//===- AArch64ErrataFix.cpp -----------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This file implements Section Patching for the purpose of working around // errata in CPUs. The general principle is that an erratum sequence of one or // more instructions is detected in the instruction stream, one of the // instructions in the sequence is replaced with a branch to a patch sequence // of replacement instructions. At the end of the replacement sequence the // patch branches back to the instruction stream. // This technique is only suitable for fixing an erratum when: // - There is a set of necessary conditions required to trigger the erratum that // can be detected at static link time. // - There is a set of replacement instructions that can be used to remove at // least one of the necessary conditions that trigger the erratum. // - We can overwrite an instruction in the erratum sequence with a branch to // the replacement sequence. // - We can place the replacement sequence within range of the branch. // FIXME: // - The implementation here only supports one patch, the AArch64 Cortex-53 // errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 versions of the core. // To keep the initial version simple there is no support for multiple // architectures or selection of different patches. //===----------------------------------------------------------------------===// #include "AArch64ErrataFix.h" #include "Config.h" #include "LinkerScript.h" #include "OutputSections.h" #include "Relocations.h" #include "Strings.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/Memory.h" #include "llvm/Support/Endian.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; // Helper functions to identify instructions and conditions needed to trigger // the Cortex-A53-843419 erratum. // ADRP // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) | static bool isADRP(uint32_t Instr) { return (Instr & 0x9f000000) == 0x90000000; } // Load and store bit patterns from ARMv8-A ARM ARM. // Instructions appear in order of appearance starting from table in // C4.1.3 Loads and Stores. // All loads and stores have 1 (at bit postion 27), (0 at bit position 25). // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) | static bool isLoadStoreClass(uint32_t Instr) { return (Instr & 0x0a000000) == 0x08000000; } // LDN/STN multiple no offset // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) | // LDN/STN multiple post-indexed // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) | // L == 0 for stores. // Utility routine to decode opcode field of LDN/STN multiple structure // instructions to find the ST1 instructions. // opcode == 0010 ST1 4 registers. // opcode == 0110 ST1 3 registers. // opcode == 0111 ST1 1 register. // opcode == 1010 ST1 2 registers. static bool isST1MultipleOpcode(uint32_t Instr) { return (Instr & 0x0000f000) == 0x00002000 || (Instr & 0x0000f000) == 0x00006000 || (Instr & 0x0000f000) == 0x00007000 || (Instr & 0x0000f000) == 0x0000a000; } static bool isST1Multiple(uint32_t Instr) { return (Instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(Instr); } // Writes to Rn (writeback). static bool isST1MultiplePost(uint32_t Instr) { return (Instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(Instr); } // LDN/STN single no offset // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)| // LDN/STN single post-indexed // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)| // L == 0 for stores // Utility routine to decode opcode field of LDN/STN single structure // instructions to find the ST1 instructions. // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4. // opcode == 000 ST1 8-bit. // opcode == 010 ST1 16-bit. // opcode == 100 ST1 32 or 64-bit (Size determines which). static bool isST1SingleOpcode(uint32_t Instr) { return (Instr & 0x0040e000) == 0x00000000 || (Instr & 0x0040e000) == 0x00004000 || (Instr & 0x0040e000) == 0x00008000; } static bool isST1Single(uint32_t Instr) { return (Instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(Instr); } // Writes to Rn (writeback). static bool isST1SinglePost(uint32_t Instr) { return (Instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(Instr); } static bool isST1(uint32_t Instr) { return isST1Multiple(Instr) || isST1MultiplePost(Instr) || isST1Single(Instr) || isST1SinglePost(Instr); } // Load/store exclusive // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) | // L == 0 for Stores. static bool isLoadStoreExclusive(uint32_t Instr) { return (Instr & 0x3f000000) == 0x08000000; } static bool isLoadExclusive(uint32_t Instr) { return (Instr & 0x3f400000) == 0x08400000; } // Load register literal // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) | static bool isLoadLiteral(uint32_t Instr) { return (Instr & 0x3b000000) == 0x18000000; } // Load/store no-allocate pair // (offset) // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | // L == 0 for stores. // Never writes to register static bool isSTNP(uint32_t Instr) { return (Instr & 0x3bc00000) == 0x28000000; } // Load/store register pair // (post-indexed) // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP // Writes to Rn. static bool isSTPPost(uint32_t Instr) { return (Instr & 0x3bc00000) == 0x28800000; } // (offset) // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | static bool isSTPOffset(uint32_t Instr) { return (Instr & 0x3bc00000) == 0x29000000; } // (pre-index) // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | // Writes to Rn. static bool isSTPPre(uint32_t Instr) { return (Instr & 0x3bc00000) == 0x29800000; } static bool isSTP(uint32_t Instr) { return isSTPPost(Instr) || isSTPOffset(Instr) || isSTPPre(Instr); } // Load/store register (unscaled immediate) // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) | // V == 0 for Scalar, V == 1 for Simd/FP. static bool isLoadStoreUnscaled(uint32_t Instr) { return (Instr & 0x3b000c00) == 0x38000000; } // Load/store register (immediate post-indexed) // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) | static bool isLoadStoreImmediatePost(uint32_t Instr) { return (Instr & 0x3b200c00) == 0x38000400; } // Load/store register (unprivileged) // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) | static bool isLoadStoreUnpriv(uint32_t Instr) { return (Instr & 0x3b200c00) == 0x38000800; } // Load/store register (immediate pre-indexed) // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) | static bool isLoadStoreImmediatePre(uint32_t Instr) { return (Instr & 0x3b200c00) == 0x38000c00; } // Load/store register (register offset) // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt | static bool isLoadStoreRegisterOff(uint32_t Instr) { return (Instr & 0x3b200c00) == 0x38200800; } // Load/store register (unsigned immediate) // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) | static bool isLoadStoreRegisterUnsigned(uint32_t Instr) { return (Instr & 0x3b000000) == 0x39000000; } // Rt is always in bit position 0 - 4. static uint32_t getRt(uint32_t Instr) { return (Instr & 0x1f); } // Rn is always in bit position 5 - 9. static uint32_t getRn(uint32_t Instr) { return (Instr >> 5) & 0x1f; } // C4.1.2 Branches, Exception Generating and System instructions // | op0 (3) 1 | 01 op1 (4) | x (22) | // op0 == 010 101 op1 == 0xxx Conditional Branch. // op0 == 110 101 op1 == 1xxx Unconditional Branch Register. // op0 == x00 101 op1 == xxxx Unconditional Branch immediate. // op0 == x01 101 op1 == 0xxx Compare and branch immediate. // op0 == x01 101 op1 == 1xxx Test and branch immediate. static bool isBranch(uint32_t Instr) { return ((Instr & 0xfe000000) == 0xd6000000) || // Cond branch. ((Instr & 0xfe000000) == 0x54000000) || // Uncond branch reg. ((Instr & 0x7c000000) == 0x14000000) || // Uncond branch imm. ((Instr & 0x7c000000) == 0x34000000); // Compare and test branch. } static bool isV8SingleRegisterNonStructureLoadStore(uint32_t Instr) { return isLoadStoreUnscaled(Instr) || isLoadStoreImmediatePost(Instr) || isLoadStoreUnpriv(Instr) || isLoadStoreImmediatePre(Instr) || isLoadStoreRegisterOff(Instr) || isLoadStoreRegisterUnsigned(Instr); } // Note that this function refers to v8.0 only and does not include the // additional load and store instructions added for in later revisions of // the architecture such as the Atomic memory operations introduced // in v8.1. static bool isV8NonStructureLoad(uint32_t Instr) { if (isLoadExclusive(Instr)) return true; if (isLoadLiteral(Instr)) return true; else if (isV8SingleRegisterNonStructureLoadStore(Instr)) { // For Load and Store single register, Loads are derived from a // combination of the Size, V and Opc fields. uint32_t Size = (Instr >> 30) & 0xff; uint32_t V = (Instr >> 26) & 0x1; uint32_t Opc = (Instr >> 22) & 0x3; // For the load and store instructions that we are decoding. // Opc == 0 are all stores. // Opc == 1 with a couple of exceptions are loads. The exceptions are: // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch. return Opc != 0 && !(Size == 0 && V == 1 && Opc == 2) && !(Size == 3 && V == 0 && Opc == 2); } return false; } // The following decode instructions are only complete up to the instructions // needed for errata 843419. // Instruction with writeback updates the index register after the load/store. static bool hasWriteback(uint32_t Instr) { return isLoadStoreImmediatePre(Instr) || isLoadStoreImmediatePost(Instr) || isSTPPre(Instr) || isSTPPost(Instr) || isST1SinglePost(Instr) || isST1MultiplePost(Instr); } // For the load and store class of instructions, a load can write to the // destination register, a load and a store can write to the base register when // the instruction has writeback. static bool doesLoadStoreWriteToReg(uint32_t Instr, uint32_t Reg) { return (isV8NonStructureLoad(Instr) && getRt(Instr) == Reg) || (hasWriteback(Instr) && getRn(Instr) == Reg); } // Scanner for Cortex-A53 errata 843419 // Full details are available in the Cortex A53 MPCore revision 0 Software // Developers Errata Notice (ARM-EPM-048406). // // The instruction sequence that triggers the erratum is common in compiled // AArch64 code, however it is sensitive to the offset of the sequence within // a 4k page. This means that by scanning and fixing the patch after we have // assigned addresses we only need to disassemble and fix instances of the // sequence in the range of affected offsets. // // In summary the erratum conditions are a series of 4 instructions: // 1.) An ADRP instruction that writes to register Rn with low 12 bits of // address of instruction either 0xff8 or 0xffc. // 2.) A load or store instruction that can be: // - A single register load or store, of either integer or vector registers. // - An STP or STNP, of either integer or vector registers. // - An Advanced SIMD ST1 store instruction. // - Must not write to Rn, but may optionally read from it. // 3.) An optional instruction that is not a branch and does not write to Rn. // 4.) A load or store from the Load/store register (unsigned immediate) class // that uses Rn as the base address register. // // Note that we do not attempt to scan for Sequence 2 as described in the // Software Developers Errata Notice as this has been assessed to be extremely // unlikely to occur in compiled code. This matches gold and ld.bfd behavior. // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.), // and 4.) in the Scanner for Cortex-A53 errata comment above. static bool is843419ErratumSequence(uint32_t Instr1, uint32_t Instr2, uint32_t Instr4) { if (!isADRP(Instr1)) return false; uint32_t Rn = getRt(Instr1); return isLoadStoreClass(Instr2) && (isLoadStoreExclusive(Instr2) || isLoadLiteral(Instr2) || isV8SingleRegisterNonStructureLoadStore(Instr2) || isSTP(Instr2) || isSTNP(Instr2) || isST1(Instr2)) && !doesLoadStoreWriteToReg(Instr2, Rn) && isLoadStoreRegisterUnsigned(Instr4) && getRn(Instr4) == Rn; } // Scan the instruction sequence starting at Offset Off from the base of // InputSection IS. We update Off in this function rather than in the caller as // we can skip ahead much further into the section when we know how many // instructions we've scanned. // Return the offset of the load or store instruction in IS that we want to // patch or 0 if no patch required. static uint64_t scanCortexA53Errata843419(InputSection *IS, uint64_t &Off, uint64_t Limit) { uint64_t ISAddr = IS->getParent()->Addr + IS->OutSecOff; // Advance Off so that (ISAddr + Off) modulo 0x1000 is at least 0xff8. uint64_t InitialPageOff = (ISAddr + Off) & 0xfff; if (InitialPageOff < 0xff8) Off += 0xff8 - InitialPageOff; bool OptionalAllowed = Limit - Off > 12; if (Off >= Limit || Limit - Off < 12) { // Need at least 3 4-byte sized instructions to trigger erratum. Off = Limit; return 0; } uint64_t PatchOff = 0; const uint8_t *Buf = IS->Data.begin(); const ulittle32_t *InstBuf = reinterpret_cast(Buf + Off); uint32_t Instr1 = *InstBuf++; uint32_t Instr2 = *InstBuf++; uint32_t Instr3 = *InstBuf++; if (is843419ErratumSequence(Instr1, Instr2, Instr3)) { PatchOff = Off + 8; } else if (OptionalAllowed && !isBranch(Instr3)) { uint32_t Instr4 = *InstBuf++; if (is843419ErratumSequence(Instr1, Instr2, Instr4)) PatchOff = Off + 12; } if (((ISAddr + Off) & 0xfff) == 0xff8) Off += 4; else Off += 0xffc; return PatchOff; } class lld::elf::Patch843419Section : public SyntheticSection { public: Patch843419Section(InputSection *P, uint64_t Off); void writeTo(uint8_t *Buf) override; size_t getSize() const override { return 8; } uint64_t getLDSTAddr() const; // The Section we are patching. const InputSection *Patchee; // The offset of the instruction in the Patchee section we are patching. uint64_t PatcheeOffset; // A label for the start of the Patch that we can use as a relocation target. Symbol *PatchSym; }; lld::elf::Patch843419Section::Patch843419Section(InputSection *P, uint64_t Off) : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, ".text.patch"), Patchee(P), PatcheeOffset(Off) { this->Parent = P->getParent(); PatchSym = addSyntheticLocal( Saver.save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 0, getSize(), *this); addSyntheticLocal(Saver.save("$x"), STT_NOTYPE, 0, 0, *this); } uint64_t lld::elf::Patch843419Section::getLDSTAddr() const { return Patchee->getParent()->Addr + Patchee->OutSecOff + PatcheeOffset; } void lld::elf::Patch843419Section::writeTo(uint8_t *Buf) { // Copy the instruction that we will be replacing with a branch in the // Patchee Section. write32le(Buf, read32le(Patchee->Data.begin() + PatcheeOffset)); // Apply any relocation transferred from the original PatcheeSection. // For a SyntheticSection Buf already has OutSecOff added, but relocateAlloc // also adds OutSecOff so we need to subtract to avoid double counting. this->relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + getSize()); // Return address is the next instruction after the one we have just copied. uint64_t S = getLDSTAddr() + 4; uint64_t P = PatchSym->getVA() + 4; Target->relocateOne(Buf + 4, R_AARCH64_JUMP26, S - P); } void AArch64Err843419Patcher::init() { // The AArch64 ABI permits data in executable sections. We must avoid scanning // this data as if it were instructions to avoid false matches. We use the // mapping symbols in the InputObjects to identify this data, caching the // results in SectionMap so we don't have to recalculate it each pass. // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe // half open intervals [Symbol Value, Next Symbol Value) of code and data // within sections. If there is no next symbol then the half open interval is // [Symbol Value, End of section). The type, code or data, is determined by // the mapping symbol name, $x for code, $d for data. auto IsCodeMapSymbol = [](const Symbol *B) { return B->getName() == "$x" || B->getName().startswith("$x."); }; auto IsDataMapSymbol = [](const Symbol *B) { return B->getName() == "$d" || B->getName().startswith("$d."); }; // Collect mapping symbols for every executable InputSection. for (InputFile *File : ObjectFiles) { auto *F = cast>(File); for (Symbol *B : F->getLocalSymbols()) { auto *Def = dyn_cast(B); if (!Def) continue; if (!IsCodeMapSymbol(Def) && !IsDataMapSymbol(Def)) continue; if (auto *Sec = dyn_cast(Def->Section)) if (Sec->Flags & SHF_EXECINSTR) SectionMap[Sec].push_back(Def); } } // For each InputSection make sure the mapping symbols are in sorted in // ascending order and free from consecutive runs of mapping symbols with // the same type. For example we must remove the redundant $d.1 from $x.0 // $d.0 $d.1 $x.1. for (auto &KV : SectionMap) { std::vector &MapSyms = KV.second; if (MapSyms.size() <= 1) continue; std::stable_sort( MapSyms.begin(), MapSyms.end(), [](const Defined *A, const Defined *B) { return A->Value < B->Value; }); MapSyms.erase( std::unique(MapSyms.begin(), MapSyms.end(), [=](const Defined *A, const Defined *B) { return (IsCodeMapSymbol(A) && IsCodeMapSymbol(B)) || (IsDataMapSymbol(A) && IsDataMapSymbol(B)); }), MapSyms.end()); } Initialized = true; } // Insert the PatchSections we have created back into the // InputSectionDescription. As inserting patches alters the addresses of // InputSections that follow them, we try and place the patches after all the // executable sections, although we may need to insert them earlier if the // InputSectionDescription is larger than the maximum branch range. void AArch64Err843419Patcher::insertPatches( InputSectionDescription &ISD, std::vector &Patches) { uint64_t ISLimit; uint64_t PrevISLimit = ISD.Sections.front()->OutSecOff; uint64_t PatchUpperBound = PrevISLimit + Target->ThunkSectionSpacing; // Set the OutSecOff of patches to the place where we want to insert them. // We use a similar strategy to Thunk placement. Place patches roughly // every multiple of maximum branch range. auto PatchIt = Patches.begin(); auto PatchEnd = Patches.end(); for (const InputSection *IS : ISD.Sections) { ISLimit = IS->OutSecOff + IS->getSize(); if (ISLimit > PatchUpperBound) { while (PatchIt != PatchEnd) { if ((*PatchIt)->getLDSTAddr() >= PrevISLimit) break; (*PatchIt)->OutSecOff = PrevISLimit; ++PatchIt; } PatchUpperBound = PrevISLimit + Target->ThunkSectionSpacing; } PrevISLimit = ISLimit; } for (; PatchIt != PatchEnd; ++PatchIt) { (*PatchIt)->OutSecOff = ISLimit; } // merge all patch sections. We use the OutSecOff assigned above to // determine the insertion point. This is ok as we only merge into an // InputSectionDescription once per pass, and at the end of the pass // assignAddresses() will recalculate all the OutSecOff values. std::vector Tmp; Tmp.reserve(ISD.Sections.size() + Patches.size()); auto MergeCmp = [](const InputSection *A, const InputSection *B) { if (A->OutSecOff < B->OutSecOff) return true; if (A->OutSecOff == B->OutSecOff && isa(A) && !isa(B)) return true; return false; }; std::merge(ISD.Sections.begin(), ISD.Sections.end(), Patches.begin(), Patches.end(), std::back_inserter(Tmp), MergeCmp); ISD.Sections = std::move(Tmp); } // Given an erratum sequence that starts at address AdrpAddr, with an // instruction that we need to patch at PatcheeOffset from the start of // InputSection IS, create a Patch843419 Section and add it to the // Patches that we need to insert. static void implementPatch(uint64_t AdrpAddr, uint64_t PatcheeOffset, InputSection *IS, std::vector &Patches) { // There may be a relocation at the same offset that we are patching. There // are three cases that we need to consider. // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this // instance of the erratum on a previous patch and altered the relocation. We // have nothing more to do. // Case 2: A load/store register (unsigned immediate) class relocation. There // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and // they are both absolute. We need to add the same relocation to the patch, // and replace the relocation with a R_AARCH_JUMP26 branch relocation. // Case 3: No relocation. We must create a new R_AARCH64_JUMP26 branch // relocation at the offset. auto RelIt = std::find_if( IS->Relocations.begin(), IS->Relocations.end(), [=](const Relocation &R) { return R.Offset == PatcheeOffset; }); if (RelIt != IS->Relocations.end() && RelIt->Type == R_AARCH64_JUMP26) return; if (Config->Verbose) message("detected cortex-a53-843419 erratum sequence starting at " + utohexstr(AdrpAddr) + " in unpatched output."); auto *PS = make(IS, PatcheeOffset); Patches.push_back(PS); auto MakeRelToPatch = [](uint64_t Offset, Symbol *PatchSym) { return Relocation{R_PC, R_AARCH64_JUMP26, Offset, 0, PatchSym}; }; if (RelIt != IS->Relocations.end()) { PS->Relocations.push_back( {RelIt->Expr, RelIt->Type, 0, RelIt->Addend, RelIt->Sym}); *RelIt = MakeRelToPatch(PatcheeOffset, PS->PatchSym); } else IS->Relocations.push_back(MakeRelToPatch(PatcheeOffset, PS->PatchSym)); } // Scan all the instructions in InputSectionDescription, for each instance of // the erratum sequence create a Patch843419Section. We return the list of // Patch843419Sections that need to be applied to ISD. std::vector AArch64Err843419Patcher::patchInputSectionDescription( InputSectionDescription &ISD) { std::vector Patches; for (InputSection *IS : ISD.Sections) { // LLD doesn't use the erratum sequence in SyntheticSections. if (isa(IS)) continue; // Use SectionMap to make sure we only scan code and not inline data. // We have already sorted MapSyms in ascending order and removed consecutive // mapping symbols of the same type. Our range of executable instructions to // scan is therefore [CodeSym->Value, DataSym->Value) or [CodeSym->Value, // section size). std::vector &MapSyms = SectionMap[IS]; auto CodeSym = llvm::find_if(MapSyms, [&](const Defined *MS) { return MS->getName().startswith("$x"); }); while (CodeSym != MapSyms.end()) { auto DataSym = std::next(CodeSym); uint64_t Off = (*CodeSym)->Value; uint64_t Limit = (DataSym == MapSyms.end()) ? IS->Data.size() : (*DataSym)->Value; while (Off < Limit) { uint64_t StartAddr = IS->getParent()->Addr + IS->OutSecOff + Off; if (uint64_t PatcheeOffset = scanCortexA53Errata843419(IS, Off, Limit)) implementPatch(StartAddr, PatcheeOffset, IS, Patches); } if (DataSym == MapSyms.end()) break; CodeSym = std::next(DataSym); } } return Patches; } // For each InputSectionDescription make one pass over the executable sections // looking for the erratum sequence; creating a synthetic Patch843419Section // for each instance found. We insert these synthetic patch sections after the // executable code in each InputSectionDescription. // // PreConditions: // The Output and Input Sections have had their final addresses assigned. // // PostConditions: // Returns true if at least one patch was added. The addresses of the // Ouptut and Input Sections may have been changed. // Returns false if no patches were required and no changes were made. bool AArch64Err843419Patcher::createFixes() { if (Initialized == false) init(); bool AddressesChanged = false; for (OutputSection *OS : OutputSections) { if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR)) continue; for (BaseCommand *BC : OS->SectionCommands) if (auto *ISD = dyn_cast(BC)) { std::vector Patches = patchInputSectionDescription(*ISD); if (!Patches.empty()) { insertPatches(*ISD, Patches); AddressesChanged = true; } } } return AddressesChanged; }