//===- Chunks.cpp ---------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Chunks.h" #include "InputFiles.h" #include "Symbols.h" #include "Writer.h" #include "SymbolTable.h" #include "lld/Common/ErrorHandler.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/Object/COFF.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::COFF; using llvm::support::ulittle32_t; namespace lld { namespace coff { SectionChunk::SectionChunk(ObjFile *F, const coff_section *H) : Chunk(SectionKind), Repl(this), Header(H), File(F), Relocs(File->getCOFFObj()->getRelocations(Header)) { // Initialize SectionName. File->getCOFFObj()->getSectionName(Header, SectionName); Alignment = Header->getAlignment(); // If linker GC is disabled, every chunk starts out alive. If linker GC is // enabled, treat non-comdat sections as roots. Generally optimized object // files will be built with -ffunction-sections or /Gy, so most things worth // stripping will be in a comdat. Live = !Config->DoGC || !isCOMDAT(); } // Initialize the RelocTargets vector, to allow redirecting certain relocations // to a thunk instead of the actual symbol the relocation's symbol table index // indicates. void SectionChunk::readRelocTargets() { assert(RelocTargets.empty()); RelocTargets.reserve(Relocs.size()); for (const coff_relocation &Rel : Relocs) RelocTargets.push_back(File->getSymbol(Rel.SymbolTableIndex)); } // Reset RelocTargets to their original targets before thunks were added. void SectionChunk::resetRelocTargets() { for (size_t I = 0, E = Relocs.size(); I < E; ++I) RelocTargets[I] = File->getSymbol(Relocs[I].SymbolTableIndex); } static void add16(uint8_t *P, int16_t V) { write16le(P, read16le(P) + V); } static void add32(uint8_t *P, int32_t V) { write32le(P, read32le(P) + V); } static void add64(uint8_t *P, int64_t V) { write64le(P, read64le(P) + V); } static void or16(uint8_t *P, uint16_t V) { write16le(P, read16le(P) | V); } static void or32(uint8_t *P, uint32_t V) { write32le(P, read32le(P) | V); } // Verify that given sections are appropriate targets for SECREL // relocations. This check is relaxed because unfortunately debug // sections have section-relative relocations against absolute symbols. static bool checkSecRel(const SectionChunk *Sec, OutputSection *OS) { if (OS) return true; if (Sec->isCodeView()) return false; error("SECREL relocation cannot be applied to absolute symbols"); return false; } static void applySecRel(const SectionChunk *Sec, uint8_t *Off, OutputSection *OS, uint64_t S) { if (!checkSecRel(Sec, OS)) return; uint64_t SecRel = S - OS->getRVA(); if (SecRel > UINT32_MAX) { error("overflow in SECREL relocation in section: " + Sec->getSectionName()); return; } add32(Off, SecRel); } static void applySecIdx(uint8_t *Off, OutputSection *OS) { // Absolute symbol doesn't have section index, but section index relocation // against absolute symbol should be resolved to one plus the last output // section index. This is required for compatibility with MSVC. if (OS) add16(Off, OS->SectionIndex); else add16(Off, DefinedAbsolute::NumOutputSections + 1); } void SectionChunk::applyRelX64(uint8_t *Off, uint16_t Type, OutputSection *OS, uint64_t S, uint64_t P) const { switch (Type) { case IMAGE_REL_AMD64_ADDR32: add32(Off, S + Config->ImageBase); break; case IMAGE_REL_AMD64_ADDR64: add64(Off, S + Config->ImageBase); break; case IMAGE_REL_AMD64_ADDR32NB: add32(Off, S); break; case IMAGE_REL_AMD64_REL32: add32(Off, S - P - 4); break; case IMAGE_REL_AMD64_REL32_1: add32(Off, S - P - 5); break; case IMAGE_REL_AMD64_REL32_2: add32(Off, S - P - 6); break; case IMAGE_REL_AMD64_REL32_3: add32(Off, S - P - 7); break; case IMAGE_REL_AMD64_REL32_4: add32(Off, S - P - 8); break; case IMAGE_REL_AMD64_REL32_5: add32(Off, S - P - 9); break; case IMAGE_REL_AMD64_SECTION: applySecIdx(Off, OS); break; case IMAGE_REL_AMD64_SECREL: applySecRel(this, Off, OS, S); break; default: error("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + toString(File)); } } void SectionChunk::applyRelX86(uint8_t *Off, uint16_t Type, OutputSection *OS, uint64_t S, uint64_t P) const { switch (Type) { case IMAGE_REL_I386_ABSOLUTE: break; case IMAGE_REL_I386_DIR32: add32(Off, S + Config->ImageBase); break; case IMAGE_REL_I386_DIR32NB: add32(Off, S); break; case IMAGE_REL_I386_REL32: add32(Off, S - P - 4); break; case IMAGE_REL_I386_SECTION: applySecIdx(Off, OS); break; case IMAGE_REL_I386_SECREL: applySecRel(this, Off, OS, S); break; default: error("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + toString(File)); } } static void applyMOV(uint8_t *Off, uint16_t V) { write16le(Off, (read16le(Off) & 0xfbf0) | ((V & 0x800) >> 1) | ((V >> 12) & 0xf)); write16le(Off + 2, (read16le(Off + 2) & 0x8f00) | ((V & 0x700) << 4) | (V & 0xff)); } static uint16_t readMOV(uint8_t *Off, bool MOVT) { uint16_t Op1 = read16le(Off); if ((Op1 & 0xfbf0) != (MOVT ? 0xf2c0 : 0xf240)) error("unexpected instruction in " + Twine(MOVT ? "MOVT" : "MOVW") + " instruction in MOV32T relocation"); uint16_t Op2 = read16le(Off + 2); if ((Op2 & 0x8000) != 0) error("unexpected instruction in " + Twine(MOVT ? "MOVT" : "MOVW") + " instruction in MOV32T relocation"); return (Op2 & 0x00ff) | ((Op2 >> 4) & 0x0700) | ((Op1 << 1) & 0x0800) | ((Op1 & 0x000f) << 12); } void applyMOV32T(uint8_t *Off, uint32_t V) { uint16_t ImmW = readMOV(Off, false); // read MOVW operand uint16_t ImmT = readMOV(Off + 4, true); // read MOVT operand uint32_t Imm = ImmW | (ImmT << 16); V += Imm; // add the immediate offset applyMOV(Off, V); // set MOVW operand applyMOV(Off + 4, V >> 16); // set MOVT operand } static void applyBranch20T(uint8_t *Off, int32_t V) { if (!isInt<21>(V)) error("relocation out of range"); uint32_t S = V < 0 ? 1 : 0; uint32_t J1 = (V >> 19) & 1; uint32_t J2 = (V >> 18) & 1; or16(Off, (S << 10) | ((V >> 12) & 0x3f)); or16(Off + 2, (J1 << 13) | (J2 << 11) | ((V >> 1) & 0x7ff)); } void applyBranch24T(uint8_t *Off, int32_t V) { if (!isInt<25>(V)) error("relocation out of range"); uint32_t S = V < 0 ? 1 : 0; uint32_t J1 = ((~V >> 23) & 1) ^ S; uint32_t J2 = ((~V >> 22) & 1) ^ S; or16(Off, (S << 10) | ((V >> 12) & 0x3ff)); // Clear out the J1 and J2 bits which may be set. write16le(Off + 2, (read16le(Off + 2) & 0xd000) | (J1 << 13) | (J2 << 11) | ((V >> 1) & 0x7ff)); } void SectionChunk::applyRelARM(uint8_t *Off, uint16_t Type, OutputSection *OS, uint64_t S, uint64_t P) const { // Pointer to thumb code must have the LSB set. uint64_t SX = S; if (OS && (OS->Header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) SX |= 1; switch (Type) { case IMAGE_REL_ARM_ADDR32: add32(Off, SX + Config->ImageBase); break; case IMAGE_REL_ARM_ADDR32NB: add32(Off, SX); break; case IMAGE_REL_ARM_MOV32T: applyMOV32T(Off, SX + Config->ImageBase); break; case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(Off, SX - P - 4); break; case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(Off, SX - P - 4); break; case IMAGE_REL_ARM_BLX23T: applyBranch24T(Off, SX - P - 4); break; case IMAGE_REL_ARM_SECTION: applySecIdx(Off, OS); break; case IMAGE_REL_ARM_SECREL: applySecRel(this, Off, OS, S); break; default: error("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + toString(File)); } } // Interpret the existing immediate value as a byte offset to the // target symbol, then update the instruction with the immediate as // the page offset from the current instruction to the target. void applyArm64Addr(uint8_t *Off, uint64_t S, uint64_t P, int Shift) { uint32_t Orig = read32le(Off); uint64_t Imm = ((Orig >> 29) & 0x3) | ((Orig >> 3) & 0x1FFFFC); S += Imm; Imm = (S >> Shift) - (P >> Shift); uint32_t ImmLo = (Imm & 0x3) << 29; uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); write32le(Off, (Orig & ~Mask) | ImmLo | ImmHi); } // Update the immediate field in a AARCH64 ldr, str, and add instruction. // Optionally limit the range of the written immediate by one or more bits // (RangeLimit). void applyArm64Imm(uint8_t *Off, uint64_t Imm, uint32_t RangeLimit) { uint32_t Orig = read32le(Off); Imm += (Orig >> 10) & 0xFFF; Orig &= ~(0xFFF << 10); write32le(Off, Orig | ((Imm & (0xFFF >> RangeLimit)) << 10)); } // Add the 12 bit page offset to the existing immediate. // Ldr/str instructions store the opcode immediate scaled // by the load/store size (giving a larger range for larger // loads/stores). The immediate is always (both before and after // fixing up the relocation) stored scaled similarly. // Even if larger loads/stores have a larger range, limit the // effective offset to 12 bit, since it is intended to be a // page offset. static void applyArm64Ldr(uint8_t *Off, uint64_t Imm) { uint32_t Orig = read32le(Off); uint32_t Size = Orig >> 30; // 0x04000000 indicates SIMD/FP registers // 0x00800000 indicates 128 bit if ((Orig & 0x4800000) == 0x4800000) Size += 4; if ((Imm & ((1 << Size) - 1)) != 0) error("misaligned ldr/str offset"); applyArm64Imm(Off, Imm >> Size, Size); } static void applySecRelLow12A(const SectionChunk *Sec, uint8_t *Off, OutputSection *OS, uint64_t S) { if (checkSecRel(Sec, OS)) applyArm64Imm(Off, (S - OS->getRVA()) & 0xfff, 0); } static void applySecRelHigh12A(const SectionChunk *Sec, uint8_t *Off, OutputSection *OS, uint64_t S) { if (!checkSecRel(Sec, OS)) return; uint64_t SecRel = (S - OS->getRVA()) >> 12; if (0xfff < SecRel) { error("overflow in SECREL_HIGH12A relocation in section: " + Sec->getSectionName()); return; } applyArm64Imm(Off, SecRel & 0xfff, 0); } static void applySecRelLdr(const SectionChunk *Sec, uint8_t *Off, OutputSection *OS, uint64_t S) { if (checkSecRel(Sec, OS)) applyArm64Ldr(Off, (S - OS->getRVA()) & 0xfff); } void applyArm64Branch26(uint8_t *Off, int64_t V) { if (!isInt<28>(V)) error("relocation out of range"); or32(Off, (V & 0x0FFFFFFC) >> 2); } static void applyArm64Branch19(uint8_t *Off, int64_t V) { if (!isInt<21>(V)) error("relocation out of range"); or32(Off, (V & 0x001FFFFC) << 3); } static void applyArm64Branch14(uint8_t *Off, int64_t V) { if (!isInt<16>(V)) error("relocation out of range"); or32(Off, (V & 0x0000FFFC) << 3); } void SectionChunk::applyRelARM64(uint8_t *Off, uint16_t Type, OutputSection *OS, uint64_t S, uint64_t P) const { switch (Type) { case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(Off, S, P, 12); break; case IMAGE_REL_ARM64_REL21: applyArm64Addr(Off, S, P, 0); break; case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(Off, S & 0xfff, 0); break; case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(Off, S & 0xfff); break; case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(Off, S - P); break; case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(Off, S - P); break; case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(Off, S - P); break; case IMAGE_REL_ARM64_ADDR32: add32(Off, S + Config->ImageBase); break; case IMAGE_REL_ARM64_ADDR32NB: add32(Off, S); break; case IMAGE_REL_ARM64_ADDR64: add64(Off, S + Config->ImageBase); break; case IMAGE_REL_ARM64_SECREL: applySecRel(this, Off, OS, S); break; case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, Off, OS, S); break; case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, Off, OS, S); break; case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, Off, OS, S); break; case IMAGE_REL_ARM64_SECTION: applySecIdx(Off, OS); break; default: error("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + toString(File)); } } static void maybeReportRelocationToDiscarded(const SectionChunk *FromChunk, Defined *Sym, const coff_relocation &Rel) { // Don't report these errors when the relocation comes from a debug info // section or in mingw mode. MinGW mode object files (built by GCC) can // have leftover sections with relocations against discarded comdat // sections. Such sections are left as is, with relocations untouched. if (FromChunk->isCodeView() || FromChunk->isDWARF() || Config->MinGW) return; // Get the name of the symbol. If it's null, it was discarded early, so we // have to go back to the object file. ObjFile *File = FromChunk->File; StringRef Name; if (Sym) { Name = Sym->getName(); } else { COFFSymbolRef COFFSym = check(File->getCOFFObj()->getSymbol(Rel.SymbolTableIndex)); File->getCOFFObj()->getSymbolName(COFFSym, Name); } error("relocation against symbol in discarded section: " + Name + getSymbolLocations(File, Rel.SymbolTableIndex)); } void SectionChunk::writeTo(uint8_t *Buf) const { if (!hasData()) return; // Copy section contents from source object file to output file. ArrayRef A = getContents(); if (!A.empty()) memcpy(Buf + OutputSectionOff, A.data(), A.size()); // Apply relocations. size_t InputSize = getSize(); for (size_t I = 0, E = Relocs.size(); I < E; I++) { const coff_relocation &Rel = Relocs[I]; // Check for an invalid relocation offset. This check isn't perfect, because // we don't have the relocation size, which is only known after checking the // machine and relocation type. As a result, a relocation may overwrite the // beginning of the following input section. if (Rel.VirtualAddress >= InputSize) { error("relocation points beyond the end of its parent section"); continue; } uint8_t *Off = Buf + OutputSectionOff + Rel.VirtualAddress; // Use the potentially remapped Symbol instead of the one that the // relocation points to. auto *Sym = dyn_cast_or_null(RelocTargets[I]); // Get the output section of the symbol for this relocation. The output // section is needed to compute SECREL and SECTION relocations used in debug // info. Chunk *C = Sym ? Sym->getChunk() : nullptr; OutputSection *OS = C ? C->getOutputSection() : nullptr; // Skip the relocation if it refers to a discarded section, and diagnose it // as an error if appropriate. If a symbol was discarded early, it may be // null. If it was discarded late, the output section will be null, unless // it was an absolute or synthetic symbol. if (!Sym || (!OS && !isa(Sym) && !isa(Sym))) { maybeReportRelocationToDiscarded(this, Sym, Rel); continue; } uint64_t S = Sym->getRVA(); // Compute the RVA of the relocation for relative relocations. uint64_t P = RVA + Rel.VirtualAddress; switch (Config->Machine) { case AMD64: applyRelX64(Off, Rel.Type, OS, S, P); break; case I386: applyRelX86(Off, Rel.Type, OS, S, P); break; case ARMNT: applyRelARM(Off, Rel.Type, OS, S, P); break; case ARM64: applyRelARM64(Off, Rel.Type, OS, S, P); break; default: llvm_unreachable("unknown machine type"); } } } void SectionChunk::addAssociative(SectionChunk *Child) { AssocChildren.push_back(Child); } static uint8_t getBaserelType(const coff_relocation &Rel) { switch (Config->Machine) { case AMD64: if (Rel.Type == IMAGE_REL_AMD64_ADDR64) return IMAGE_REL_BASED_DIR64; return IMAGE_REL_BASED_ABSOLUTE; case I386: if (Rel.Type == IMAGE_REL_I386_DIR32) return IMAGE_REL_BASED_HIGHLOW; return IMAGE_REL_BASED_ABSOLUTE; case ARMNT: if (Rel.Type == IMAGE_REL_ARM_ADDR32) return IMAGE_REL_BASED_HIGHLOW; if (Rel.Type == IMAGE_REL_ARM_MOV32T) return IMAGE_REL_BASED_ARM_MOV32T; return IMAGE_REL_BASED_ABSOLUTE; case ARM64: if (Rel.Type == IMAGE_REL_ARM64_ADDR64) return IMAGE_REL_BASED_DIR64; return IMAGE_REL_BASED_ABSOLUTE; default: llvm_unreachable("unknown machine type"); } } // Windows-specific. // Collect all locations that contain absolute addresses, which need to be // fixed by the loader if load-time relocation is needed. // Only called when base relocation is enabled. void SectionChunk::getBaserels(std::vector *Res) { for (size_t I = 0, E = Relocs.size(); I < E; I++) { const coff_relocation &Rel = Relocs[I]; uint8_t Ty = getBaserelType(Rel); if (Ty == IMAGE_REL_BASED_ABSOLUTE) continue; // Use the potentially remapped Symbol instead of the one that the // relocation points to. Symbol *Target = RelocTargets[I]; if (!Target || isa(Target)) continue; Res->emplace_back(RVA + Rel.VirtualAddress, Ty); } } // MinGW specific. // Check whether a static relocation of type Type can be deferred and // handled at runtime as a pseudo relocation (for references to a module // local variable, which turned out to actually need to be imported from // another DLL) This returns the size the relocation is supposed to update, // in bits, or 0 if the relocation cannot be handled as a runtime pseudo // relocation. static int getRuntimePseudoRelocSize(uint16_t Type) { // Relocations that either contain an absolute address, or a plain // relative offset, since the runtime pseudo reloc implementation // adds 8/16/32/64 bit values to a memory address. // // Given a pseudo relocation entry, // // typedef struct { // DWORD sym; // DWORD target; // DWORD flags; // } runtime_pseudo_reloc_item_v2; // // the runtime relocation performs this adjustment: // *(base + .target) += *(base + .sym) - (base + .sym) // // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64, // IMAGE_REL_I386_DIR32, where the memory location initially contains // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32), // where the memory location originally contains the relative offset to the // IAT slot. // // This requires the target address to be writable, either directly out of // the image, or temporarily changed at runtime with VirtualProtect. // Since this only operates on direct address values, it doesn't work for // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations. switch (Config->Machine) { case AMD64: switch (Type) { case IMAGE_REL_AMD64_ADDR64: return 64; case IMAGE_REL_AMD64_ADDR32: case IMAGE_REL_AMD64_REL32: case IMAGE_REL_AMD64_REL32_1: case IMAGE_REL_AMD64_REL32_2: case IMAGE_REL_AMD64_REL32_3: case IMAGE_REL_AMD64_REL32_4: case IMAGE_REL_AMD64_REL32_5: return 32; default: return 0; } case I386: switch (Type) { case IMAGE_REL_I386_DIR32: case IMAGE_REL_I386_REL32: return 32; default: return 0; } case ARMNT: switch (Type) { case IMAGE_REL_ARM_ADDR32: return 32; default: return 0; } case ARM64: switch (Type) { case IMAGE_REL_ARM64_ADDR64: return 64; case IMAGE_REL_ARM64_ADDR32: return 32; default: return 0; } default: llvm_unreachable("unknown machine type"); } } // MinGW specific. // Append information to the provided vector about all relocations that // need to be handled at runtime as runtime pseudo relocations (references // to a module local variable, which turned out to actually need to be // imported from another DLL). void SectionChunk::getRuntimePseudoRelocs( std::vector &Res) { for (const coff_relocation &Rel : Relocs) { auto *Target = dyn_cast_or_null(File->getSymbol(Rel.SymbolTableIndex)); if (!Target || !Target->IsRuntimePseudoReloc) continue; int SizeInBits = getRuntimePseudoRelocSize(Rel.Type); if (SizeInBits == 0) { error("unable to automatically import from " + Target->getName() + " with relocation type " + File->getCOFFObj()->getRelocationTypeName(Rel.Type) + " in " + toString(File)); continue; } // SizeInBits is used to initialize the Flags field; currently no // other flags are defined. Res.emplace_back( RuntimePseudoReloc(Target, this, Rel.VirtualAddress, SizeInBits)); } } bool SectionChunk::hasData() const { return !(Header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); } uint32_t SectionChunk::getOutputCharacteristics() const { return Header->Characteristics & (PermMask | TypeMask); } bool SectionChunk::isCOMDAT() const { return Header->Characteristics & IMAGE_SCN_LNK_COMDAT; } void SectionChunk::printDiscardedMessage() const { // Removed by dead-stripping. If it's removed by ICF, ICF already // printed out the name, so don't repeat that here. if (Sym && this == Repl) message("Discarded " + Sym->getName()); } StringRef SectionChunk::getDebugName() { if (Sym) return Sym->getName(); return ""; } ArrayRef SectionChunk::getContents() const { ArrayRef A; File->getCOFFObj()->getSectionContents(Header, A); return A; } void SectionChunk::replace(SectionChunk *Other) { Alignment = std::max(Alignment, Other->Alignment); Other->Repl = Repl; Other->Live = false; } uint32_t SectionChunk::getSectionNumber() const { DataRefImpl R; R.p = reinterpret_cast(Header); SectionRef S(R, File->getCOFFObj()); return S.getIndex() + 1; } CommonChunk::CommonChunk(const COFFSymbolRef S) : Sym(S) { // Common symbols are aligned on natural boundaries up to 32 bytes. // This is what MSVC link.exe does. Alignment = std::min(uint64_t(32), PowerOf2Ceil(Sym.getValue())); } uint32_t CommonChunk::getOutputCharacteristics() const { return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_WRITE; } void StringChunk::writeTo(uint8_t *Buf) const { memcpy(Buf + OutputSectionOff, Str.data(), Str.size()); Buf[OutputSectionOff + Str.size()] = '\0'; } ImportThunkChunkX64::ImportThunkChunkX64(Defined *S) : ImpSymbol(S) { // Intel Optimization Manual says that all branch targets // should be 16-byte aligned. MSVC linker does this too. Alignment = 16; } void ImportThunkChunkX64::writeTo(uint8_t *Buf) const { memcpy(Buf + OutputSectionOff, ImportThunkX86, sizeof(ImportThunkX86)); // The first two bytes is a JMP instruction. Fill its operand. write32le(Buf + OutputSectionOff + 2, ImpSymbol->getRVA() - RVA - getSize()); } void ImportThunkChunkX86::getBaserels(std::vector *Res) { Res->emplace_back(getRVA() + 2); } void ImportThunkChunkX86::writeTo(uint8_t *Buf) const { memcpy(Buf + OutputSectionOff, ImportThunkX86, sizeof(ImportThunkX86)); // The first two bytes is a JMP instruction. Fill its operand. write32le(Buf + OutputSectionOff + 2, ImpSymbol->getRVA() + Config->ImageBase); } void ImportThunkChunkARM::getBaserels(std::vector *Res) { Res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); } void ImportThunkChunkARM::writeTo(uint8_t *Buf) const { memcpy(Buf + OutputSectionOff, ImportThunkARM, sizeof(ImportThunkARM)); // Fix mov.w and mov.t operands. applyMOV32T(Buf + OutputSectionOff, ImpSymbol->getRVA() + Config->ImageBase); } void ImportThunkChunkARM64::writeTo(uint8_t *Buf) const { int64_t Off = ImpSymbol->getRVA() & 0xfff; memcpy(Buf + OutputSectionOff, ImportThunkARM64, sizeof(ImportThunkARM64)); applyArm64Addr(Buf + OutputSectionOff, ImpSymbol->getRVA(), RVA, 12); applyArm64Ldr(Buf + OutputSectionOff + 4, Off); } // A Thumb2, PIC, non-interworking range extension thunk. const uint8_t ArmThunk[] = { 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) 0xe7, 0x44, // L1: add pc, ip }; size_t RangeExtensionThunk::getSize() const { assert(Config->Machine == ARMNT); return sizeof(ArmThunk); } void RangeExtensionThunk::writeTo(uint8_t *Buf) const { assert(Config->Machine == ARMNT); uint64_t Offset = Target->getRVA() - RVA - 12; memcpy(Buf + OutputSectionOff, ArmThunk, sizeof(ArmThunk)); applyMOV32T(Buf + OutputSectionOff, uint32_t(Offset)); } void LocalImportChunk::getBaserels(std::vector *Res) { Res->emplace_back(getRVA()); } size_t LocalImportChunk::getSize() const { return Config->Wordsize; } void LocalImportChunk::writeTo(uint8_t *Buf) const { if (Config->is64()) { write64le(Buf + OutputSectionOff, Sym->getRVA() + Config->ImageBase); } else { write32le(Buf + OutputSectionOff, Sym->getRVA() + Config->ImageBase); } } void RVATableChunk::writeTo(uint8_t *Buf) const { ulittle32_t *Begin = reinterpret_cast(Buf + OutputSectionOff); size_t Cnt = 0; for (const ChunkAndOffset &CO : Syms) Begin[Cnt++] = CO.InputChunk->getRVA() + CO.Offset; std::sort(Begin, Begin + Cnt); assert(std::unique(Begin, Begin + Cnt) == Begin + Cnt && "RVA tables should be de-duplicated"); } // MinGW specific, for the "automatic import of variables from DLLs" feature. size_t PseudoRelocTableChunk::getSize() const { if (Relocs.empty()) return 0; return 12 + 12 * Relocs.size(); } // MinGW specific. void PseudoRelocTableChunk::writeTo(uint8_t *Buf) const { if (Relocs.empty()) return; ulittle32_t *Table = reinterpret_cast(Buf + OutputSectionOff); // This is the list header, to signal the runtime pseudo relocation v2 // format. Table[0] = 0; Table[1] = 0; Table[2] = 1; size_t Idx = 3; for (const RuntimePseudoReloc &RPR : Relocs) { Table[Idx + 0] = RPR.Sym->getRVA(); Table[Idx + 1] = RPR.Target->getRVA() + RPR.TargetOffset; Table[Idx + 2] = RPR.Flags; Idx += 3; } } // Windows-specific. This class represents a block in .reloc section. // The format is described here. // // On Windows, each DLL is linked against a fixed base address and // usually loaded to that address. However, if there's already another // DLL that overlaps, the loader has to relocate it. To do that, DLLs // contain .reloc sections which contain offsets that need to be fixed // up at runtime. If the loader finds that a DLL cannot be loaded to its // desired base address, it loads it to somewhere else, and add - to each offset that is // specified by the .reloc section. In ELF terms, .reloc sections // contain relative relocations in REL format (as opposed to RELA.) // // This already significantly reduces the size of relocations compared // to ELF .rel.dyn, but Windows does more to reduce it (probably because // it was invented for PCs in the late '80s or early '90s.) Offsets in // .reloc are grouped by page where the page size is 12 bits, and // offsets sharing the same page address are stored consecutively to // represent them with less space. This is very similar to the page // table which is grouped by (multiple stages of) pages. // // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they // are represented like this: // // 0x00000 -- page address (4 bytes) // 16 -- size of this block (4 bytes) // 0xA030 -- entries (2 bytes each) // 0xA500 // 0xA700 // 0xAA00 // 0x20000 -- page address (4 bytes) // 12 -- size of this block (4 bytes) // 0xA004 -- entries (2 bytes each) // 0xA008 // // Usually we have a lot of relocations for each page, so the number of // bytes for one .reloc entry is close to 2 bytes on average. BaserelChunk::BaserelChunk(uint32_t Page, Baserel *Begin, Baserel *End) { // Block header consists of 4 byte page RVA and 4 byte block size. // Each entry is 2 byte. Last entry may be padding. Data.resize(alignTo((End - Begin) * 2 + 8, 4)); uint8_t *P = Data.data(); write32le(P, Page); write32le(P + 4, Data.size()); P += 8; for (Baserel *I = Begin; I != End; ++I) { write16le(P, (I->Type << 12) | (I->RVA - Page)); P += 2; } } void BaserelChunk::writeTo(uint8_t *Buf) const { memcpy(Buf + OutputSectionOff, Data.data(), Data.size()); } uint8_t Baserel::getDefaultType() { switch (Config->Machine) { case AMD64: case ARM64: return IMAGE_REL_BASED_DIR64; case I386: case ARMNT: return IMAGE_REL_BASED_HIGHLOW; default: llvm_unreachable("unknown machine type"); } } std::map MergeChunk::Instances; MergeChunk::MergeChunk(uint32_t Alignment) : Builder(StringTableBuilder::RAW, Alignment) { this->Alignment = Alignment; } void MergeChunk::addSection(SectionChunk *C) { auto *&MC = Instances[C->Alignment]; if (!MC) MC = make(C->Alignment); MC->Sections.push_back(C); } void MergeChunk::finalizeContents() { if (!Finalized) { for (SectionChunk *C : Sections) if (C->Live) Builder.add(toStringRef(C->getContents())); Builder.finalize(); Finalized = true; } for (SectionChunk *C : Sections) { if (!C->Live) continue; size_t Off = Builder.getOffset(toStringRef(C->getContents())); C->setOutputSection(Out); C->setRVA(RVA + Off); C->OutputSectionOff = OutputSectionOff + Off; } } uint32_t MergeChunk::getOutputCharacteristics() const { return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; } size_t MergeChunk::getSize() const { return Builder.getSize(); } void MergeChunk::writeTo(uint8_t *Buf) const { Builder.write(Buf + OutputSectionOff); } // MinGW specific. size_t AbsolutePointerChunk::getSize() const { return Config->Wordsize; } void AbsolutePointerChunk::writeTo(uint8_t *Buf) const { if (Config->is64()) { write64le(Buf + OutputSectionOff, Value); } else { write32le(Buf + OutputSectionOff, Value); } } } // namespace coff } // namespace lld