//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SimpleConstraintManager, a class that holds code shared // between BasicConstraintManager and RangeConstraintManager. // //===----------------------------------------------------------------------===// #include "SimpleConstraintManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" namespace clang { namespace ento { SimpleConstraintManager::~SimpleConstraintManager() {} bool SimpleConstraintManager::canReasonAbout(SVal X) const { Optional SymVal = X.getAs(); if (SymVal && SymVal->isExpression()) { const SymExpr *SE = SymVal->getSymbol(); if (const SymIntExpr *SIE = dyn_cast(SE)) { switch (SIE->getOpcode()) { // We don't reason yet about bitwise-constraints on symbolic values. case BO_And: case BO_Or: case BO_Xor: return false; // We don't reason yet about these arithmetic constraints on // symbolic values. case BO_Mul: case BO_Div: case BO_Rem: case BO_Shl: case BO_Shr: return false; // All other cases. default: return true; } } if (const SymSymExpr *SSE = dyn_cast(SE)) { if (BinaryOperator::isComparisonOp(SSE->getOpcode())) { // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc. if (Loc::isLocType(SSE->getLHS()->getType())) { assert(Loc::isLocType(SSE->getRHS()->getType())); return true; } } } return false; } return true; } ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state, DefinedSVal Cond, bool Assumption) { // If we have a Loc value, cast it to a bool NonLoc first. if (Optional LV = Cond.getAs()) { SValBuilder &SVB = state->getStateManager().getSValBuilder(); QualType T; const MemRegion *MR = LV->getAsRegion(); if (const TypedRegion *TR = dyn_cast_or_null(MR)) T = TR->getLocationType(); else T = SVB.getContext().VoidPtrTy; Cond = SVB.evalCast(*LV, SVB.getContext().BoolTy, T).castAs(); } return assume(state, Cond.castAs(), Assumption); } ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state, NonLoc cond, bool assumption) { state = assumeAux(state, cond, assumption); if (NotifyAssumeClients && SU) return SU->processAssume(state, cond, assumption); return state; } ProgramStateRef SimpleConstraintManager::assumeAuxForSymbol(ProgramStateRef State, SymbolRef Sym, bool Assumption) { BasicValueFactory &BVF = getBasicVals(); QualType T = Sym->getType(); // None of the constraint solvers currently support non-integer types. if (!T->isIntegralOrEnumerationType()) return State; const llvm::APSInt &zero = BVF.getValue(0, T); if (Assumption) return assumeSymNE(State, Sym, zero, zero); else return assumeSymEQ(State, Sym, zero, zero); } ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state, NonLoc Cond, bool Assumption) { // We cannot reason about SymSymExprs, and can only reason about some // SymIntExprs. if (!canReasonAbout(Cond)) { // Just add the constraint to the expression without trying to simplify. SymbolRef sym = Cond.getAsSymExpr(); return assumeAuxForSymbol(state, sym, Assumption); } switch (Cond.getSubKind()) { default: llvm_unreachable("'Assume' not implemented for this NonLoc"); case nonloc::SymbolValKind: { nonloc::SymbolVal SV = Cond.castAs(); SymbolRef sym = SV.getSymbol(); assert(sym); // Handle SymbolData. if (!SV.isExpression()) { return assumeAuxForSymbol(state, sym, Assumption); // Handle symbolic expression. } else if (const SymIntExpr *SE = dyn_cast(sym)) { // We can only simplify expressions whose RHS is an integer. BinaryOperator::Opcode op = SE->getOpcode(); if (BinaryOperator::isComparisonOp(op)) { if (!Assumption) op = BinaryOperator::negateComparisonOp(op); return assumeSymRel(state, SE->getLHS(), op, SE->getRHS()); } } else if (const SymSymExpr *SSE = dyn_cast(sym)) { // Translate "a != b" to "(b - a) != 0". // We invert the order of the operands as a heuristic for how loop // conditions are usually written ("begin != end") as compared to length // calculations ("end - begin"). The more correct thing to do would be to // canonicalize "a - b" and "b - a", which would allow us to treat // "a != b" and "b != a" the same. SymbolManager &SymMgr = getSymbolManager(); BinaryOperator::Opcode Op = SSE->getOpcode(); assert(BinaryOperator::isComparisonOp(Op)); // For now, we only support comparing pointers. assert(Loc::isLocType(SSE->getLHS()->getType())); assert(Loc::isLocType(SSE->getRHS()->getType())); QualType DiffTy = SymMgr.getContext().getPointerDiffType(); SymbolRef Subtraction = SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy); const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy); Op = BinaryOperator::reverseComparisonOp(Op); if (!Assumption) Op = BinaryOperator::negateComparisonOp(Op); return assumeSymRel(state, Subtraction, Op, Zero); } // If we get here, there's nothing else we can do but treat the symbol as // opaque. return assumeAuxForSymbol(state, sym, Assumption); } case nonloc::ConcreteIntKind: { bool b = Cond.castAs().getValue() != 0; bool isFeasible = b ? Assumption : !Assumption; return isFeasible ? state : NULL; } case nonloc::LocAsIntegerKind: return assume(state, Cond.castAs().getLoc(), Assumption); } // end switch } static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment) { // Is it a "($sym+constant1)" expression? if (const SymIntExpr *SE = dyn_cast(Sym)) { BinaryOperator::Opcode Op = SE->getOpcode(); if (Op == BO_Add || Op == BO_Sub) { Sym = SE->getLHS(); Adjustment = APSIntType(Adjustment).convert(SE->getRHS()); // Don't forget to negate the adjustment if it's being subtracted. // This should happen /after/ promotion, in case the value being // subtracted is, say, CHAR_MIN, and the promoted type is 'int'. if (Op == BO_Sub) Adjustment = -Adjustment; } } } ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef state, const SymExpr *LHS, BinaryOperator::Opcode op, const llvm::APSInt& Int) { assert(BinaryOperator::isComparisonOp(op) && "Non-comparison ops should be rewritten as comparisons to zero."); // Get the type used for calculating wraparound. BasicValueFactory &BVF = getBasicVals(); APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType()); // We only handle simple comparisons of the form "$sym == constant" // or "($sym+constant1) == constant2". // The adjustment is "constant1" in the above expression. It's used to // "slide" the solution range around for modular arithmetic. For example, // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to // the subclasses of SimpleConstraintManager to handle the adjustment. SymbolRef Sym = LHS; llvm::APSInt Adjustment = WraparoundType.getZeroValue(); computeAdjustment(Sym, Adjustment); // Convert the right-hand side integer as necessary. APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int)); llvm::APSInt ConvertedInt = ComparisonType.convert(Int); // Prefer unsigned comparisons. if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() && ComparisonType.isUnsigned() && !WraparoundType.isUnsigned()) Adjustment.setIsSigned(false); switch (op) { default: llvm_unreachable("invalid operation not caught by assertion above"); case BO_EQ: return assumeSymEQ(state, Sym, ConvertedInt, Adjustment); case BO_NE: return assumeSymNE(state, Sym, ConvertedInt, Adjustment); case BO_GT: return assumeSymGT(state, Sym, ConvertedInt, Adjustment); case BO_GE: return assumeSymGE(state, Sym, ConvertedInt, Adjustment); case BO_LT: return assumeSymLT(state, Sym, ConvertedInt, Adjustment); case BO_LE: return assumeSymLE(state, Sym, ConvertedInt, Adjustment); } // end switch } } // end of namespace ento } // end of namespace clang