//===- ARM.cpp ------------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Error.h" #include "InputFiles.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "Thunks.h" #include "llvm/Object/ELF.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; namespace { class ARM final : public TargetInfo { public: ARM(); RelExpr getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const override; bool isPicRel(uint32_t Type) const override; uint32_t getDynRel(uint32_t Type) const override; int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override; void writePltHeader(uint8_t *Buf) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; void addPltSymbols(InputSectionBase *IS, uint64_t Off) const override; void addPltHeaderSymbols(InputSectionBase *ISD) const override; bool needsThunk(RelExpr Expr, uint32_t RelocType, const InputFile *File, const SymbolBody &S) const override; bool inBranchRange(uint32_t RelocType, uint64_t Src, uint64_t Dst) const override; void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; }; } // namespace ARM::ARM() { CopyRel = R_ARM_COPY; RelativeRel = R_ARM_RELATIVE; IRelativeRel = R_ARM_IRELATIVE; GotRel = R_ARM_GLOB_DAT; PltRel = R_ARM_JUMP_SLOT; TlsGotRel = R_ARM_TLS_TPOFF32; TlsModuleIndexRel = R_ARM_TLS_DTPMOD32; TlsOffsetRel = R_ARM_TLS_DTPOFF32; GotEntrySize = 4; GotPltEntrySize = 4; PltEntrySize = 16; PltHeaderSize = 20; TrapInstr = 0xd4d4d4d4; // ARM uses Variant 1 TLS TcbSize = 8; NeedsThunks = true; } RelExpr ARM::getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const { switch (Type) { default: return R_ABS; case R_ARM_THM_JUMP11: return R_PC; case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_PREL31: case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: case R_ARM_THM_CALL: return R_PLT_PC; case R_ARM_GOTOFF32: // (S + A) - GOT_ORG return R_GOTREL; case R_ARM_GOT_BREL: // GOT(S) + A - GOT_ORG return R_GOT_OFF; case R_ARM_GOT_PREL: case R_ARM_TLS_IE32: // GOT(S) + A - P return R_GOT_PC; case R_ARM_SBREL32: return R_ARM_SBREL; case R_ARM_TARGET1: return Config->Target1Rel ? R_PC : R_ABS; case R_ARM_TARGET2: if (Config->Target2 == Target2Policy::Rel) return R_PC; if (Config->Target2 == Target2Policy::Abs) return R_ABS; return R_GOT_PC; case R_ARM_TLS_GD32: return R_TLSGD_PC; case R_ARM_TLS_LDM32: return R_TLSLD_PC; case R_ARM_BASE_PREL: // B(S) + A - P // FIXME: currently B(S) assumed to be .got, this may not hold for all // platforms. return R_GOTONLY_PC; case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_REL32: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: return R_PC; case R_ARM_NONE: return R_NONE; case R_ARM_TLS_LE32: return R_TLS; } } bool ARM::isPicRel(uint32_t Type) const { return (Type == R_ARM_TARGET1 && !Config->Target1Rel) || (Type == R_ARM_ABS32); } uint32_t ARM::getDynRel(uint32_t Type) const { if (Type == R_ARM_TARGET1 && !Config->Target1Rel) return R_ARM_ABS32; if (Type == R_ARM_ABS32) return Type; // Keep it going with a dummy value so that we can find more reloc errors. return R_ARM_ABS32; } void ARM::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { write32le(Buf, InX::Plt->getVA()); } void ARM::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const { // An ARM entry is the address of the ifunc resolver function. write32le(Buf, S.getVA()); } void ARM::writePltHeader(uint8_t *Buf) const { const uint8_t PltData[] = { 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]! 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8] 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8 }; memcpy(Buf, PltData, sizeof(PltData)); uint64_t GotPlt = InX::GotPlt->getVA(); uint64_t L1 = InX::Plt->getVA() + 8; write32le(Buf + 16, GotPlt - L1 - 8); } void ARM::addPltHeaderSymbols(InputSectionBase *ISD) const { auto *IS = cast(ISD); addSyntheticLocal("$a", STT_NOTYPE, 0, 0, IS); addSyntheticLocal("$d", STT_NOTYPE, 16, 0, IS); } void ARM::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { // FIXME: Using simple code sequence with simple relocations. // There is a more optimal sequence but it requires support for the group // relocations. See ELF for the ARM Architecture Appendix A.3 const uint8_t PltData[] = { 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip] 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8 }; memcpy(Buf, PltData, sizeof(PltData)); uint64_t L1 = PltEntryAddr + 4; write32le(Buf + 12, GotPltEntryAddr - L1 - 8); } void ARM::addPltSymbols(InputSectionBase *ISD, uint64_t Off) const { auto *IS = cast(ISD); addSyntheticLocal("$a", STT_NOTYPE, Off, 0, IS); addSyntheticLocal("$d", STT_NOTYPE, Off + 12, 0, IS); } bool ARM::needsThunk(RelExpr Expr, uint32_t RelocType, const InputFile *File, const SymbolBody &S) const { // If S is an undefined weak symbol in an executable we don't need a Thunk. // In a DSO calls to undefined symbols, including weak ones get PLT entries // which may need a thunk. if (S.isUndefined() && !S.isLocal() && S.symbol()->isWeak() && !Config->Shared) return false; // A state change from ARM to Thumb and vice versa must go through an // interworking thunk if the relocation type is not R_ARM_CALL or // R_ARM_THM_CALL. switch (RelocType) { case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_JUMP24: // Source is ARM, all PLT entries are ARM so no interworking required. // Otherwise we need to interwork if Symbol has bit 0 set (Thumb). if (Expr == R_PC && ((S.getVA() & 1) == 1)) return true; break; case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: // Source is Thumb, all PLT entries are ARM so interworking is required. // Otherwise we need to interwork if Symbol has bit 0 clear (ARM). if (Expr == R_PLT_PC || ((S.getVA() & 1) == 0)) return true; break; } return false; } bool ARM::inBranchRange(uint32_t RelocType, uint64_t Src, uint64_t Dst) const { uint64_t Range; uint64_t InstrSize; switch (RelocType) { case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_JUMP24: case R_ARM_CALL: Range = 0x2000000; InstrSize = 4; break; case R_ARM_THM_JUMP19: Range = 0x100000; InstrSize = 2; break; case R_ARM_THM_JUMP24: case R_ARM_THM_CALL: Range = 0x1000000; InstrSize = 2; break; default: return true; } // PC at Src is 2 instructions ahead, immediate of branch is signed if (Src > Dst) Range -= 2 * InstrSize; else Range += InstrSize; if ((Dst & 0x1) == 0) // Destination is ARM, if ARM caller then Src is already 4-byte aligned. // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure // destination will be 4 byte aligned. Src &= ~0x3; else // Bit 0 == 1 denotes Thumb state, it is not part of the range Dst &= ~0x1; uint64_t Distance = (Src > Dst) ? Src - Dst : Dst - Src; return Distance <= Range; } void ARM::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const { switch (Type) { case R_ARM_ABS32: case R_ARM_BASE_PREL: case R_ARM_GLOB_DAT: case R_ARM_GOTOFF32: case R_ARM_GOT_BREL: case R_ARM_GOT_PREL: case R_ARM_REL32: case R_ARM_RELATIVE: case R_ARM_SBREL32: case R_ARM_TARGET1: case R_ARM_TARGET2: case R_ARM_TLS_GD32: case R_ARM_TLS_IE32: case R_ARM_TLS_LDM32: case R_ARM_TLS_LDO32: case R_ARM_TLS_LE32: case R_ARM_TLS_TPOFF32: case R_ARM_TLS_DTPOFF32: write32le(Loc, Val); break; case R_ARM_TLS_DTPMOD32: write32le(Loc, 1); break; case R_ARM_PREL31: checkInt<31>(Loc, Val, Type); write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000)); break; case R_ARM_CALL: // R_ARM_CALL is used for BL and BLX instructions, depending on the // value of bit 0 of Val, we must select a BL or BLX instruction if (Val & 1) { // If bit 0 of Val is 1 the target is Thumb, we must select a BLX. // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' checkInt<26>(Loc, Val, Type); write32le(Loc, 0xfa000000 | // opcode ((Val & 2) << 23) | // H ((Val >> 2) & 0x00ffffff)); // imm24 break; } if ((read32le(Loc) & 0xfe000000) == 0xfa000000) // BLX (always unconditional) instruction to an ARM Target, select an // unconditional BL. write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff)); // fall through as BL encoding is shared with B LLVM_FALLTHROUGH; case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: checkInt<26>(Loc, Val, Type); write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff)); break; case R_ARM_THM_JUMP11: checkInt<12>(Loc, Val, Type); write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff)); break; case R_ARM_THM_JUMP19: // Encoding T3: Val = S:J2:J1:imm6:imm11:0 checkInt<21>(Loc, Val, Type); write16le(Loc, (read16le(Loc) & 0xfbc0) | // opcode cond ((Val >> 10) & 0x0400) | // S ((Val >> 12) & 0x003f)); // imm6 write16le(Loc + 2, 0x8000 | // opcode ((Val >> 8) & 0x0800) | // J2 ((Val >> 5) & 0x2000) | // J1 ((Val >> 1) & 0x07ff)); // imm11 break; case R_ARM_THM_CALL: // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the // value of bit 0 of Val, we must select a BL or BLX instruction if ((Val & 1) == 0) { // Ensure BLX destination is 4-byte aligned. As BLX instruction may // only be two byte aligned. This must be done before overflow check Val = alignTo(Val, 4); } // Bit 12 is 0 for BLX, 1 for BL write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12); // Fall through as rest of encoding is the same as B.W LLVM_FALLTHROUGH; case R_ARM_THM_JUMP24: // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 // FIXME: Use of I1 and I2 require v6T2ops checkInt<25>(Loc, Val, Type); write16le(Loc, 0xf000 | // opcode ((Val >> 14) & 0x0400) | // S ((Val >> 12) & 0x03ff)); // imm10 write16le(Loc + 2, (read16le(Loc + 2) & 0xd000) | // opcode (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1 (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2 ((Val >> 1) & 0x07ff)); // imm11 break; case R_ARM_MOVW_ABS_NC: case R_ARM_MOVW_PREL_NC: write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) | (Val & 0x0fff)); break; case R_ARM_MOVT_ABS: case R_ARM_MOVT_PREL: checkInt<32>(Loc, Val, Type); write32le(Loc, (read32le(Loc) & ~0x000f0fff) | (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff)); break; case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVT_PREL: // Encoding T1: A = imm4:i:imm3:imm8 checkInt<32>(Loc, Val, Type); write16le(Loc, 0xf2c0 | // opcode ((Val >> 17) & 0x0400) | // i ((Val >> 28) & 0x000f)); // imm4 write16le(Loc + 2, (read16le(Loc + 2) & 0x8f00) | // opcode ((Val >> 12) & 0x7000) | // imm3 ((Val >> 16) & 0x00ff)); // imm8 break; case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVW_PREL_NC: // Encoding T3: A = imm4:i:imm3:imm8 write16le(Loc, 0xf240 | // opcode ((Val >> 1) & 0x0400) | // i ((Val >> 12) & 0x000f)); // imm4 write16le(Loc + 2, (read16le(Loc + 2) & 0x8f00) | // opcode ((Val << 4) & 0x7000) | // imm3 (Val & 0x00ff)); // imm8 break; default: error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); } } int64_t ARM::getImplicitAddend(const uint8_t *Buf, uint32_t Type) const { switch (Type) { default: return 0; case R_ARM_ABS32: case R_ARM_BASE_PREL: case R_ARM_GOTOFF32: case R_ARM_GOT_BREL: case R_ARM_GOT_PREL: case R_ARM_REL32: case R_ARM_TARGET1: case R_ARM_TARGET2: case R_ARM_TLS_GD32: case R_ARM_TLS_LDM32: case R_ARM_TLS_LDO32: case R_ARM_TLS_IE32: case R_ARM_TLS_LE32: return SignExtend64<32>(read32le(Buf)); case R_ARM_PREL31: return SignExtend64<31>(read32le(Buf)); case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: return SignExtend64<26>(read32le(Buf) << 2); case R_ARM_THM_JUMP11: return SignExtend64<12>(read16le(Buf) << 1); case R_ARM_THM_JUMP19: { // Encoding T3: A = S:J2:J1:imm10:imm6:0 uint16_t Hi = read16le(Buf); uint16_t Lo = read16le(Buf + 2); return SignExtend64<20>(((Hi & 0x0400) << 10) | // S ((Lo & 0x0800) << 8) | // J2 ((Lo & 0x2000) << 5) | // J1 ((Hi & 0x003f) << 12) | // imm6 ((Lo & 0x07ff) << 1)); // imm11:0 } case R_ARM_THM_CALL: case R_ARM_THM_JUMP24: { // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) // FIXME: I1 and I2 require v6T2ops uint16_t Hi = read16le(Buf); uint16_t Lo = read16le(Buf + 2); return SignExtend64<24>(((Hi & 0x0400) << 14) | // S (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1 (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2 ((Hi & 0x003ff) << 12) | // imm0 ((Lo & 0x007ff) << 1)); // imm11:0 } // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and // MOVT is in the range -32768 <= A < 32768 case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: { uint64_t Val = read32le(Buf) & 0x000f0fff; return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff)); } case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: { // Encoding T3: A = imm4:i:imm3:imm8 uint16_t Hi = read16le(Buf); uint16_t Lo = read16le(Buf + 2); return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4 ((Hi & 0x0400) << 1) | // i ((Lo & 0x7000) >> 4) | // imm3 (Lo & 0x00ff)); // imm8 } } } TargetInfo *elf::getARMTargetInfo() { static ARM Target; return &Target; }