pred = *I; // Test if the previous node was as the same expression. This can happen // when the expression fails to evaluate to anything meaningful and // (as an optimization) we don't generate a node. ProgramPoint P = Pred->getLocation(); if (!isa(P) || cast(P).getStmt() != Ex) { Dst.Add(Pred); continue; } const ProgramState *state = Pred->getState(); SVal V = state->getSVal(Ex); if (nonloc::SymExprVal *SEV = dyn_cast(&V)) { const std::pair &tags = getEagerlyAssumeTags(); // First assume that the condition is true. if (const ProgramState *StateTrue = state->assume(*SEV, true)) { SVal Val = svalBuilder.makeIntVal(1U, Ex->getType()); StateTrue = StateTrue->BindExpr(Ex, Val); Dst.Add(Builder->generateNode(Ex, StateTrue, Pred, tags.first)); } // Next, assume that the condition is false. if (const ProgramState *StateFalse = state->assume(*SEV, false)) { SVal Val = svalBuilder.makeIntVal(0U, Ex->getType()); StateFalse = StateFalse->BindExpr(Ex, Val); Dst.Add(Builder->generateNode(Ex, StateFalse, Pred, tags.second)); } } else Dst.Add(Pred); } } void ExprEngine::VisitAsmStmt(const AsmStmt *A, ExplodedNode *Pred, ExplodedNodeSet &Dst) { VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); } void ExprEngine::VisitAsmStmtHelperOutputs(const AsmStmt *A, AsmStmt::const_outputs_iterator I, AsmStmt::const_outputs_iterator E, ExplodedNode *Pred, ExplodedNodeSet &Dst) { if (I == E) { VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); return; } ExplodedNodeSet Tmp; Visit(*I, Pred, Tmp); ++I; for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end();NI != NE;++NI) VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); } void ExprEngine::VisitAsmStmtHelperInputs(const AsmStmt *A, AsmStmt::const_inputs_iterator I, AsmStmt::const_inputs_iterator E, ExplodedNode *Pred, ExplodedNodeSet &Dst) { if (I == E) { // We have processed both the inputs and the outputs. All of the outputs // should evaluate to Locs. Nuke all of their values. // FIXME: Some day in the future it would be nice to allow a "plug-in" // which interprets the inline asm and stores proper results in the // outputs. const ProgramState *state = Pred->getState(); for (AsmStmt::const_outputs_iterator OI = A->begin_outputs(), OE = A->end_outputs(); OI != OE; ++OI) { SVal X = state->getSVal(*OI); assert (!isa(X)); // Should be an Lval, or unknown, undef. if (isa(X)) state = state->bindLoc(cast(X), UnknownVal()); } MakeNode(Dst, A, Pred, state); return; } ExplodedNodeSet Tmp; Visit(*I, Pred, Tmp); ++I; for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI!=NE; ++NI) VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); } //===----------------------------------------------------------------------===// // Visualization. //===----------------------------------------------------------------------===// #ifndef NDEBUG static ExprEngine* GraphPrintCheckerState; static SourceManager* GraphPrintSourceManager; namespace llvm { template<> struct DOTGraphTraits : public DefaultDOTGraphTraits { DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} // FIXME: Since we do not cache error nodes in ExprEngine now, this does not // work. static std::string getNodeAttributes(const ExplodedNode *N, void*) { #if 0 // FIXME: Replace with a general scheme to tell if the node is // an error node. if (GraphPrintCheckerState->isImplicitNullDeref(N) || GraphPrintCheckerState->isExplicitNullDeref(N) || GraphPrintCheckerState->isUndefDeref(N) || GraphPrintCheckerState->isUndefStore(N) || GraphPrintCheckerState->isUndefControlFlow(N) || GraphPrintCheckerState->isUndefResult(N) || GraphPrintCheckerState->isBadCall(N) || GraphPrintCheckerState->isUndefArg(N)) return "color=\"red\",style=\"filled\""; if (GraphPrintCheckerState->isNoReturnCall(N)) return "color=\"blue\",style=\"filled\""; #endif return ""; } static std::string getNodeLabel(const ExplodedNode *N, void*){ std::string sbuf; llvm::raw_string_ostream Out(sbuf); // Program Location. ProgramPoint Loc = N->getLocation(); switch (Loc.getKind()) { case ProgramPoint::BlockEntranceKind: Out << "Block Entrance: B" << cast(Loc).getBlock()->getBlockID(); break; case ProgramPoint::BlockExitKind: assert (false); break; case ProgramPoint::CallEnterKind: Out << "CallEnter"; break; case ProgramPoint::CallExitKind: Out << "CallExit"; break; default: { if (StmtPoint *L = dyn_cast(&Loc)) { const Stmt *S = L->getStmt(); SourceLocation SLoc = S->getLocStart(); Out << S->getStmtClassName() << ' ' << (void*) S << ' '; LangOptions LO; // FIXME. S->printPretty(Out, 0, PrintingPolicy(LO)); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getExpansionLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getExpansionColumnNumber(SLoc) << "\\l"; } if (isa(Loc)) Out << "\\lPreStmt\\l;"; else if (isa(Loc)) Out << "\\lPostLoad\\l;"; else if (isa(Loc)) Out << "\\lPostStore\\l"; else if (isa(Loc)) Out << "\\lPostLValue\\l"; #if 0 // FIXME: Replace with a general scheme to determine // the name of the check. if (GraphPrintCheckerState->isImplicitNullDeref(N)) Out << "\\|Implicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isExplicitNullDeref(N)) Out << "\\|Explicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isUndefDeref(N)) Out << "\\|Dereference of undefialied value.\\l"; else if (GraphPrintCheckerState->isUndefStore(N)) Out << "\\|Store to Undefined Loc."; else if (GraphPrintCheckerState->isUndefResult(N)) Out << "\\|Result of operation is undefined."; else if (GraphPrintCheckerState->isNoReturnCall(N)) Out << "\\|Call to function marked \"noreturn\"."; else if (GraphPrintCheckerState->isBadCall(N)) Out << "\\|Call to NULL/Undefined."; else if (GraphPrintCheckerState->isUndefArg(N)) Out << "\\|Argument in call is undefined"; #endif break; } const BlockEdge &E = cast(Loc); Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" << E.getDst()->getBlockID() << ')'; if (const Stmt *T = E.getSrc()->getTerminator()) { SourceLocation SLoc = T->getLocStart(); Out << "\\|Terminator: "; LangOptions LO; // FIXME. E.getSrc()->printTerminator(Out, LO); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getExpansionLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getExpansionColumnNumber(SLoc); } if (isa(T)) { const Stmt *Label = E.getDst()->getLabel(); if (Label) { if (const CaseStmt *C = dyn_cast(Label)) { Out << "\\lcase "; LangOptions LO; // FIXME. C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO)); if (const Stmt *RHS = C->getRHS()) { Out << " .. "; RHS->printPretty(Out, 0, PrintingPolicy(LO)); } Out << ":"; } else { assert (isa(Label)); Out << "\\ldefault:"; } } else Out << "\\l(implicit) default:"; } else if (isa(T)) { // FIXME } else { Out << "\\lCondition: "; if (*E.getSrc()->succ_begin() == E.getDst()) Out << "true"; else Out << "false"; } Out << "\\l"; } #if 0 // FIXME: Replace with a general scheme to determine // the name of the check. if (GraphPrintCheckerState->isUndefControlFlow(N)) { Out << "\\|Control-flow based on\\lUndefined value.\\l"; } #endif } } const ProgramState *state = N->getState(); Out << "\\|StateID: " << (void*) state << " NodeID: " << (void*) N << "\\|"; state->printDOT(Out, *N->getLocationContext()->getCFG()); Out << "\\l"; if (const ProgramPointTag *tag = Loc.getTag()) { Out << "\\|Tag: " << tag->getTagDescription(); Out << "\\l"; } return Out.str(); } }; } // end llvm namespace #endif #ifndef NDEBUG template ExplodedNode *GetGraphNode(ITERATOR I) { return *I; } template <> ExplodedNode* GetGraphNode::iterator> (llvm::DenseMap::iterator I) { return I->first; } #endif void ExprEngine::ViewGraph(bool trim) { #ifndef NDEBUG if (trim) { std::vector Src; // Flush any outstanding reports to make sure we cover all the nodes. // This does not cause them to get displayed. for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) const_cast(*I)->FlushReports(BR); // Iterate through the reports and get their nodes. for (BugReporter::EQClasses_iterator EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) { BugReportEquivClass& EQ = *EI; const BugReport &R = **EQ.begin(); ExplodedNode *N = const_cast(R.getErrorNode()); if (N) Src.push_back(N); } ViewGraph(&Src[0], &Src[0]+Src.size()); } else { GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); llvm::ViewGraph(*G.roots_begin(), "ExprEngine"); GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; } #endif } void ExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) { #ifndef NDEBUG GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); std::auto_ptr TrimmedG(G.Trim(Beg, End).first); if (!TrimmedG.get()) llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n"; else llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine"); GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; #endif }