//===- Symbols.h ------------------------------------------------*- C++ -*-===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLD_COFF_SYMBOLS_H #define LLD_COFF_SYMBOLS_H #include "Chunks.h" #include "Config.h" #include "lld/Common/LLVM.h" #include "lld/Common/Memory.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Object/Archive.h" #include "llvm/Object/COFF.h" #include #include #include namespace lld { namespace coff { using llvm::object::Archive; using llvm::object::COFFSymbolRef; using llvm::object::coff_import_header; using llvm::object::coff_symbol_generic; class ArchiveFile; class InputFile; class ObjFile; class SymbolTable; // The base class for real symbol classes. class Symbol { public: enum Kind { // The order of these is significant. We start with the regular defined // symbols as those are the most prevelant and the zero tag is the cheapest // to set. Among the defined kinds, the lower the kind is preferred over // the higher kind when testing wether one symbol should take precedence // over another. DefinedRegularKind = 0, DefinedCommonKind, DefinedLocalImportKind, DefinedImportThunkKind, DefinedImportDataKind, DefinedAbsoluteKind, DefinedSyntheticKind, UndefinedKind, LazyKind, LastDefinedCOFFKind = DefinedCommonKind, LastDefinedKind = DefinedSyntheticKind, }; Kind kind() const { return static_cast(SymbolKind); } // Returns true if this is an external symbol. bool isExternal() { return IsExternal; } // Returns the symbol name. StringRef getName(); // Returns the file from which this symbol was created. InputFile *getFile(); // Indicates that this symbol will be included in the final image. Only valid // after calling markLive. bool isLive() const; protected: friend SymbolTable; explicit Symbol(Kind K, StringRef N = "") : SymbolKind(K), IsExternal(true), IsCOMDAT(false), WrittenToSymtab(false), PendingArchiveLoad(false), IsGCRoot(false), Name(N) {} const unsigned SymbolKind : 8; unsigned IsExternal : 1; // This bit is used by the \c DefinedRegular subclass. unsigned IsCOMDAT : 1; public: // This bit is used by Writer::createSymbolAndStringTable() to prevent // symbols from being written to the symbol table more than once. unsigned WrittenToSymtab : 1; // True if this symbol was referenced by a regular (non-bitcode) object. unsigned IsUsedInRegularObj : 1; // True if we've seen both a lazy and an undefined symbol with this symbol // name, which means that we have enqueued an archive member load and should // not load any more archive members to resolve the same symbol. unsigned PendingArchiveLoad : 1; /// True if we've already added this symbol to the list of GC roots. unsigned IsGCRoot : 1; protected: StringRef Name; }; // The base class for any defined symbols, including absolute symbols, // etc. class Defined : public Symbol { public: Defined(Kind K, StringRef N) : Symbol(K, N) {} static bool classof(const Symbol *S) { return S->kind() <= LastDefinedKind; } // Returns the RVA (relative virtual address) of this symbol. The // writer sets and uses RVAs. uint64_t getRVA(); // Returns the chunk containing this symbol. Absolute symbols and __ImageBase // do not have chunks, so this may return null. Chunk *getChunk(); }; // Symbols defined via a COFF object file or bitcode file. For COFF files, this // stores a coff_symbol_generic*, and names of internal symbols are lazily // loaded through that. For bitcode files, Sym is nullptr and the name is stored // as a StringRef. class DefinedCOFF : public Defined { friend Symbol; public: DefinedCOFF(Kind K, InputFile *F, StringRef N, const coff_symbol_generic *S) : Defined(K, N), File(F), Sym(S) {} static bool classof(const Symbol *S) { return S->kind() <= LastDefinedCOFFKind; } InputFile *getFile() { return File; } COFFSymbolRef getCOFFSymbol(); InputFile *File; protected: const coff_symbol_generic *Sym; }; // Regular defined symbols read from object file symbol tables. class DefinedRegular : public DefinedCOFF { public: DefinedRegular(InputFile *F, StringRef N, bool IsCOMDAT, bool IsExternal = false, const coff_symbol_generic *S = nullptr, SectionChunk *C = nullptr) : DefinedCOFF(DefinedRegularKind, F, N, S), Data(C ? &C->Repl : nullptr) { this->IsExternal = IsExternal; this->IsCOMDAT = IsCOMDAT; } static bool classof(const Symbol *S) { return S->kind() == DefinedRegularKind; } uint64_t getRVA() const { return (*Data)->getRVA() + Sym->Value; } bool isCOMDAT() const { return IsCOMDAT; } SectionChunk *getChunk() const { return *Data; } uint32_t getValue() const { return Sym->Value; } SectionChunk **Data; }; class DefinedCommon : public DefinedCOFF { public: DefinedCommon(InputFile *F, StringRef N, uint64_t Size, const coff_symbol_generic *S = nullptr, CommonChunk *C = nullptr) : DefinedCOFF(DefinedCommonKind, F, N, S), Data(C), Size(Size) { this->IsExternal = true; } static bool classof(const Symbol *S) { return S->kind() == DefinedCommonKind; } uint64_t getRVA() { return Data->getRVA(); } CommonChunk *getChunk() { return Data; } private: friend SymbolTable; uint64_t getSize() const { return Size; } CommonChunk *Data; uint64_t Size; }; // Absolute symbols. class DefinedAbsolute : public Defined { public: DefinedAbsolute(StringRef N, COFFSymbolRef S) : Defined(DefinedAbsoluteKind, N), VA(S.getValue()) { IsExternal = S.isExternal(); } DefinedAbsolute(StringRef N, uint64_t V) : Defined(DefinedAbsoluteKind, N), VA(V) {} static bool classof(const Symbol *S) { return S->kind() == DefinedAbsoluteKind; } uint64_t getRVA() { return VA - Config->ImageBase; } void setVA(uint64_t V) { VA = V; } // The sentinel absolute symbol section index. Section index relocations // against absolute symbols resolve to this 16 bit number, and it is the // largest valid section index plus one. This is written by the Writer. static uint16_t OutputSectionIndex; uint16_t getSecIdx() { return OutputSectionIndex; } private: uint64_t VA; }; // This symbol is used for linker-synthesized symbols like __ImageBase and // __safe_se_handler_table. class DefinedSynthetic : public Defined { public: explicit DefinedSynthetic(StringRef Name, Chunk *C) : Defined(DefinedSyntheticKind, Name), C(C) {} static bool classof(const Symbol *S) { return S->kind() == DefinedSyntheticKind; } // A null chunk indicates that this is __ImageBase. Otherwise, this is some // other synthesized chunk, like SEHTableChunk. uint32_t getRVA() { return C ? C->getRVA() : 0; } Chunk *getChunk() { return C; } private: Chunk *C; }; // This class represents a symbol defined in an archive file. It is // created from an archive file header, and it knows how to load an // object file from an archive to replace itself with a defined // symbol. If the resolver finds both Undefined and Lazy for // the same name, it will ask the Lazy to load a file. class Lazy : public Symbol { public: Lazy(ArchiveFile *F, const Archive::Symbol S) : Symbol(LazyKind, S.getName()), File(F), Sym(S) {} static bool classof(const Symbol *S) { return S->kind() == LazyKind; } ArchiveFile *File; private: friend SymbolTable; private: const Archive::Symbol Sym; }; // Undefined symbols. class Undefined : public Symbol { public: explicit Undefined(StringRef N) : Symbol(UndefinedKind, N) {} static bool classof(const Symbol *S) { return S->kind() == UndefinedKind; } // An undefined symbol can have a fallback symbol which gives an // undefined symbol a second chance if it would remain undefined. // If it remains undefined, it'll be replaced with whatever the // Alias pointer points to. Symbol *WeakAlias = nullptr; // If this symbol is external weak, try to resolve it to a defined // symbol by searching the chain of fallback symbols. Returns the symbol if // successful, otherwise returns null. Defined *getWeakAlias(); }; // Windows-specific classes. // This class represents a symbol imported from a DLL. This has two // names for internal use and external use. The former is used for // name resolution, and the latter is used for the import descriptor // table in an output. The former has "__imp_" prefix. class DefinedImportData : public Defined { public: DefinedImportData(StringRef N, ImportFile *F) : Defined(DefinedImportDataKind, N), File(F) { } static bool classof(const Symbol *S) { return S->kind() == DefinedImportDataKind; } uint64_t getRVA() { return File->Location->getRVA(); } Chunk *getChunk() { return File->Location; } void setLocation(Chunk *AddressTable) { File->Location = AddressTable; } StringRef getDLLName() { return File->DLLName; } StringRef getExternalName() { return File->ExternalName; } uint16_t getOrdinal() { return File->Hdr->OrdinalHint; } ImportFile *File; }; // This class represents a symbol for a jump table entry which jumps // to a function in a DLL. Linker are supposed to create such symbols // without "__imp_" prefix for all function symbols exported from // DLLs, so that you can call DLL functions as regular functions with // a regular name. A function pointer is given as a DefinedImportData. class DefinedImportThunk : public Defined { public: DefinedImportThunk(StringRef Name, DefinedImportData *S, uint16_t Machine); static bool classof(const Symbol *S) { return S->kind() == DefinedImportThunkKind; } uint64_t getRVA() { return Data->getRVA(); } Chunk *getChunk() { return Data; } DefinedImportData *WrappedSym; private: Chunk *Data; }; // If you have a symbol "__imp_foo" in your object file, a symbol name // "foo" becomes automatically available as a pointer to "__imp_foo". // This class is for such automatically-created symbols. // Yes, this is an odd feature. We didn't intend to implement that. // This is here just for compatibility with MSVC. class DefinedLocalImport : public Defined { public: DefinedLocalImport(StringRef N, Defined *S) : Defined(DefinedLocalImportKind, N), Data(make(S)) {} static bool classof(const Symbol *S) { return S->kind() == DefinedLocalImportKind; } uint64_t getRVA() { return Data->getRVA(); } Chunk *getChunk() { return Data; } private: LocalImportChunk *Data; }; inline uint64_t Defined::getRVA() { switch (kind()) { case DefinedAbsoluteKind: return cast(this)->getRVA(); case DefinedSyntheticKind: return cast(this)->getRVA(); case DefinedImportDataKind: return cast(this)->getRVA(); case DefinedImportThunkKind: return cast(this)->getRVA(); case DefinedLocalImportKind: return cast(this)->getRVA(); case DefinedCommonKind: return cast(this)->getRVA(); case DefinedRegularKind: return cast(this)->getRVA(); case LazyKind: case UndefinedKind: llvm_unreachable("Cannot get the address for an undefined symbol."); } llvm_unreachable("unknown symbol kind"); } inline Chunk *Defined::getChunk() { switch (kind()) { case DefinedRegularKind: return cast(this)->getChunk(); case DefinedAbsoluteKind: return nullptr; case DefinedSyntheticKind: return cast(this)->getChunk(); case DefinedImportDataKind: return cast(this)->getChunk(); case DefinedImportThunkKind: return cast(this)->getChunk(); case DefinedLocalImportKind: return cast(this)->getChunk(); case DefinedCommonKind: return cast(this)->getChunk(); case LazyKind: case UndefinedKind: llvm_unreachable("Cannot get the chunk of an undefined symbol."); } llvm_unreachable("unknown symbol kind"); } // A buffer class that is large enough to hold any Symbol-derived // object. We allocate memory using this class and instantiate a symbol // using the placement new. union SymbolUnion { alignas(DefinedRegular) char A[sizeof(DefinedRegular)]; alignas(DefinedCommon) char B[sizeof(DefinedCommon)]; alignas(DefinedAbsolute) char C[sizeof(DefinedAbsolute)]; alignas(DefinedSynthetic) char D[sizeof(DefinedSynthetic)]; alignas(Lazy) char E[sizeof(Lazy)]; alignas(Undefined) char F[sizeof(Undefined)]; alignas(DefinedImportData) char G[sizeof(DefinedImportData)]; alignas(DefinedImportThunk) char H[sizeof(DefinedImportThunk)]; alignas(DefinedLocalImport) char I[sizeof(DefinedLocalImport)]; }; template void replaceSymbol(Symbol *S, ArgT &&... Arg) { static_assert(sizeof(T) <= sizeof(SymbolUnion), "Symbol too small"); static_assert(alignof(T) <= alignof(SymbolUnion), "SymbolUnion not aligned enough"); assert(static_cast(static_cast(nullptr)) == nullptr && "Not a Symbol"); new (S) T(std::forward(Arg)...); } } // namespace coff std::string toString(coff::Symbol &B); } // namespace lld #endif