//===- InputFiles.cpp -----------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Chunks.h" #include "Config.h" #include "Driver.h" #include "SymbolTable.h" #include "Symbols.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "llvm-c/lto.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/Object/Binary.h" #include "llvm/Object/COFF.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include "llvm/Target/TargetOptions.h" #include #include #include using namespace llvm; using namespace llvm::COFF; using namespace llvm::object; using namespace llvm::support::endian; using llvm::Triple; using llvm::support::ulittle32_t; namespace lld { namespace coff { std::vector ObjFile::Instances; std::vector ImportFile::Instances; std::vector BitcodeFile::Instances; /// Checks that Source is compatible with being a weak alias to Target. /// If Source is Undefined and has no weak alias set, makes it a weak /// alias to Target. static void checkAndSetWeakAlias(SymbolTable *Symtab, InputFile *F, Symbol *Source, Symbol *Target) { if (auto *U = dyn_cast(Source)) { if (U->WeakAlias && U->WeakAlias != Target) { // Weak aliases as produced by GCC are named in the form // .weak.., where is the name // of another symbol emitted near the weak symbol. // Just use the definition from the first object file that defined // this weak symbol. if (Config->MinGW) return; Symtab->reportDuplicate(Source, F); } U->WeakAlias = Target; } } ArchiveFile::ArchiveFile(MemoryBufferRef M) : InputFile(ArchiveKind, M) {} void ArchiveFile::parse() { // Parse a MemoryBufferRef as an archive file. File = CHECK(Archive::create(MB), this); // Read the symbol table to construct Lazy objects. for (const Archive::Symbol &Sym : File->symbols()) Symtab->addLazy(this, Sym); } // Returns a buffer pointing to a member file containing a given symbol. void ArchiveFile::addMember(const Archive::Symbol *Sym) { const Archive::Child &C = CHECK(Sym->getMember(), "could not get the member for symbol " + Sym->getName()); // Return an empty buffer if we have already returned the same buffer. if (!Seen.insert(C.getChildOffset()).second) return; Driver->enqueueArchiveMember(C, Sym->getName(), getName()); } std::vector getArchiveMembers(Archive *File) { std::vector V; Error Err = Error::success(); for (const ErrorOr &COrErr : File->children(Err)) { Archive::Child C = CHECK(COrErr, File->getFileName() + ": could not get the child of the archive"); MemoryBufferRef MBRef = CHECK(C.getMemoryBufferRef(), File->getFileName() + ": could not get the buffer for a child of the archive"); V.push_back(MBRef); } if (Err) fatal(File->getFileName() + ": Archive::children failed: " + toString(std::move(Err))); return V; } void ObjFile::parse() { // Parse a memory buffer as a COFF file. std::unique_ptr Bin = CHECK(createBinary(MB), this); if (auto *Obj = dyn_cast(Bin.get())) { Bin.release(); COFFObj.reset(Obj); } else { fatal(toString(this) + " is not a COFF file"); } // Read section and symbol tables. initializeChunks(); initializeSymbols(); } // We set SectionChunk pointers in the SparseChunks vector to this value // temporarily to mark comdat sections as having an unknown resolution. As we // walk the object file's symbol table, once we visit either a leader symbol or // an associative section definition together with the parent comdat's leader, // we set the pointer to either nullptr (to mark the section as discarded) or a // valid SectionChunk for that section. static SectionChunk *const PendingComdat = reinterpret_cast(1); void ObjFile::initializeChunks() { uint32_t NumSections = COFFObj->getNumberOfSections(); Chunks.reserve(NumSections); SparseChunks.resize(NumSections + 1); for (uint32_t I = 1; I < NumSections + 1; ++I) { const coff_section *Sec; if (auto EC = COFFObj->getSection(I, Sec)) fatal("getSection failed: #" + Twine(I) + ": " + EC.message()); if (Sec->Characteristics & IMAGE_SCN_LNK_COMDAT) SparseChunks[I] = PendingComdat; else SparseChunks[I] = readSection(I, nullptr, ""); } } SectionChunk *ObjFile::readSection(uint32_t SectionNumber, const coff_aux_section_definition *Def, StringRef LeaderName) { const coff_section *Sec; if (auto EC = COFFObj->getSection(SectionNumber, Sec)) fatal("getSection failed: #" + Twine(SectionNumber) + ": " + EC.message()); StringRef Name; if (auto EC = COFFObj->getSectionName(Sec, Name)) fatal("getSectionName failed: #" + Twine(SectionNumber) + ": " + EC.message()); if (Name == ".drectve") { ArrayRef Data; COFFObj->getSectionContents(Sec, Data); Directives = std::string((const char *)Data.data(), Data.size()); return nullptr; } if (Name == ".llvm_addrsig") { AddrsigSec = Sec; return nullptr; } // Object files may have DWARF debug info or MS CodeView debug info // (or both). // // DWARF sections don't need any special handling from the perspective // of the linker; they are just a data section containing relocations. // We can just link them to complete debug info. // // CodeView needs linker support. We need to interpret debug info, // and then write it to a separate .pdb file. // Ignore DWARF debug info unless /debug is given. if (!Config->Debug && Name.startswith(".debug_")) return nullptr; if (Sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) return nullptr; auto *C = make(this, Sec); if (Def) C->Checksum = Def->CheckSum; // CodeView sections are stored to a different vector because they are not // linked in the regular manner. if (C->isCodeView()) DebugChunks.push_back(C); else if (Config->GuardCF != GuardCFLevel::Off && Name == ".gfids$y") GuardFidChunks.push_back(C); else if (Config->GuardCF != GuardCFLevel::Off && Name == ".gljmp$y") GuardLJmpChunks.push_back(C); else if (Name == ".sxdata") SXDataChunks.push_back(C); else if (Config->TailMerge && Sec->NumberOfRelocations == 0 && Name == ".rdata" && LeaderName.startswith("??_C@")) // COFF sections that look like string literal sections (i.e. no // relocations, in .rdata, leader symbol name matches the MSVC name mangling // for string literals) are subject to string tail merging. MergeChunk::addSection(C); else Chunks.push_back(C); return C; } void ObjFile::readAssociativeDefinition( COFFSymbolRef Sym, const coff_aux_section_definition *Def) { readAssociativeDefinition(Sym, Def, Def->getNumber(Sym.isBigObj())); } void ObjFile::readAssociativeDefinition(COFFSymbolRef Sym, const coff_aux_section_definition *Def, uint32_t ParentSection) { SectionChunk *Parent = SparseChunks[ParentSection]; // If the parent is pending, it probably means that its section definition // appears after us in the symbol table. Leave the associated section as // pending; we will handle it during the second pass in initializeSymbols(). if (Parent == PendingComdat) return; // Check whether the parent is prevailing. If it is, so are we, and we read // the section; otherwise mark it as discarded. int32_t SectionNumber = Sym.getSectionNumber(); if (Parent) { SparseChunks[SectionNumber] = readSection(SectionNumber, Def, ""); if (SparseChunks[SectionNumber]) Parent->addAssociative(SparseChunks[SectionNumber]); } else { SparseChunks[SectionNumber] = nullptr; } } void ObjFile::recordPrevailingSymbolForMingw( COFFSymbolRef Sym, DenseMap &PrevailingSectionMap) { // For comdat symbols in executable sections, where this is the copy // of the section chunk we actually include instead of discarding it, // add the symbol to a map to allow using it for implicitly // associating .[px]data$ sections to it. int32_t SectionNumber = Sym.getSectionNumber(); SectionChunk *SC = SparseChunks[SectionNumber]; if (SC && SC->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { StringRef Name; COFFObj->getSymbolName(Sym, Name); PrevailingSectionMap[Name] = SectionNumber; } } void ObjFile::maybeAssociateSEHForMingw( COFFSymbolRef Sym, const coff_aux_section_definition *Def, const DenseMap &PrevailingSectionMap) { StringRef Name; COFFObj->getSymbolName(Sym, Name); if (Name.consume_front(".pdata$") || Name.consume_front(".xdata$")) { // For MinGW, treat .[px]data$ as implicitly associative to // the symbol . auto ParentSym = PrevailingSectionMap.find(Name); if (ParentSym != PrevailingSectionMap.end()) readAssociativeDefinition(Sym, Def, ParentSym->second); } } Symbol *ObjFile::createRegular(COFFSymbolRef Sym) { SectionChunk *SC = SparseChunks[Sym.getSectionNumber()]; if (Sym.isExternal()) { StringRef Name; COFFObj->getSymbolName(Sym, Name); if (SC) return Symtab->addRegular(this, Name, Sym.getGeneric(), SC); // For MinGW symbols named .weak.* that point to a discarded section, // don't create an Undefined symbol. If nothing ever refers to the symbol, // everything should be fine. If something actually refers to the symbol // (e.g. the undefined weak alias), linking will fail due to undefined // references at the end. if (Config->MinGW && Name.startswith(".weak.")) return nullptr; return Symtab->addUndefined(Name, this, false); } if (SC) return make(this, /*Name*/ "", /*IsCOMDAT*/ false, /*IsExternal*/ false, Sym.getGeneric(), SC); return nullptr; } void ObjFile::initializeSymbols() { uint32_t NumSymbols = COFFObj->getNumberOfSymbols(); Symbols.resize(NumSymbols); SmallVector, 8> WeakAliases; std::vector PendingIndexes; PendingIndexes.reserve(NumSymbols); DenseMap PrevailingSectionMap; std::vector ComdatDefs( COFFObj->getNumberOfSections() + 1); for (uint32_t I = 0; I < NumSymbols; ++I) { COFFSymbolRef COFFSym = check(COFFObj->getSymbol(I)); bool PrevailingComdat; if (COFFSym.isUndefined()) { Symbols[I] = createUndefined(COFFSym); } else if (COFFSym.isWeakExternal()) { Symbols[I] = createUndefined(COFFSym); uint32_t TagIndex = COFFSym.getAux()->TagIndex; WeakAliases.emplace_back(Symbols[I], TagIndex); } else if (Optional OptSym = createDefined(COFFSym, ComdatDefs, PrevailingComdat)) { Symbols[I] = *OptSym; if (Config->MinGW && PrevailingComdat) recordPrevailingSymbolForMingw(COFFSym, PrevailingSectionMap); } else { // createDefined() returns None if a symbol belongs to a section that // was pending at the point when the symbol was read. This can happen in // two cases: // 1) section definition symbol for a comdat leader; // 2) symbol belongs to a comdat section associated with a section whose // section definition symbol appears later in the symbol table. // In both of these cases, we can expect the section to be resolved by // the time we finish visiting the remaining symbols in the symbol // table. So we postpone the handling of this symbol until that time. PendingIndexes.push_back(I); } I += COFFSym.getNumberOfAuxSymbols(); } for (uint32_t I : PendingIndexes) { COFFSymbolRef Sym = check(COFFObj->getSymbol(I)); if (const coff_aux_section_definition *Def = Sym.getSectionDefinition()) { if (Def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) readAssociativeDefinition(Sym, Def); else if (Config->MinGW) maybeAssociateSEHForMingw(Sym, Def, PrevailingSectionMap); } if (SparseChunks[Sym.getSectionNumber()] == PendingComdat) { StringRef Name; COFFObj->getSymbolName(Sym, Name); log("comdat section " + Name + " without leader and unassociated, discarding"); continue; } Symbols[I] = createRegular(Sym); } for (auto &KV : WeakAliases) { Symbol *Sym = KV.first; uint32_t Idx = KV.second; checkAndSetWeakAlias(Symtab, this, Sym, Symbols[Idx]); } } Symbol *ObjFile::createUndefined(COFFSymbolRef Sym) { StringRef Name; COFFObj->getSymbolName(Sym, Name); return Symtab->addUndefined(Name, this, Sym.isWeakExternal()); } Optional ObjFile::createDefined( COFFSymbolRef Sym, std::vector &ComdatDefs, bool &Prevailing) { Prevailing = false; auto GetName = [&]() { StringRef S; COFFObj->getSymbolName(Sym, S); return S; }; if (Sym.isCommon()) { auto *C = make(Sym); Chunks.push_back(C); return Symtab->addCommon(this, GetName(), Sym.getValue(), Sym.getGeneric(), C); } if (Sym.isAbsolute()) { StringRef Name = GetName(); // Skip special symbols. if (Name == "@comp.id") return nullptr; if (Name == "@feat.00") { Feat00Flags = Sym.getValue(); return nullptr; } if (Sym.isExternal()) return Symtab->addAbsolute(Name, Sym); return make(Name, Sym); } int32_t SectionNumber = Sym.getSectionNumber(); if (SectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) return nullptr; if (llvm::COFF::isReservedSectionNumber(SectionNumber)) fatal(toString(this) + ": " + GetName() + " should not refer to special section " + Twine(SectionNumber)); if ((uint32_t)SectionNumber >= SparseChunks.size()) fatal(toString(this) + ": " + GetName() + " should not refer to non-existent section " + Twine(SectionNumber)); // Handle comdat leader symbols. if (const coff_aux_section_definition *Def = ComdatDefs[SectionNumber]) { ComdatDefs[SectionNumber] = nullptr; Symbol *Leader; if (Sym.isExternal()) { std::tie(Leader, Prevailing) = Symtab->addComdat(this, GetName(), Sym.getGeneric()); } else { Leader = make(this, /*Name*/ "", /*IsCOMDAT*/ false, /*IsExternal*/ false, Sym.getGeneric()); Prevailing = true; } if (Prevailing) { SectionChunk *C = readSection(SectionNumber, Def, GetName()); SparseChunks[SectionNumber] = C; C->Sym = cast(Leader); cast(Leader)->Data = &C->Repl; } else { SparseChunks[SectionNumber] = nullptr; } return Leader; } // Read associative section definitions and prepare to handle the comdat // leader symbol by setting the section's ComdatDefs pointer if we encounter a // non-associative comdat. if (SparseChunks[SectionNumber] == PendingComdat) { if (const coff_aux_section_definition *Def = Sym.getSectionDefinition()) { if (Def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) readAssociativeDefinition(Sym, Def); else ComdatDefs[SectionNumber] = Def; } } // readAssociativeDefinition() writes to SparseChunks, so need to check again. if (SparseChunks[SectionNumber] == PendingComdat) return None; return createRegular(Sym); } MachineTypes ObjFile::getMachineType() { if (COFFObj) return static_cast(COFFObj->getMachine()); return IMAGE_FILE_MACHINE_UNKNOWN; } StringRef ltrim1(StringRef S, const char *Chars) { if (!S.empty() && strchr(Chars, S[0])) return S.substr(1); return S; } void ImportFile::parse() { const char *Buf = MB.getBufferStart(); const char *End = MB.getBufferEnd(); const auto *Hdr = reinterpret_cast(Buf); // Check if the total size is valid. if ((size_t)(End - Buf) != (sizeof(*Hdr) + Hdr->SizeOfData)) fatal("broken import library"); // Read names and create an __imp_ symbol. StringRef Name = Saver.save(StringRef(Buf + sizeof(*Hdr))); StringRef ImpName = Saver.save("__imp_" + Name); const char *NameStart = Buf + sizeof(coff_import_header) + Name.size() + 1; DLLName = StringRef(NameStart); StringRef ExtName; switch (Hdr->getNameType()) { case IMPORT_ORDINAL: ExtName = ""; break; case IMPORT_NAME: ExtName = Name; break; case IMPORT_NAME_NOPREFIX: ExtName = ltrim1(Name, "?@_"); break; case IMPORT_NAME_UNDECORATE: ExtName = ltrim1(Name, "?@_"); ExtName = ExtName.substr(0, ExtName.find('@')); break; } this->Hdr = Hdr; ExternalName = ExtName; ImpSym = Symtab->addImportData(ImpName, this); // If this was a duplicate, we logged an error but may continue; // in this case, ImpSym is nullptr. if (!ImpSym) return; if (Hdr->getType() == llvm::COFF::IMPORT_CONST) static_cast(Symtab->addImportData(Name, this)); // If type is function, we need to create a thunk which jump to an // address pointed by the __imp_ symbol. (This allows you to call // DLL functions just like regular non-DLL functions.) if (Hdr->getType() == llvm::COFF::IMPORT_CODE) ThunkSym = Symtab->addImportThunk( Name, cast_or_null(ImpSym), Hdr->Machine); } void BitcodeFile::parse() { Obj = check(lto::InputFile::create(MemoryBufferRef( MB.getBuffer(), Saver.save(ParentName + MB.getBufferIdentifier())))); std::vector> Comdat(Obj->getComdatTable().size()); for (size_t I = 0; I != Obj->getComdatTable().size(); ++I) Comdat[I] = Symtab->addComdat(this, Saver.save(Obj->getComdatTable()[I])); for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) { StringRef SymName = Saver.save(ObjSym.getName()); int ComdatIndex = ObjSym.getComdatIndex(); Symbol *Sym; if (ObjSym.isUndefined()) { Sym = Symtab->addUndefined(SymName, this, false); } else if (ObjSym.isCommon()) { Sym = Symtab->addCommon(this, SymName, ObjSym.getCommonSize()); } else if (ObjSym.isWeak() && ObjSym.isIndirect()) { // Weak external. Sym = Symtab->addUndefined(SymName, this, true); std::string Fallback = ObjSym.getCOFFWeakExternalFallback(); Symbol *Alias = Symtab->addUndefined(Saver.save(Fallback)); checkAndSetWeakAlias(Symtab, this, Sym, Alias); } else if (ComdatIndex != -1) { if (SymName == Obj->getComdatTable()[ComdatIndex]) Sym = Comdat[ComdatIndex].first; else if (Comdat[ComdatIndex].second) Sym = Symtab->addRegular(this, SymName); else Sym = Symtab->addUndefined(SymName, this, false); } else { Sym = Symtab->addRegular(this, SymName); } Symbols.push_back(Sym); } Directives = Obj->getCOFFLinkerOpts(); } MachineTypes BitcodeFile::getMachineType() { switch (Triple(Obj->getTargetTriple()).getArch()) { case Triple::x86_64: return AMD64; case Triple::x86: return I386; case Triple::arm: return ARMNT; case Triple::aarch64: return ARM64; default: return IMAGE_FILE_MACHINE_UNKNOWN; } } } // namespace coff } // namespace lld // Returns the last element of a path, which is supposed to be a filename. static StringRef getBasename(StringRef Path) { return sys::path::filename(Path, sys::path::Style::windows); } // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". std::string lld::toString(const coff::InputFile *File) { if (!File) return ""; if (File->ParentName.empty()) return File->getName(); return (getBasename(File->ParentName) + "(" + getBasename(File->getName()) + ")") .str(); }