//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a basic region store model. In this model, we do have field // sensitivity. But we assume nothing about the heap shape. So recursive data // structures are largely ignored. Basically we do 1-limiting analysis. // Parameter pointers are assumed with no aliasing. Pointee objects of // parameters are created lazily. // //===----------------------------------------------------------------------===// #include "clang/AST/CharUnits.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Basic/TargetInfo.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/Optional.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; using llvm::Optional; //===----------------------------------------------------------------------===// // Representation of binding keys. //===----------------------------------------------------------------------===// namespace { class BindingKey { public: enum Kind { Default = 0x0, Direct = 0x1 }; private: enum { Symbolic = 0x2 }; llvm::PointerIntPair P; uint64_t Data; explicit BindingKey(const MemRegion *r, const MemRegion *Base, Kind k) : P(r, k | Symbolic), Data(reinterpret_cast(Base)) { assert(r && Base && "Must have known regions."); assert(getConcreteOffsetRegion() == Base && "Failed to store base region"); } explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) : P(r, k), Data(offset) { assert(r && "Must have known regions."); assert(getOffset() == offset && "Failed to store offset"); assert((r == r->getBaseRegion() || isa(r)) && "Not a base"); } public: bool isDirect() const { return P.getInt() & Direct; } bool hasSymbolicOffset() const { return P.getInt() & Symbolic; } const MemRegion *getRegion() const { return P.getPointer(); } uint64_t getOffset() const { assert(!hasSymbolicOffset()); return Data; } const MemRegion *getConcreteOffsetRegion() const { assert(hasSymbolicOffset()); return reinterpret_cast(static_cast(Data)); } const MemRegion *getBaseRegion() const { if (hasSymbolicOffset()) return getConcreteOffsetRegion()->getBaseRegion(); return getRegion()->getBaseRegion(); } void Profile(llvm::FoldingSetNodeID& ID) const { ID.AddPointer(P.getOpaqueValue()); ID.AddInteger(Data); } static BindingKey Make(const MemRegion *R, Kind k); bool operator<(const BindingKey &X) const { if (P.getOpaqueValue() < X.P.getOpaqueValue()) return true; if (P.getOpaqueValue() > X.P.getOpaqueValue()) return false; return Data < X.Data; } bool operator==(const BindingKey &X) const { return P.getOpaqueValue() == X.P.getOpaqueValue() && Data == X.Data; } LLVM_ATTRIBUTE_USED void dump() const; }; } // end anonymous namespace BindingKey BindingKey::Make(const MemRegion *R, Kind k) { const RegionOffset &RO = R->getAsOffset(); if (RO.hasSymbolicOffset()) return BindingKey(R, RO.getRegion(), k); return BindingKey(RO.getRegion(), RO.getOffset(), k); } namespace llvm { static inline raw_ostream &operator<<(raw_ostream &os, BindingKey K) { os << '(' << K.getRegion(); if (!K.hasSymbolicOffset()) os << ',' << K.getOffset(); os << ',' << (K.isDirect() ? "direct" : "default") << ')'; return os; } } // end llvm namespace void BindingKey::dump() const { llvm::errs() << *this; } //===----------------------------------------------------------------------===// // Actual Store type. //===----------------------------------------------------------------------===// typedef llvm::ImmutableMap ClusterBindings; typedef llvm::ImmutableMap RegionBindings; //===----------------------------------------------------------------------===// // Fine-grained control of RegionStoreManager. //===----------------------------------------------------------------------===// namespace { struct minimal_features_tag {}; struct maximal_features_tag {}; class RegionStoreFeatures { bool SupportsFields; public: RegionStoreFeatures(minimal_features_tag) : SupportsFields(false) {} RegionStoreFeatures(maximal_features_tag) : SupportsFields(true) {} void enableFields(bool t) { SupportsFields = t; } bool supportsFields() const { return SupportsFields; } }; } //===----------------------------------------------------------------------===// // Main RegionStore logic. //===----------------------------------------------------------------------===// namespace { class RegionStoreManager : public StoreManager { const RegionStoreFeatures Features; RegionBindings::Factory RBFactory; ClusterBindings::Factory CBFactory; public: RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f) : StoreManager(mgr), Features(f), RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()) {} Optional getDirectBinding(RegionBindings B, const MemRegion *R); /// getDefaultBinding - Returns an SVal* representing an optional default /// binding associated with a region and its subregions. Optional getDefaultBinding(RegionBindings B, const MemRegion *R); /// setImplicitDefaultValue - Set the default binding for the provided /// MemRegion to the value implicitly defined for compound literals when /// the value is not specified. StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T); /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by ExprEngine when evaluating /// casts from arrays to pointers. SVal ArrayToPointer(Loc Array); StoreRef getInitialStore(const LocationContext *InitLoc) { return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this); } //===-------------------------------------------------------------------===// // Binding values to regions. //===-------------------------------------------------------------------===// RegionBindings invalidateGlobalRegion(MemRegion::Kind K, const Expr *Ex, unsigned Count, const LocationContext *LCtx, RegionBindings B, InvalidatedRegions *Invalidated); StoreRef invalidateRegions(Store store, ArrayRef Regions, const Expr *E, unsigned Count, const LocationContext *LCtx, InvalidatedSymbols &IS, const CallEvent *Call, InvalidatedRegions *Invalidated); bool scanReachableSymbols(Store S, const MemRegion *R, ScanReachableSymbols &Callbacks); public: // Made public for helper classes. RegionBindings removeSubRegionBindings(RegionBindings B, const SubRegion *R); RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V); RegionBindings addBinding(RegionBindings B, const MemRegion *R, BindingKey::Kind k, SVal V); const SVal *lookup(RegionBindings B, BindingKey K); const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k); RegionBindings removeBinding(RegionBindings B, BindingKey K); RegionBindings removeBinding(RegionBindings B, const MemRegion *R, BindingKey::Kind k); RegionBindings removeBinding(RegionBindings B, const MemRegion *R) { return removeBinding(removeBinding(B, R, BindingKey::Direct), R, BindingKey::Default); } RegionBindings removeCluster(RegionBindings B, const MemRegion *R); public: // Part of public interface to class. StoreRef Bind(Store store, Loc LV, SVal V); // BindDefault is only used to initialize a region with a default value. StoreRef BindDefault(Store store, const MemRegion *R, SVal V) { RegionBindings B = GetRegionBindings(store); assert(!lookup(B, R, BindingKey::Default)); assert(!lookup(B, R, BindingKey::Direct)); return StoreRef(addBinding(B, R, BindingKey::Default, V) .getRootWithoutRetain(), *this); } /// \brief Create a new store that binds a value to a compound literal. /// /// \param ST The original store whose bindings are the basis for the new /// store. /// /// \param CL The compound literal to bind (the binding key). /// /// \param LC The LocationContext for the binding. /// /// \param V The value to bind to the compound literal. StoreRef bindCompoundLiteral(Store ST, const CompoundLiteralExpr *CL, const LocationContext *LC, SVal V); /// BindStruct - Bind a compound value to a structure. StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V); /// BindVector - Bind a compound value to a vector. StoreRef BindVector(Store store, const TypedValueRegion* R, SVal V); StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V); /// Clears out all bindings in the given region and assigns a new value /// as a Default binding. StoreRef BindAggregate(Store store, const TypedRegion *R, SVal DefaultVal); /// \brief Create a new store with the specified binding removed. /// \param ST the original store, that is the basis for the new store. /// \param L the location whose binding should be removed. StoreRef killBinding(Store ST, Loc L); void incrementReferenceCount(Store store) { GetRegionBindings(store).manualRetain(); } /// If the StoreManager supports it, decrement the reference count of /// the specified Store object. If the reference count hits 0, the memory /// associated with the object is recycled. void decrementReferenceCount(Store store) { GetRegionBindings(store).manualRelease(); } bool includedInBindings(Store store, const MemRegion *region) const; /// \brief Return the value bound to specified location in a given state. /// /// The high level logic for this method is this: /// getBinding (L) /// if L has binding /// return L's binding /// else if L is in killset /// return unknown /// else /// if L is on stack or heap /// return undefined /// else /// return symbolic SVal getBinding(Store store, Loc L, QualType T = QualType()); SVal getBindingForElement(Store store, const ElementRegion *R); SVal getBindingForField(Store store, const FieldRegion *R); SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R); SVal getBindingForVar(Store store, const VarRegion *R); SVal getBindingForLazySymbol(const TypedValueRegion *R); SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R, QualType Ty, const MemRegion *superR); SVal getLazyBinding(const MemRegion *lazyBindingRegion, Store lazyBindingStore); /// Get bindings for the values in a struct and return a CompoundVal, used /// when doing struct copy: /// struct s x, y; /// x = y; /// y's value is retrieved by this method. SVal getBindingForStruct(Store store, const TypedValueRegion* R); SVal getBindingForArray(Store store, const TypedValueRegion* R); /// Used to lazily generate derived symbols for bindings that are defined /// implicitly by default bindings in a super region. Optional getBindingForDerivedDefaultValue(RegionBindings B, const MemRegion *superR, const TypedValueRegion *R, QualType Ty); /// Get the state and region whose binding this region R corresponds to. std::pair GetLazyBinding(RegionBindings B, const MemRegion *R, const MemRegion *originalRegion, bool includeSuffix = false); //===------------------------------------------------------------------===// // State pruning. //===------------------------------------------------------------------===// /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. /// It returns a new Store with these values removed. StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, SymbolReaper& SymReaper); //===------------------------------------------------------------------===// // Region "extents". //===------------------------------------------------------------------===// // FIXME: This method will soon be eliminated; see the note in Store.h. DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state, const MemRegion* R, QualType EleTy); //===------------------------------------------------------------------===// // Utility methods. //===------------------------------------------------------------------===// static inline RegionBindings GetRegionBindings(Store store) { return RegionBindings(static_cast(store)); } void print(Store store, raw_ostream &Out, const char* nl, const char *sep); void iterBindings(Store store, BindingsHandler& f) { RegionBindings B = GetRegionBindings(store); for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { const ClusterBindings &Cluster = I.getData(); for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); CI != CE; ++CI) { const BindingKey &K = CI.getKey(); if (!K.isDirect()) continue; if (const SubRegion *R = dyn_cast(K.getRegion())) { // FIXME: Possibly incorporate the offset? if (!f.HandleBinding(*this, store, R, CI.getData())) return; } } } } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // RegionStore creation. //===----------------------------------------------------------------------===// StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) { RegionStoreFeatures F = maximal_features_tag(); return new RegionStoreManager(StMgr, F); } StoreManager * ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) { RegionStoreFeatures F = minimal_features_tag(); F.enableFields(true); return new RegionStoreManager(StMgr, F); } //===----------------------------------------------------------------------===// // Region Cluster analysis. //===----------------------------------------------------------------------===// namespace { template class ClusterAnalysis { protected: typedef llvm::DenseMap ClusterMap; typedef SmallVector WorkList; llvm::SmallPtrSet Visited; WorkList WL; RegionStoreManager &RM; ASTContext &Ctx; SValBuilder &svalBuilder; RegionBindings B; const bool includeGlobals; const ClusterBindings *getCluster(const MemRegion *R) { return B.lookup(R); } public: ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr, RegionBindings b, const bool includeGlobals) : RM(rm), Ctx(StateMgr.getContext()), svalBuilder(StateMgr.getSValBuilder()), B(b), includeGlobals(includeGlobals) {} RegionBindings getRegionBindings() const { return B; } bool isVisited(const MemRegion *R) { return Visited.count(getCluster(R)); } void GenerateClusters() { // Scan the entire set of bindings and record the region clusters. for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ const MemRegion *Base = RI.getKey(); const ClusterBindings &Cluster = RI.getData(); assert(!Cluster.isEmpty() && "Empty clusters should be removed"); static_cast(this)->VisitAddedToCluster(Base, Cluster); if (includeGlobals) if (isa(Base->getMemorySpace())) AddToWorkList(Base, &Cluster); } } bool AddToWorkList(const MemRegion *R, const ClusterBindings *C) { if (C && !Visited.insert(C)) return false; WL.push_back(R); return true; } bool AddToWorkList(const MemRegion *R) { const MemRegion *baseR = R->getBaseRegion(); return AddToWorkList(baseR, getCluster(baseR)); } void RunWorkList() { while (!WL.empty()) { const MemRegion *baseR = WL.pop_back_val(); // First visit the cluster. if (const ClusterBindings *Cluster = getCluster(baseR)) static_cast(this)->VisitCluster(baseR, *Cluster); // Next, visit the base region. static_cast(this)->VisitBaseRegion(baseR); } } public: void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {} void VisitCluster(const MemRegion *baseR, const ClusterBindings &C) {} void VisitBaseRegion(const MemRegion *baseR) {} }; } //===----------------------------------------------------------------------===// // Binding invalidation. //===----------------------------------------------------------------------===// bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R, ScanReachableSymbols &Callbacks) { assert(R == R->getBaseRegion() && "Should only be called for base regions"); RegionBindings B = GetRegionBindings(S); const ClusterBindings *Cluster = B.lookup(R); if (!Cluster) return true; for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end(); RI != RE; ++RI) { if (!Callbacks.scan(RI.getData())) return false; } return true; } static inline bool isUnionField(const FieldRegion *FR) { return FR->getDecl()->getParent()->isUnion(); } typedef SmallVector FieldVector; void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) { assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); const MemRegion *Base = K.getConcreteOffsetRegion(); const MemRegion *R = K.getRegion(); while (R != Base) { if (const FieldRegion *FR = dyn_cast(R)) if (!isUnionField(FR)) Fields.push_back(FR->getDecl()); R = cast(R)->getSuperRegion(); } } static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) { assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); if (Fields.empty()) return true; FieldVector FieldsInBindingKey; getSymbolicOffsetFields(K, FieldsInBindingKey); ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size(); if (Delta >= 0) return std::equal(FieldsInBindingKey.begin() + Delta, FieldsInBindingKey.end(), Fields.begin()); else return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(), Fields.begin() - Delta); } RegionBindings RegionStoreManager::removeSubRegionBindings(RegionBindings B, const SubRegion *R) { BindingKey SRKey = BindingKey::Make(R, BindingKey::Default); const MemRegion *ClusterHead = SRKey.getBaseRegion(); if (R == ClusterHead) { // We can remove an entire cluster's bindings all in one go. return RBFactory.remove(B, R); } FieldVector FieldsInSymbolicSubregions; bool HasSymbolicOffset = SRKey.hasSymbolicOffset(); if (HasSymbolicOffset) { getSymbolicOffsetFields(SRKey, FieldsInSymbolicSubregions); R = cast(SRKey.getConcreteOffsetRegion()); SRKey = BindingKey::Make(R, BindingKey::Default); } // This assumes the region being invalidated is char-aligned. This isn't // true for bitfields, but since bitfields have no subregions they shouldn't // be using this function anyway. uint64_t Length = UINT64_MAX; SVal Extent = R->getExtent(svalBuilder); if (nonloc::ConcreteInt *ExtentCI = dyn_cast(&Extent)) { const llvm::APSInt &ExtentInt = ExtentCI->getValue(); assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned()); // Extents are in bytes but region offsets are in bits. Be careful! Length = ExtentInt.getLimitedValue() * Ctx.getCharWidth(); } const ClusterBindings *Cluster = B.lookup(ClusterHead); if (!Cluster) return B; ClusterBindings Result = *Cluster; // It is safe to iterate over the bindings as they are being changed // because they are in an ImmutableMap. for (ClusterBindings::iterator I = Cluster->begin(), E = Cluster->end(); I != E; ++I) { BindingKey NextKey = I.getKey(); if (NextKey.getRegion() == SRKey.getRegion()) { // FIXME: This doesn't catch the case where we're really invalidating a // region with a symbolic offset. Example: // R: points[i].y // Next: points[0].x if (NextKey.getOffset() > SRKey.getOffset() && NextKey.getOffset() - SRKey.getOffset() < Length) { // Case 1: The next binding is inside the region we're invalidating. // Remove it. Result = CBFactory.remove(Result, NextKey); } else if (NextKey.getOffset() == SRKey.getOffset()) { // Case 2: The next binding is at the same offset as the region we're // invalidating. In this case, we need to leave default bindings alone, // since they may be providing a default value for a regions beyond what // we're invalidating. // FIXME: This is probably incorrect; consider invalidating an outer // struct whose first field is bound to a LazyCompoundVal. if (NextKey.isDirect()) Result = CBFactory.remove(Result, NextKey); } } else if (NextKey.hasSymbolicOffset()) { const MemRegion *Base = NextKey.getConcreteOffsetRegion(); if (R->isSubRegionOf(Base)) { // Case 3: The next key is symbolic and we just changed something within // its concrete region. We don't know if the binding is still valid, so // we'll be conservative and remove it. if (NextKey.isDirect()) if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) Result = CBFactory.remove(Result, NextKey); } else if (const SubRegion *BaseSR = dyn_cast(Base)) { // Case 4: The next key is symbolic, but we changed a known // super-region. In this case the binding is certainly no longer valid. if (R == Base || BaseSR->isSubRegionOf(R)) if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) Result = CBFactory.remove(Result, NextKey); } } } // If we're invalidating a region with a symbolic offset, we need to make sure // we don't treat the base region as uninitialized anymore. // FIXME: This isn't very precise; see the example in the loop. if (HasSymbolicOffset) Result = CBFactory.add(Result, SRKey, UnknownVal()); if (Result.isEmpty()) return RBFactory.remove(B, ClusterHead); return RBFactory.add(B, ClusterHead, Result); } namespace { class invalidateRegionsWorker : public ClusterAnalysis { const Expr *Ex; unsigned Count; const LocationContext *LCtx; StoreManager::InvalidatedSymbols &IS; StoreManager::InvalidatedRegions *Regions; public: invalidateRegionsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr, RegionBindings b, const Expr *ex, unsigned count, const LocationContext *lctx, StoreManager::InvalidatedSymbols &is, StoreManager::InvalidatedRegions *r, bool includeGlobals) : ClusterAnalysis(rm, stateMgr, b, includeGlobals), Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {} void VisitCluster(const MemRegion *baseR, const ClusterBindings &C); void VisitBaseRegion(const MemRegion *baseR); private: void VisitBinding(SVal V); }; } void invalidateRegionsWorker::VisitBinding(SVal V) { // A symbol? Mark it touched by the invalidation. if (SymbolRef Sym = V.getAsSymbol()) IS.insert(Sym); if (const MemRegion *R = V.getAsRegion()) { AddToWorkList(R); return; } // Is it a LazyCompoundVal? All references get invalidated as well. if (const nonloc::LazyCompoundVal *LCS = dyn_cast(&V)) { const MemRegion *LazyR = LCS->getRegion(); RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore()); // FIXME: This should not have to walk all bindings in the old store. for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ const ClusterBindings &Cluster = RI.getData(); for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); CI != CE; ++CI) { BindingKey K = CI.getKey(); if (const SubRegion *BaseR = dyn_cast(K.getRegion())) { if (BaseR == LazyR) VisitBinding(CI.getData()); else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR)) VisitBinding(CI.getData()); } } } return; } } void invalidateRegionsWorker::VisitCluster(const MemRegion *BaseR, const ClusterBindings &C) { for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I) VisitBinding(I.getData()); B = RM.removeCluster(B, BaseR); } void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) { // Symbolic region? Mark that symbol touched by the invalidation. if (const SymbolicRegion *SR = dyn_cast(baseR)) IS.insert(SR->getSymbol()); // BlockDataRegion? If so, invalidate captured variables that are passed // by reference. if (const BlockDataRegion *BR = dyn_cast(baseR)) { for (BlockDataRegion::referenced_vars_iterator BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ; BI != BE; ++BI) { const VarRegion *VR = *BI; const VarDecl *VD = VR->getDecl(); if (VD->getAttr() || !VD->hasLocalStorage()) { AddToWorkList(VR); } else if (Loc::isLocType(VR->getValueType())) { // Map the current bindings to a Store to retrieve the value // of the binding. If that binding itself is a region, we should // invalidate that region. This is because a block may capture // a pointer value, but the thing pointed by that pointer may // get invalidated. Store store = B.getRootWithoutRetain(); SVal V = RM.getBinding(store, loc::MemRegionVal(VR)); if (const Loc *L = dyn_cast(&V)) { if (const MemRegion *LR = L->getAsRegion()) AddToWorkList(LR); } } } return; } // Otherwise, we have a normal data region. Record that we touched the region. if (Regions) Regions->push_back(baseR); if (isa(baseR) || isa(baseR)) { // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelavant. DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); B = RM.addBinding(B, baseR, BindingKey::Default, V); return; } if (!baseR->isBoundable()) return; const TypedValueRegion *TR = cast(baseR); QualType T = TR->getValueType(); // Invalidate the binding. if (T->isStructureOrClassType()) { // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelavant. DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); B = RM.addBinding(B, baseR, BindingKey::Default, V); return; } if (const ArrayType *AT = Ctx.getAsArrayType(T)) { // Set the default value of the array to conjured symbol. DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, AT->getElementType(), Count); B = RM.addBinding(B, baseR, BindingKey::Default, V); return; } if (includeGlobals && isa(baseR->getMemorySpace())) { // If the region is a global and we are invalidating all globals, // just erase the entry. This causes all globals to be lazily // symbolicated from the same base symbol. B = RM.removeBinding(B, baseR); return; } DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, T,Count); assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); B = RM.addBinding(B, baseR, BindingKey::Direct, V); } RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K, const Expr *Ex, unsigned Count, const LocationContext *LCtx, RegionBindings B, InvalidatedRegions *Invalidated) { // Bind the globals memory space to a new symbol that we will use to derive // the bindings for all globals. const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K); SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx, /* type does not matter */ Ctx.IntTy, Count); B = removeBinding(B, GS); B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V); // Even if there are no bindings in the global scope, we still need to // record that we touched it. if (Invalidated) Invalidated->push_back(GS); return B; } StoreRef RegionStoreManager::invalidateRegions(Store store, ArrayRef Regions, const Expr *Ex, unsigned Count, const LocationContext *LCtx, InvalidatedSymbols &IS, const CallEvent *Call, InvalidatedRegions *Invalidated) { invalidateRegionsWorker W(*this, StateMgr, RegionStoreManager::GetRegionBindings(store), Ex, Count, LCtx, IS, Invalidated, false); // Scan the bindings and generate the clusters. W.GenerateClusters(); // Add the regions to the worklist. for (ArrayRef::iterator I = Regions.begin(), E = Regions.end(); I != E; ++I) W.AddToWorkList(*I); W.RunWorkList(); // Return the new bindings. RegionBindings B = W.getRegionBindings(); // For all globals which are not static nor immutable: determine which global // regions should be invalidated and invalidate them. // TODO: This could possibly be more precise with modules. // // System calls invalidate only system globals. if (Call && Call->isInSystemHeader()) { B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, Ex, Count, LCtx, B, Invalidated); // Internal calls might invalidate both system and internal globals. } else { B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, Ex, Count, LCtx, B, Invalidated); B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind, Ex, Count, LCtx, B, Invalidated); } return StoreRef(B.getRootWithoutRetain(), *this); } //===----------------------------------------------------------------------===// // Extents for regions. //===----------------------------------------------------------------------===// DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(ProgramStateRef state, const MemRegion *R, QualType EleTy) { SVal Size = cast(R)->getExtent(svalBuilder); const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size); if (!SizeInt) return UnknownVal(); CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue()); if (Ctx.getAsVariableArrayType(EleTy)) { // FIXME: We need to track extra state to properly record the size // of VLAs. Returning UnknownVal here, however, is a stop-gap so that // we don't have a divide-by-zero below. return UnknownVal(); } CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy); // If a variable is reinterpreted as a type that doesn't fit into a larger // type evenly, round it down. // This is a signed value, since it's used in arithmetic with signed indices. return svalBuilder.makeIntVal(RegionSize / EleSize, false); } //===----------------------------------------------------------------------===// // Location and region casting. //===----------------------------------------------------------------------===// /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by ExprEngine when evaluating casts /// from arrays to pointers. SVal RegionStoreManager::ArrayToPointer(Loc Array) { if (!isa(Array)) return UnknownVal(); const MemRegion* R = cast(&Array)->getRegion(); const TypedValueRegion* ArrayR = dyn_cast(R); if (!ArrayR) return UnknownVal(); // Strip off typedefs from the ArrayRegion's ValueType. QualType T = ArrayR->getValueType().getDesugaredType(Ctx); const ArrayType *AT = cast(T); T = AT->getElementType(); NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx)); } //===----------------------------------------------------------------------===// // Loading values from regions. //===----------------------------------------------------------------------===// Optional RegionStoreManager::getDirectBinding(RegionBindings B, const MemRegion *R) { if (const SVal *V = lookup(B, R, BindingKey::Direct)) return *V; return Optional(); } Optional RegionStoreManager::getDefaultBinding(RegionBindings B, const MemRegion *R) { if (R->isBoundable()) if (const TypedValueRegion *TR = dyn_cast(R)) if (TR->getValueType()->isUnionType()) return UnknownVal(); if (const SVal *V = lookup(B, R, BindingKey::Default)) return *V; return Optional(); } SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) { assert(!isa(L) && "location unknown"); assert(!isa(L) && "location undefined"); // For access to concrete addresses, return UnknownVal. Checks // for null dereferences (and similar errors) are done by checkers, not // the Store. // FIXME: We can consider lazily symbolicating such memory, but we really // should defer this when we can reason easily about symbolicating arrays // of bytes. if (isa(L)) { return UnknownVal(); } if (!isa(L)) { return UnknownVal(); } const MemRegion *MR = cast(L).getRegion(); if (isa(MR) || isa(MR) || isa(MR)) { if (T.isNull()) { if (const TypedRegion *TR = dyn_cast(MR)) T = TR->getLocationType(); else { const SymbolicRegion *SR = cast(MR); T = SR->getSymbol()->getType(); } } MR = GetElementZeroRegion(MR, T); } // FIXME: Perhaps this method should just take a 'const MemRegion*' argument // instead of 'Loc', and have the other Loc cases handled at a higher level. const TypedValueRegion *R = cast(MR); QualType RTy = R->getValueType(); // FIXME: We should eventually handle funny addressing. e.g.: // // int x = ...; // int *p = &x; // char *q = (char*) p; // char c = *q; // returns the first byte of 'x'. // // Such funny addressing will occur due to layering of regions. if (RTy->isStructureOrClassType()) return getBindingForStruct(store, R); // FIXME: Handle unions. if (RTy->isUnionType()) return UnknownVal(); if (RTy->isArrayType()) { if (RTy->isConstantArrayType()) return getBindingForArray(store, R); else return UnknownVal(); } // FIXME: handle Vector types. if (RTy->isVectorType()) return UnknownVal(); if (const FieldRegion* FR = dyn_cast(R)) return CastRetrievedVal(getBindingForField(store, FR), FR, T, false); if (const ElementRegion* ER = dyn_cast(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the element type. Eventually we want to compose these values // more intelligently. For example, an 'element' can encompass multiple // bound regions (e.g., several bound bytes), or could be a subset of // a larger value. return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false); } if (const ObjCIvarRegion *IVR = dyn_cast(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the ivar type. What we should model is stores to ivars // that blow past the extent of the ivar. If the address of the ivar is // reinterpretted, it is possible we stored a different value that could // fit within the ivar. Either we need to cast these when storing them // or reinterpret them lazily (as we do here). return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false); } if (const VarRegion *VR = dyn_cast(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the variable type. What we should model is stores to variables // that blow past the extent of the variable. If the address of the // variable is reinterpretted, it is possible we stored a different value // that could fit within the variable. Either we need to cast these when // storing them or reinterpret them lazily (as we do here). return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false); } RegionBindings B = GetRegionBindings(store); const SVal *V = lookup(B, R, BindingKey::Direct); // Check if the region has a binding. if (V) return *V; // The location does not have a bound value. This means that it has // the value it had upon its creation and/or entry to the analyzed // function/method. These are either symbolic values or 'undefined'. if (R->hasStackNonParametersStorage()) { // All stack variables are considered to have undefined values // upon creation. All heap allocated blocks are considered to // have undefined values as well unless they are explicitly bound // to specific values. return UndefinedVal(); } // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } std::pair RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R, const MemRegion *originalRegion, bool includeSuffix) { if (originalRegion != R) { if (Optional OV = getDefaultBinding(B, R)) { if (const nonloc::LazyCompoundVal *V = dyn_cast(OV.getPointer())) return std::make_pair(V->getStore(), V->getRegion()); } } if (const ElementRegion *ER = dyn_cast(R)) { const std::pair &X = GetLazyBinding(B, ER->getSuperRegion(), originalRegion); if (X.second) return std::make_pair(X.first, MRMgr.getElementRegionWithSuper(ER, X.second)); } else if (const FieldRegion *FR = dyn_cast(R)) { const std::pair &X = GetLazyBinding(B, FR->getSuperRegion(), originalRegion); if (X.second) { if (includeSuffix) return std::make_pair(X.first, MRMgr.getFieldRegionWithSuper(FR, X.second)); return X; } } // C++ base object region is another kind of region that we should blast // through to look for lazy compound value. It is like a field region. else if (const CXXBaseObjectRegion *baseReg = dyn_cast(R)) { const std::pair &X = GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion); if (X.second) { if (includeSuffix) return std::make_pair(X.first, MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second)); return X; } } // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is // possible for a valid lazy binding. return std::make_pair((Store) 0, (const MemRegion *) 0); } SVal RegionStoreManager::getBindingForElement(Store store, const ElementRegion* R) { // We do not currently model bindings of the CompoundLiteralregion. if (isa(R->getBaseRegion())) return UnknownVal(); // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (const Optional &V = getDirectBinding(B, R)) return *V; const MemRegion* superR = R->getSuperRegion(); // Check if the region is an element region of a string literal. if (const StringRegion *StrR=dyn_cast(superR)) { // FIXME: Handle loads from strings where the literal is treated as // an integer, e.g., *((unsigned int*)"hello") QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType(); if (T != Ctx.getCanonicalType(R->getElementType())) return UnknownVal(); const StringLiteral *Str = StrR->getStringLiteral(); SVal Idx = R->getIndex(); if (nonloc::ConcreteInt *CI = dyn_cast(&Idx)) { int64_t i = CI->getValue().getSExtValue(); // Abort on string underrun. This can be possible by arbitrary // clients of getBindingForElement(). if (i < 0) return UndefinedVal(); int64_t length = Str->getLength(); // Technically, only i == length is guaranteed to be null. // However, such overflows should be caught before reaching this point; // the only time such an access would be made is if a string literal was // used to initialize a larger array. char c = (i >= length) ? '\0' : Str->getCodeUnit(i); return svalBuilder.makeIntVal(c, T); } } // Check for loads from a code text region. For such loads, just give up. if (isa(superR)) return UnknownVal(); // Handle the case where we are indexing into a larger scalar object. // For example, this handles: // int x = ... // char *y = &x; // return *y; // FIXME: This is a hack, and doesn't do anything really intelligent yet. const RegionRawOffset &O = R->getAsArrayOffset(); // If we cannot reason about the offset, return an unknown value. if (!O.getRegion()) return UnknownVal(); if (const TypedValueRegion *baseR = dyn_cast_or_null(O.getRegion())) { QualType baseT = baseR->getValueType(); if (baseT->isScalarType()) { QualType elemT = R->getElementType(); if (elemT->isScalarType()) { if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) { if (const Optional &V = getDirectBinding(B, superR)) { if (SymbolRef parentSym = V->getAsSymbol()) return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); if (V->isUnknownOrUndef()) return *V; // Other cases: give up. We are indexing into a larger object // that has some value, but we don't know how to handle that yet. return UnknownVal(); } } } } } return getBindingForFieldOrElementCommon(store, R, R->getElementType(), superR); } SVal RegionStoreManager::getBindingForField(Store store, const FieldRegion* R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (const Optional &V = getDirectBinding(B, R)) return *V; QualType Ty = R->getValueType(); return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion()); } Optional RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B, const MemRegion *superR, const TypedValueRegion *R, QualType Ty) { if (const Optional &D = getDefaultBinding(B, superR)) { const SVal &val = D.getValue(); if (SymbolRef parentSym = val.getAsSymbol()) return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); if (val.isZeroConstant()) return svalBuilder.makeZeroVal(Ty); if (val.isUnknownOrUndef()) return val; // Lazy bindings are handled later. if (isa(val)) return Optional(); llvm_unreachable("Unknown default value"); } return Optional(); } SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion, Store lazyBindingStore) { if (const ElementRegion *ER = dyn_cast(lazyBindingRegion)) return getBindingForElement(lazyBindingStore, ER); return getBindingForField(lazyBindingStore, cast(lazyBindingRegion)); } SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R, QualType Ty, const MemRegion *superR) { // At this point we have already checked in either getBindingForElement or // getBindingForField if 'R' has a direct binding. RegionBindings B = GetRegionBindings(store); // Lazy binding? Store lazyBindingStore = NULL; const MemRegion *lazyBindingRegion = NULL; llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R, true); if (lazyBindingRegion) return getLazyBinding(lazyBindingRegion, lazyBindingStore); // Record whether or not we see a symbolic index. That can completely // be out of scope of our lookup. bool hasSymbolicIndex = false; while (superR) { if (const Optional &D = getBindingForDerivedDefaultValue(B, superR, R, Ty)) return *D; if (const ElementRegion *ER = dyn_cast(superR)) { NonLoc index = ER->getIndex(); if (!index.isConstant()) hasSymbolicIndex = true; } // If our super region is a field or element itself, walk up the region // hierarchy to see if there is a default value installed in an ancestor. if (const SubRegion *SR = dyn_cast(superR)) { superR = SR->getSuperRegion(); continue; } break; } if (R->hasStackNonParametersStorage()) { if (isa(R)) { // Currently we don't reason specially about Clang-style vectors. Check // if superR is a vector and if so return Unknown. if (const TypedValueRegion *typedSuperR = dyn_cast(superR)) { if (typedSuperR->getValueType()->isVectorType()) return UnknownVal(); } } // FIXME: We also need to take ElementRegions with symbolic indexes into // account. This case handles both directly accessing an ElementRegion // with a symbolic offset, but also fields within an element with // a symbolic offset. if (hasSymbolicIndex) return UnknownVal(); return UndefinedVal(); } // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } SVal RegionStoreManager::getBindingForObjCIvar(Store store, const ObjCIvarRegion* R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (const Optional &V = getDirectBinding(B, R)) return *V; const MemRegion *superR = R->getSuperRegion(); // Check if the super region has a default binding. if (const Optional &V = getDefaultBinding(B, superR)) { if (SymbolRef parentSym = V->getAsSymbol()) return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); // Other cases: give up. return UnknownVal(); } return getBindingForLazySymbol(R); } SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (const Optional &V = getDirectBinding(B, R)) return *V; // Lazily derive a value for the VarRegion. const VarDecl *VD = R->getDecl(); QualType T = VD->getType(); const MemSpaceRegion *MS = R->getMemorySpace(); if (isa(MS) || isa(MS)) return svalBuilder.getRegionValueSymbolVal(R); if (isa(MS)) { if (isa(MS)) { // Is 'VD' declared constant? If so, retrieve the constant value. QualType CT = Ctx.getCanonicalType(T); if (CT.isConstQualified()) { const Expr *Init = VD->getInit(); // Do the null check first, as we want to call 'IgnoreParenCasts'. if (Init) if (const IntegerLiteral *IL = dyn_cast(Init->IgnoreParenCasts())) { const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL); return svalBuilder.evalCast(V, Init->getType(), IL->getType()); } } if (const Optional &V = getBindingForDerivedDefaultValue(B, MS, R, CT)) return V.getValue(); return svalBuilder.getRegionValueSymbolVal(R); } if (T->isIntegerType()) return svalBuilder.makeIntVal(0, T); if (T->isPointerType()) return svalBuilder.makeNull(); return UnknownVal(); } return UndefinedVal(); } SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) { // All other values are symbolic. return svalBuilder.getRegionValueSymbolVal(R); } static bool mayHaveLazyBinding(QualType Ty) { return Ty->isArrayType() || Ty->isStructureOrClassType(); } SVal RegionStoreManager::getBindingForStruct(Store store, const TypedValueRegion* R) { const RecordDecl *RD = R->getValueType()->castAs()->getDecl(); if (RD->field_empty()) return UnknownVal(); // If we already have a lazy binding, don't create a new one, // unless the first field might have a lazy binding of its own. // (Right now we can't tell the difference.) QualType FirstFieldType = RD->field_begin()->getType(); if (!mayHaveLazyBinding(FirstFieldType)) { RegionBindings B = GetRegionBindings(store); BindingKey K = BindingKey::Make(R, BindingKey::Default); if (const nonloc::LazyCompoundVal *V = dyn_cast_or_null(lookup(B, K))) { return *V; } } return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R); } SVal RegionStoreManager::getBindingForArray(Store store, const TypedValueRegion * R) { const ConstantArrayType *Ty = Ctx.getAsConstantArrayType(R->getValueType()); assert(Ty && "Only constant array types can have compound bindings."); // If we already have a lazy binding, don't create a new one, // unless the first element might have a lazy binding of its own. // (Right now we can't tell the difference.) if (!mayHaveLazyBinding(Ty->getElementType())) { RegionBindings B = GetRegionBindings(store); BindingKey K = BindingKey::Make(R, BindingKey::Default); if (const nonloc::LazyCompoundVal *V = dyn_cast_or_null(lookup(B, K))) { return *V; } } return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R); } bool RegionStoreManager::includedInBindings(Store store, const MemRegion *region) const { RegionBindings B = GetRegionBindings(store); region = region->getBaseRegion(); // Quick path: if the base is the head of a cluster, the region is live. if (B.lookup(region)) return true; // Slow path: if the region is the VALUE of any binding, it is live. for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) { const ClusterBindings &Cluster = RI.getData(); for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); CI != CE; ++CI) { const SVal &D = CI.getData(); if (const MemRegion *R = D.getAsRegion()) if (R->getBaseRegion() == region) return true; } } return false; } //===----------------------------------------------------------------------===// // Binding values to regions. //===----------------------------------------------------------------------===// StoreRef RegionStoreManager::killBinding(Store ST, Loc L) { if (isa(L)) if (const MemRegion* R = cast(L).getRegion()) return StoreRef(removeBinding(GetRegionBindings(ST), R).getRootWithoutRetain(), *this); return StoreRef(ST, *this); } StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) { if (isa(L)) return StoreRef(store, *this); // If we get here, the location should be a region. const MemRegion *R = cast(L).getRegion(); // Check if the region is a struct region. if (const TypedValueRegion* TR = dyn_cast(R)) { QualType Ty = TR->getValueType(); if (Ty->isArrayType()) return BindArray(store, TR, V); if (Ty->isStructureOrClassType()) return BindStruct(store, TR, V); if (Ty->isVectorType()) return BindVector(store, TR, V); } if (const SymbolicRegion *SR = dyn_cast(R)) { // Binding directly to a symbolic region should be treated as binding // to element 0. QualType T = SR->getSymbol()->getType(); if (T->isAnyPointerType() || T->isReferenceType()) T = T->getPointeeType(); R = GetElementZeroRegion(SR, T); } // Clear out bindings that may overlap with this binding. // Perform the binding. RegionBindings B = GetRegionBindings(store); B = removeSubRegionBindings(B, cast(R)); BindingKey Key = BindingKey::Make(R, BindingKey::Direct); return StoreRef(addBinding(B, Key, V).getRootWithoutRetain(), *this); } // FIXME: this method should be merged into Bind(). StoreRef RegionStoreManager::bindCompoundLiteral(Store ST, const CompoundLiteralExpr *CL, const LocationContext *LC, SVal V) { return Bind(ST, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)), V); } StoreRef RegionStoreManager::setImplicitDefaultValue(Store store, const MemRegion *R, QualType T) { RegionBindings B = GetRegionBindings(store); SVal V; if (Loc::isLocType(T)) V = svalBuilder.makeNull(); else if (T->isIntegerType()) V = svalBuilder.makeZeroVal(T); else if (T->isStructureOrClassType() || T->isArrayType()) { // Set the default value to a zero constant when it is a structure // or array. The type doesn't really matter. V = svalBuilder.makeZeroVal(Ctx.IntTy); } else { // We can't represent values of this type, but we still need to set a value // to record that the region has been initialized. // If this assertion ever fires, a new case should be added above -- we // should know how to default-initialize any value we can symbolicate. assert(!SymbolManager::canSymbolicate(T) && "This type is representable"); V = UnknownVal(); } return StoreRef(addBinding(B, R, BindingKey::Default, V).getRootWithoutRetain(), *this); } StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R, SVal Init) { const ArrayType *AT =cast(Ctx.getCanonicalType(R->getValueType())); QualType ElementTy = AT->getElementType(); Optional Size; if (const ConstantArrayType* CAT = dyn_cast(AT)) Size = CAT->getSize().getZExtValue(); // Check if the init expr is a string literal. if (loc::MemRegionVal *MRV = dyn_cast(&Init)) { const StringRegion *S = cast(MRV->getRegion()); // Treat the string as a lazy compound value. nonloc::LazyCompoundVal LCV = cast(svalBuilder. makeLazyCompoundVal(StoreRef(store, *this), S)); return BindAggregate(store, R, LCV); } // Handle lazy compound values. if (isa(Init)) return BindAggregate(store, R, Init); // Remaining case: explicit compound values. if (Init.isUnknown()) return setImplicitDefaultValue(store, R, ElementTy); nonloc::CompoundVal& CV = cast(Init); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); uint64_t i = 0; StoreRef newStore(store, *this); for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) { // The init list might be shorter than the array length. if (VI == VE) break; const NonLoc &Idx = svalBuilder.makeArrayIndex(i); const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx); if (ElementTy->isStructureOrClassType()) newStore = BindStruct(newStore.getStore(), ER, *VI); else if (ElementTy->isArrayType()) newStore = BindArray(newStore.getStore(), ER, *VI); else newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI); } // If the init list is shorter than the array length, set the // array default value. if (Size.hasValue() && i < Size.getValue()) newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy); return newStore; } StoreRef RegionStoreManager::BindVector(Store store, const TypedValueRegion* R, SVal V) { QualType T = R->getValueType(); assert(T->isVectorType()); const VectorType *VT = T->getAs(); // Use getAs for typedefs. // Handle lazy compound values and symbolic values. if (isa(V) || isa(V)) return BindAggregate(store, R, V); // We may get non-CompoundVal accidentally due to imprecise cast logic or // that we are binding symbolic struct value. Kill the field values, and if // the value is symbolic go and bind it as a "default" binding. if (!isa(V)) { return BindAggregate(store, R, UnknownVal()); } QualType ElemType = VT->getElementType(); nonloc::CompoundVal& CV = cast(V); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); unsigned index = 0, numElements = VT->getNumElements(); StoreRef newStore(store, *this); for ( ; index != numElements ; ++index) { if (VI == VE) break; NonLoc Idx = svalBuilder.makeArrayIndex(index); const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx); if (ElemType->isArrayType()) newStore = BindArray(newStore.getStore(), ER, *VI); else if (ElemType->isStructureOrClassType()) newStore = BindStruct(newStore.getStore(), ER, *VI); else newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI); } return newStore; } StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R, SVal V) { if (!Features.supportsFields()) return StoreRef(store, *this); QualType T = R->getValueType(); assert(T->isStructureOrClassType()); const RecordType* RT = T->getAs(); RecordDecl *RD = RT->getDecl(); if (!RD->isCompleteDefinition()) return StoreRef(store, *this); // Handle lazy compound values and symbolic values. if (isa(V) || isa(V)) return BindAggregate(store, R, V); // We may get non-CompoundVal accidentally due to imprecise cast logic or // that we are binding symbolic struct value. Kill the field values, and if // the value is symbolic go and bind it as a "default" binding. if (V.isUnknown() || !isa(V)) return BindAggregate(store, R, UnknownVal()); nonloc::CompoundVal& CV = cast(V); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); RecordDecl::field_iterator FI, FE; StoreRef newStore(store, *this); for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) { if (VI == VE) break; // Skip any unnamed bitfields to stay in sync with the initializers. if (FI->isUnnamedBitfield()) continue; QualType FTy = FI->getType(); const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); if (FTy->isArrayType()) newStore = BindArray(newStore.getStore(), FR, *VI); else if (FTy->isStructureOrClassType()) newStore = BindStruct(newStore.getStore(), FR, *VI); else newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI); ++VI; } // There may be fewer values in the initialize list than the fields of struct. if (FI != FE) { RegionBindings B = GetRegionBindings(newStore.getStore()); B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false)); newStore = StoreRef(B.getRootWithoutRetain(), *this); } return newStore; } StoreRef RegionStoreManager::BindAggregate(Store store, const TypedRegion *R, SVal Val) { // Remove the old bindings, using 'R' as the root of all regions // we will invalidate. Then add the new binding. RegionBindings B = GetRegionBindings(store); B = removeSubRegionBindings(B, R); B = addBinding(B, R, BindingKey::Default, Val); return StoreRef(B.getRootWithoutRetain(), *this); } //===----------------------------------------------------------------------===// // "Raw" retrievals and bindings. //===----------------------------------------------------------------------===// RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K, SVal V) { const MemRegion *Base = K.getBaseRegion(); const ClusterBindings *ExistingCluster = B.lookup(Base); ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster : CBFactory.getEmptyMap()); ClusterBindings NewCluster = CBFactory.add(Cluster, K, V); return RBFactory.add(B, Base, NewCluster); } RegionBindings RegionStoreManager::addBinding(RegionBindings B, const MemRegion *R, BindingKey::Kind k, SVal V) { return addBinding(B, BindingKey::Make(R, k), V); } const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) { const ClusterBindings *Cluster = B.lookup(K.getBaseRegion()); if (!Cluster) return 0; return Cluster->lookup(K); } const SVal *RegionStoreManager::lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k) { return lookup(B, BindingKey::Make(R, k)); } RegionBindings RegionStoreManager::removeBinding(RegionBindings B, BindingKey K) { const MemRegion *Base = K.getBaseRegion(); const ClusterBindings *Cluster = B.lookup(Base); if (!Cluster) return B; ClusterBindings NewCluster = CBFactory.remove(*Cluster, K); if (NewCluster.isEmpty()) return RBFactory.remove(B, Base); return RBFactory.add(B, Base, NewCluster); } RegionBindings RegionStoreManager::removeBinding(RegionBindings B, const MemRegion *R, BindingKey::Kind k){ return removeBinding(B, BindingKey::Make(R, k)); } RegionBindings RegionStoreManager::removeCluster(RegionBindings B, const MemRegion *Base) { return RBFactory.remove(B, Base); } //===----------------------------------------------------------------------===// // State pruning. //===----------------------------------------------------------------------===// namespace { class removeDeadBindingsWorker : public ClusterAnalysis { SmallVector Postponed; SymbolReaper &SymReaper; const StackFrameContext *CurrentLCtx; public: removeDeadBindingsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr, RegionBindings b, SymbolReaper &symReaper, const StackFrameContext *LCtx) : ClusterAnalysis(rm, stateMgr, b, /* includeGlobals = */ false), SymReaper(symReaper), CurrentLCtx(LCtx) {} // Called by ClusterAnalysis. void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C); void VisitCluster(const MemRegion *baseR, const ClusterBindings &C); bool UpdatePostponed(); void VisitBinding(SVal V); }; } void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) { if (const VarRegion *VR = dyn_cast(baseR)) { if (SymReaper.isLive(VR)) AddToWorkList(baseR, &C); return; } if (const SymbolicRegion *SR = dyn_cast(baseR)) { if (SymReaper.isLive(SR->getSymbol())) AddToWorkList(SR, &C); else Postponed.push_back(SR); return; } if (isa(baseR)) { AddToWorkList(baseR, &C); return; } // CXXThisRegion in the current or parent location context is live. if (const CXXThisRegion *TR = dyn_cast(baseR)) { const StackArgumentsSpaceRegion *StackReg = cast(TR->getSuperRegion()); const StackFrameContext *RegCtx = StackReg->getStackFrame(); if (CurrentLCtx && (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))) AddToWorkList(TR, &C); } } void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR, const ClusterBindings &C) { // Mark the symbol for any SymbolicRegion with live bindings as live itself. // This means we should continue to track that symbol. if (const SymbolicRegion *SymR = dyn_cast(baseR)) SymReaper.markLive(SymR->getSymbol()); for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I) VisitBinding(I.getData()); } void removeDeadBindingsWorker::VisitBinding(SVal V) { // Is it a LazyCompoundVal? All referenced regions are live as well. if (const nonloc::LazyCompoundVal *LCS = dyn_cast(&V)) { const MemRegion *LazyR = LCS->getRegion(); RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore()); // FIXME: This should not have to walk all bindings in the old store. for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ const ClusterBindings &Cluster = RI.getData(); for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); CI != CE; ++CI) { BindingKey K = CI.getKey(); if (const SubRegion *BaseR = dyn_cast(K.getRegion())) { if (BaseR == LazyR) VisitBinding(CI.getData()); else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR)) VisitBinding(CI.getData()); } } } return; } // If V is a region, then add it to the worklist. if (const MemRegion *R = V.getAsRegion()) { AddToWorkList(R); // All regions captured by a block are also live. if (const BlockDataRegion *BR = dyn_cast(R)) { BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(), E = BR->referenced_vars_end(); for ( ; I != E; ++I) AddToWorkList(I.getCapturedRegion()); } } // Update the set of live symbols. for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI) SymReaper.markLive(*SI); } bool removeDeadBindingsWorker::UpdatePostponed() { // See if any postponed SymbolicRegions are actually live now, after // having done a scan. bool changed = false; for (SmallVectorImpl::iterator I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) { if (const SymbolicRegion *SR = *I) { if (SymReaper.isLive(SR->getSymbol())) { changed |= AddToWorkList(SR); *I = NULL; } } } return changed; } StoreRef RegionStoreManager::removeDeadBindings(Store store, const StackFrameContext *LCtx, SymbolReaper& SymReaper) { RegionBindings B = GetRegionBindings(store); removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); W.GenerateClusters(); // Enqueue the region roots onto the worklist. for (SymbolReaper::region_iterator I = SymReaper.region_begin(), E = SymReaper.region_end(); I != E; ++I) { W.AddToWorkList(*I); } do W.RunWorkList(); while (W.UpdatePostponed()); // We have now scanned the store, marking reachable regions and symbols // as live. We now remove all the regions that are dead from the store // as well as update DSymbols with the set symbols that are now dead. for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { const MemRegion *Base = I.getKey(); // If the cluster has been visited, we know the region has been marked. if (W.isVisited(Base)) continue; // Remove the dead entry. B = removeCluster(B, Base); if (const SymbolicRegion *SymR = dyn_cast(Base)) SymReaper.maybeDead(SymR->getSymbol()); // Mark all non-live symbols that this binding references as dead. const ClusterBindings &Cluster = I.getData(); for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); CI != CE; ++CI) { SVal X = CI.getData(); SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); for (; SI != SE; ++SI) SymReaper.maybeDead(*SI); } } return StoreRef(B.getRootWithoutRetain(), *this); } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// void RegionStoreManager::print(Store store, raw_ostream &OS, const char* nl, const char *sep) { RegionBindings B = GetRegionBindings(store); OS << "Store (direct and default bindings), " << (void*) B.getRootWithoutRetain() << " :" << nl; for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { const ClusterBindings &Cluster = I.getData(); for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); CI != CE; ++CI) { OS << ' ' << CI.getKey() << " : " << CI.getData() << nl; } OS << nl; } }