//===- X86_64.cpp ---------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/ErrorHandler.h" #include "llvm/Object/ELF.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; namespace { template class X86_64 : public TargetInfo { public: X86_64(); RelExpr getRelExpr(RelType Type, const Symbol &S, const uint8_t *Loc) const override; RelType getDynRel(RelType Type) const override; void writeGotPltHeader(uint8_t *Buf) const override; void writeGotPlt(uint8_t *Buf, const Symbol &S) const override; void writePltHeader(uint8_t *Buf) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override; RelExpr adjustRelaxExpr(RelType Type, const uint8_t *Data, RelExpr Expr) const override; void relaxGot(uint8_t *Loc, uint64_t Val) const override; void relaxTlsGdToIe(uint8_t *Loc, RelType Type, uint64_t Val) const override; void relaxTlsGdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override; void relaxTlsIeToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override; void relaxTlsLdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override; bool adjustPrologueForCrossSplitStack(uint8_t *Loc, uint8_t *End, uint8_t StOther) const override; private: void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op, uint8_t ModRm) const; }; } // namespace template X86_64::X86_64() { CopyRel = R_X86_64_COPY; GotRel = R_X86_64_GLOB_DAT; NoneRel = R_X86_64_NONE; PltRel = R_X86_64_JUMP_SLOT; RelativeRel = R_X86_64_RELATIVE; IRelativeRel = R_X86_64_IRELATIVE; TlsGotRel = R_X86_64_TPOFF64; TlsModuleIndexRel = R_X86_64_DTPMOD64; TlsOffsetRel = R_X86_64_DTPOFF64; GotEntrySize = 8; GotPltEntrySize = 8; PltEntrySize = 16; PltHeaderSize = 16; TlsGdRelaxSkip = 2; TrapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3 // Align to the large page size (known as a superpage or huge page). // FreeBSD automatically promotes large, superpage-aligned allocations. DefaultImageBase = 0x200000; } template RelExpr X86_64::getRelExpr(RelType Type, const Symbol &S, const uint8_t *Loc) const { switch (Type) { case R_X86_64_8: case R_X86_64_16: case R_X86_64_32: case R_X86_64_32S: case R_X86_64_64: case R_X86_64_DTPOFF32: case R_X86_64_DTPOFF64: return R_ABS; case R_X86_64_TPOFF32: return R_TLS; case R_X86_64_TLSLD: return R_TLSLD_PC; case R_X86_64_TLSGD: return R_TLSGD_PC; case R_X86_64_SIZE32: case R_X86_64_SIZE64: return R_SIZE; case R_X86_64_PLT32: return R_PLT_PC; case R_X86_64_PC32: case R_X86_64_PC64: return R_PC; case R_X86_64_GOT32: case R_X86_64_GOT64: return R_GOT_FROM_END; case R_X86_64_GOTPCREL: case R_X86_64_GOTPCRELX: case R_X86_64_REX_GOTPCRELX: case R_X86_64_GOTTPOFF: return R_GOT_PC; case R_X86_64_GOTOFF64: return R_GOTREL_FROM_END; case R_X86_64_GOTPC32: case R_X86_64_GOTPC64: return R_GOTONLY_PC_FROM_END; case R_X86_64_NONE: return R_NONE; default: return R_INVALID; } } template void X86_64::writeGotPltHeader(uint8_t *Buf) const { // The first entry holds the value of _DYNAMIC. It is not clear why that is // required, but it is documented in the psabi and the glibc dynamic linker // seems to use it (note that this is relevant for linking ld.so, not any // other program). write64le(Buf, In.Dynamic->getVA()); } template void X86_64::writeGotPlt(uint8_t *Buf, const Symbol &S) const { // See comments in X86::writeGotPlt. write64le(Buf, S.getPltVA() + 6); } template void X86_64::writePltHeader(uint8_t *Buf) const { const uint8_t PltData[] = { 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip) 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip) 0x0f, 0x1f, 0x40, 0x00, // nop }; memcpy(Buf, PltData, sizeof(PltData)); uint64_t GotPlt = In.GotPlt->getVA(); uint64_t Plt = In.Plt->getVA(); write32le(Buf + 2, GotPlt - Plt + 2); // GOTPLT+8 write32le(Buf + 8, GotPlt - Plt + 4); // GOTPLT+16 } template void X86_64::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { const uint8_t Inst[] = { 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) 0x68, 0, 0, 0, 0, // pushq 0xe9, 0, 0, 0, 0, // jmpq plt[0] }; memcpy(Buf, Inst, sizeof(Inst)); write32le(Buf + 2, GotPltEntryAddr - PltEntryAddr - 6); write32le(Buf + 7, Index); write32le(Buf + 12, -getPltEntryOffset(Index) - 16); } template RelType X86_64::getDynRel(RelType Type) const { if (Type == R_X86_64_64 || Type == R_X86_64_PC64 || Type == R_X86_64_SIZE32 || Type == R_X86_64_SIZE64) return Type; return R_X86_64_NONE; } template void X86_64::relaxTlsGdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const { // Convert // .byte 0x66 // leaq x@tlsgd(%rip), %rdi // .word 0x6666 // rex64 // call __tls_get_addr@plt // to // mov %fs:0x0,%rax // lea x@tpoff,%rax const uint8_t Inst[] = { 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax }; memcpy(Loc - 4, Inst, sizeof(Inst)); // The original code used a pc relative relocation and so we have to // compensate for the -4 in had in the addend. write32le(Loc + 8, Val + 4); } template void X86_64::relaxTlsGdToIe(uint8_t *Loc, RelType Type, uint64_t Val) const { // Convert // .byte 0x66 // leaq x@tlsgd(%rip), %rdi // .word 0x6666 // rex64 // call __tls_get_addr@plt // to // mov %fs:0x0,%rax // addq x@tpoff,%rax const uint8_t Inst[] = { 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@tpoff,%rax }; memcpy(Loc - 4, Inst, sizeof(Inst)); // Both code sequences are PC relatives, but since we are moving the constant // forward by 8 bytes we have to subtract the value by 8. write32le(Loc + 8, Val - 8); } // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to // R_X86_64_TPOFF32 so that it does not use GOT. template void X86_64::relaxTlsIeToLe(uint8_t *Loc, RelType Type, uint64_t Val) const { uint8_t *Inst = Loc - 3; uint8_t Reg = Loc[-1] >> 3; uint8_t *RegSlot = Loc - 1; // Note that ADD with RSP or R12 is converted to ADD instead of LEA // because LEA with these registers needs 4 bytes to encode and thus // wouldn't fit the space. if (memcmp(Inst, "\x48\x03\x25", 3) == 0) { // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" memcpy(Inst, "\x48\x81\xc4", 3); } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) { // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" memcpy(Inst, "\x49\x81\xc4", 3); } else if (memcmp(Inst, "\x4c\x03", 2) == 0) { // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" memcpy(Inst, "\x4d\x8d", 2); *RegSlot = 0x80 | (Reg << 3) | Reg; } else if (memcmp(Inst, "\x48\x03", 2) == 0) { // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" memcpy(Inst, "\x48\x8d", 2); *RegSlot = 0x80 | (Reg << 3) | Reg; } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) { // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" memcpy(Inst, "\x49\xc7", 2); *RegSlot = 0xc0 | Reg; } else if (memcmp(Inst, "\x48\x8b", 2) == 0) { // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" memcpy(Inst, "\x48\xc7", 2); *RegSlot = 0xc0 | Reg; } else { error(getErrorLocation(Loc - 3) + "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); } // The original code used a PC relative relocation. // Need to compensate for the -4 it had in the addend. write32le(Loc, Val + 4); } template void X86_64::relaxTlsLdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const { // Convert // leaq bar@tlsld(%rip), %rdi // callq __tls_get_addr@PLT // leaq bar@dtpoff(%rax), %rcx // to // .word 0x6666 // .byte 0x66 // mov %fs:0,%rax // leaq bar@tpoff(%rax), %rcx if (Type == R_X86_64_DTPOFF64) { write64le(Loc, Val); return; } if (Type == R_X86_64_DTPOFF32) { write32le(Loc, Val); return; } const uint8_t Inst[] = { 0x66, 0x66, // .word 0x6666 0x66, // .byte 0x66 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax }; memcpy(Loc - 3, Inst, sizeof(Inst)); } template void X86_64::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const { switch (Type) { case R_X86_64_8: checkUInt(Loc, Val, 8, Type); *Loc = Val; break; case R_X86_64_16: checkUInt(Loc, Val, 16, Type); write16le(Loc, Val); break; case R_X86_64_32: checkUInt(Loc, Val, 32, Type); write32le(Loc, Val); break; case R_X86_64_32S: case R_X86_64_TPOFF32: case R_X86_64_GOT32: case R_X86_64_GOTPC32: case R_X86_64_GOTPCREL: case R_X86_64_GOTPCRELX: case R_X86_64_REX_GOTPCRELX: case R_X86_64_PC32: case R_X86_64_GOTTPOFF: case R_X86_64_PLT32: case R_X86_64_TLSGD: case R_X86_64_TLSLD: case R_X86_64_DTPOFF32: case R_X86_64_SIZE32: checkInt(Loc, Val, 32, Type); write32le(Loc, Val); break; case R_X86_64_64: case R_X86_64_DTPOFF64: case R_X86_64_GLOB_DAT: case R_X86_64_PC64: case R_X86_64_SIZE64: case R_X86_64_GOT64: case R_X86_64_GOTOFF64: case R_X86_64_GOTPC64: write64le(Loc, Val); break; default: error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); } } template RelExpr X86_64::adjustRelaxExpr(RelType Type, const uint8_t *Data, RelExpr RelExpr) const { if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX) return RelExpr; const uint8_t Op = Data[-2]; const uint8_t ModRm = Data[-1]; // FIXME: When PIC is disabled and foo is defined locally in the // lower 32 bit address space, memory operand in mov can be converted into // immediate operand. Otherwise, mov must be changed to lea. We support only // latter relaxation at this moment. if (Op == 0x8b) return R_RELAX_GOT_PC; // Relax call and jmp. if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25)) return R_RELAX_GOT_PC; // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. // If PIC then no relaxation is available. // We also don't relax test/binop instructions without REX byte, // they are 32bit operations and not common to have. assert(Type == R_X86_64_REX_GOTPCRELX); return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC; } // A subset of relaxations can only be applied for no-PIC. This method // handles such relaxations. Instructions encoding information was taken from: // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) template void X86_64::relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op, uint8_t ModRm) const { const uint8_t Rex = Loc[-3]; // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". if (Op == 0x85) { // See "TEST-Logical Compare" (4-428 Vol. 2B), // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). // ModR/M byte has form XX YYY ZZZ, where // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). // XX has different meanings: // 00: The operand's memory address is in reg1. // 01: The operand's memory address is reg1 + a byte-sized displacement. // 10: The operand's memory address is reg1 + a word-sized displacement. // 11: The operand is reg1 itself. // If an instruction requires only one operand, the unused reg2 field // holds extra opcode bits rather than a register code // 0xC0 == 11 000 000 binary. // 0x38 == 00 111 000 binary. // We transfer reg2 to reg1 here as operand. // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte. // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 // See "TEST-Logical Compare" (4-428 Vol. 2B). Loc[-2] = 0xf7; // Move R bit to the B bit in REX byte. // REX byte is encoded as 0100WRXB, where // 0100 is 4bit fixed pattern. // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the // default operand size is used (which is 32-bit for most but not all // instructions). // REX.R This 1-bit value is an extension to the MODRM.reg field. // REX.X This 1-bit value is an extension to the SIB.index field. // REX.B This 1-bit value is an extension to the MODRM.rm field or the // SIB.base field. // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; write32le(Loc, Val); return; } // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub // or xor operations. // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". // Logic is close to one for test instruction above, but we also // write opcode extension here, see below for details. Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte. // Primary opcode is 0x81, opcode extension is one of: // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. // This value was wrote to MODRM.reg in a line above. // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for // descriptions about each operation. Loc[-2] = 0x81; Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; write32le(Loc, Val); } template void X86_64::relaxGot(uint8_t *Loc, uint64_t Val) const { const uint8_t Op = Loc[-2]; const uint8_t ModRm = Loc[-1]; // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". if (Op == 0x8b) { Loc[-2] = 0x8d; write32le(Loc, Val); return; } if (Op != 0xff) { // We are relaxing a rip relative to an absolute, so compensate // for the old -4 addend. assert(!Config->Pic); relaxGotNoPic(Loc, Val + 4, Op, ModRm); return; } // Convert call/jmp instructions. if (ModRm == 0x15) { // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". // Instead we convert to "addr32 call foo" where addr32 is an instruction // prefix. That makes result expression to be a single instruction. Loc[-2] = 0x67; // addr32 prefix Loc[-1] = 0xe8; // call write32le(Loc, Val); return; } // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". // jmp doesn't return, so it is fine to use nop here, it is just a stub. assert(ModRm == 0x25); Loc[-2] = 0xe9; // jmp Loc[3] = 0x90; // nop write32le(Loc - 1, Val + 1); } // This anonymous namespace works around a warning bug in // old versions of gcc. See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56480 namespace { // A split-stack prologue starts by checking the amount of stack remaining // in one of two ways: // A) Comparing of the stack pointer to a field in the tcb. // B) Or a load of a stack pointer offset with an lea to r10 or r11. template <> bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *Loc, uint8_t *End, uint8_t StOther) const { if (Loc + 8 >= End) return false; // Replace "cmp %fs:0x70,%rsp" and subsequent branch // with "stc, nopl 0x0(%rax,%rax,1)" if (memcmp(Loc, "\x64\x48\x3b\x24\x25", 5) == 0) { memcpy(Loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8); return true; } // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could // be r10 or r11. The lea instruction feeds a subsequent compare which checks // if there is X available stack space. Making X larger effectively reserves // that much additional space. The stack grows downward so subtract the value. if (memcmp(Loc, "\x4c\x8d\x94\x24", 4) == 0 || memcmp(Loc, "\x4c\x8d\x9c\x24", 4) == 0) { // The offset bytes are encoded four bytes after the start of the // instruction. write32le(Loc + 4, read32le(Loc + 4) - 0x4000); return true; } return false; } template <> bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *Loc, uint8_t *End, uint8_t StOther) const { llvm_unreachable("Target doesn't support split stacks."); } } // namespace // These nonstandard PLT entries are to migtigate Spectre v2 security // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT // entries, we use a CALL followed by MOV and RET to do the same thing as an // indirect jump. That instruction sequence is so-called "retpoline". // // We have two types of retpoline PLTs as a size optimization. If `-z now` // is specified, all dynamic symbols are resolved at load-time. Thus, when // that option is given, we can omit code for symbol lazy resolution. namespace { template class Retpoline : public X86_64 { public: Retpoline(); void writeGotPlt(uint8_t *Buf, const Symbol &S) const override; void writePltHeader(uint8_t *Buf) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; }; template class RetpolineZNow : public X86_64 { public: RetpolineZNow(); void writeGotPlt(uint8_t *Buf, const Symbol &S) const override {} void writePltHeader(uint8_t *Buf) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; }; } // namespace template Retpoline::Retpoline() { TargetInfo::PltHeaderSize = 48; TargetInfo::PltEntrySize = 32; } template void Retpoline::writeGotPlt(uint8_t *Buf, const Symbol &S) const { write64le(Buf, S.getPltVA() + 17); } template void Retpoline::writePltHeader(uint8_t *Buf) const { const uint8_t Insn[] = { 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip) 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next 0xf3, 0x90, // 12: loop: pause 0x0f, 0xae, 0xe8, // 14: lfence 0xeb, 0xf9, // 17: jmp loop 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp) 0xc3, // 24: ret 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding }; memcpy(Buf, Insn, sizeof(Insn)); uint64_t GotPlt = In.GotPlt->getVA(); uint64_t Plt = In.Plt->getVA(); write32le(Buf + 2, GotPlt - Plt - 6 + 8); write32le(Buf + 9, GotPlt - Plt - 13 + 16); } template void Retpoline::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { const uint8_t Insn[] = { 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12 0x68, 0, 0, 0, 0, // 11: pushq 0xe9, 0, 0, 0, 0, // 16: jmp plt+0 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding }; memcpy(Buf, Insn, sizeof(Insn)); uint64_t Off = getPltEntryOffset(Index); write32le(Buf + 3, GotPltEntryAddr - PltEntryAddr - 7); write32le(Buf + 8, -Off - 12 + 32); write32le(Buf + 13, -Off - 17 + 18); write32le(Buf + 18, Index); write32le(Buf + 23, -Off - 27); } template RetpolineZNow::RetpolineZNow() { TargetInfo::PltHeaderSize = 32; TargetInfo::PltEntrySize = 16; } template void RetpolineZNow::writePltHeader(uint8_t *Buf) const { const uint8_t Insn[] = { 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next 0xf3, 0x90, // 5: loop: pause 0x0f, 0xae, 0xe8, // 7: lfence 0xeb, 0xf9, // a: jmp loop 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp) 0xc3, // 14: ret 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding 0xcc, // 1f: int3; padding }; memcpy(Buf, Insn, sizeof(Insn)); } template void RetpolineZNow::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { const uint8_t Insn[] = { 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11 0xe9, 0, 0, 0, 0, // jmp plt+0 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding }; memcpy(Buf, Insn, sizeof(Insn)); write32le(Buf + 3, GotPltEntryAddr - PltEntryAddr - 7); write32le(Buf + 8, -getPltEntryOffset(Index) - 12); } template static TargetInfo *getTargetInfo() { if (Config->ZRetpolineplt) { if (Config->ZNow) { static RetpolineZNow T; return &T; } static Retpoline T; return &T; } static X86_64 T; return &T; } TargetInfo *elf::getX32TargetInfo() { return getTargetInfo(); } TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }